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Concentration of scalar random variables

Independent random !" ∈ ℝ

! = ∑" !"

Is ! ≈ (!with high probability?



Concentration of scalar random variables

Chernoff inequality
Independent random !" ∈ ℝ%&
! = ∑" !"
1. )! = *
2. !" ≤ ,

gives

ℙ[ ! − * > 1*] ≤ 2exp − 789

:(<=8) ≤ ?

E.g.  if 1 = 0.5, , = 1 and * = 10 log(1/?)



Concentration of random matrices

Independent random !" ∈ ℝ%×%

! = ∑" !"

Is ! ≈ *! with high probability?



Concentration of random matrices

Matrix Chernoff [Tropp ’11]
Independent random !" ∈ ℝ%×%, positive semi-definite
! = ∑" !"
1. *! = +
2. !" ≤ -

gives

ℙ[ ! − *! > 2] ≤ 4 2exp − 9:;

< =>: ≤ ?

[Rudelson ‘99, Ahlswede-Winter ’02]

E.g.  if 2 = 0.5, - = 1 and + = 10 log(4/?)



What if variables are not independent?

! ∈ 0,1 random variable

& = !
! + & not concentrated, 0 or 2

) = 1 − !
! + ) very concentrated, always 1

Negative dependence:
! makes ) less likely and vice versa



What if variables are not independent?

! ∈ 0,1 & random variable

Negative pairwise correlation
For all pairs ' ≠ )

! ' = 1 ⇒ lower prob. of ! ) = 1

Formally  ℙ[! ) = 1|! ' = 1] ≤ ℙ[! ) = 1]



What if variables are not independent?

! ∈ 0,1 & random variable

Negative correlation
For all ' ⊆ [*]
ℙ ∀. ∈ '. ! . = 1 ≤ Π3∈4ℙ ! . = 1

Can we get a Chernoff bound? Yes.
If ! AND ̅! (negated bits) are negatively correlated,
Chernoff-like concentration applies to ∑3 !(.)
[Goyal-Rademacher-Vempala ‘09, Dubhashi-Ranjan ’98]



Strongly Rayleigh distributions

A class of negatively dependent distributions 
[Borcea-Branden-Liggett ’09]

! ∈ 0,1 & random variable

Many nice properties
Negative pairwise correlation
Negative association
Closed under conditioning, marginalization



Strongly Rayleigh distributions

A class of negatively dependent distributions 
[Borcea-Branden-Liggett ’09]

! ∈ 0,1 & random variable

Examples:
Uniformly sampling ' items without replacement
Random spanning trees
Determinantal point processes, volume sampling
Symmetric exclusion processes



Strongly Rayleigh distributions

A class of negatively dependent distributions 
[Borcea-Branden-Liggett ’09]

! ∈ 0,1 & random variable

'-homogeneous Strongly Rayleigh:
( ∶ ! ( = 1 = + always



Concentration of random matrices

Strongly Rayleigh matrix Chernoff [K. & Song ’18]
Fixed !" ∈ ℝ%×%, positive semi-definite
( ∈ 0,1 + is ,-homogeneous strongly Rayleigh

Random - = ∑" ((1)!"
1. 3- = 4
2. !" ≤ 6

gives

ℙ[ - − 3- > 4;] ≤ = 2exp −
BCD

E FGH IJC
≤ K

Scalar version: Peres-Pemantle ‘14

E.g.  if ; = 0.5, 6 = 1 and 4 = 10 log =/K log(,)



Concentration of random matrices

Strongly Rayleigh matrix Chernoff [K. & Song ’18]
Fixed !" ∈ ℝ%×%, positive semi-definite
( ∈ 0,1 + is ,-homogeneous strongly Rayleigh

Random - = ∑" ((1)!"
1. 3- = 4
2. !" ≤ 6

gives

ℙ[ - − 3- > 4;] ≤ = 2exp − BCD

E FGH IJC
≤ K

Scalar version: Peres-Pemantle ‘14

E.g.  if ; = log(,), 6 = 1 and 4 = 10 log =/K



An application:
Graph approximation using 
random spanning trees



Spanning trees of a graph

Graph ! = #, %,&
Edge weights    &:% → ℝ*
+ = #

Spanning trees of !



Random spanning trees
Graph !

Tree distribution

Pick a random tree?



Random spanning trees

Does the sum of a few random spanning trees
resemble the graph?

E.g. is the weight across each cut similar?

Starter question:
Are the edge weights similar in expectation?



Random spanning trees
Graph !

Tree distribution

Pick a random tree



Random spanning trees
Graph !

Tree distribution

Pick a random tree

"#: probability of edge present

"# = 1/2



Random spanning trees
Graph !

Tree distribution

Pick a random tree

"#: probability of edge present

"# = 5/8



Random spanning trees

Getting the expectation right:

!"# $ = &' ⋅ )*+ ", $ = ", $

w. probability &'

o.w.  

"#($) =
1
&'
",($)
1
&'
0



Reweighted random spanning trees

1 1
1

1 1
2
8/5

8/5
Original weights Tree weights



Reweighted random spanning trees

1 1
1

1 1

8/58/5
Original weights Tree weights

8/5



Reweighted random spanning trees

1 1
1

1 1
"

Original weights Tree weights

=
random 

tree

1 1
1

1 1

1/%&



Reweighted random spanning trees

1 1
1

1 1
"

Original weights Tree weights

=
random 

tree

1 1
1

1 1

1/%&

The average weight over trees equals the original weight

Does the tree “behave like” the original graph?



Preserving cuts?

Given cut ! ⊆ #, 
$% !, ̅! = )

*,+ ∈-∩/×/̅
$*+

Want for all ! ⊆ #
$1 !, ̅! ≈ $% !, ̅!

with high probability?

Too much to ask of one tree!

How many edges are necessary?



Independent edge samples
! graph 

Flip a coin for each edge to decide if present
" random graph, independent edges



Independent edge samples
! graph 

Flip a coin for each edge to decide if present
" random graph, independent edges



Independent edge samples

Getting the expectation right:

!"# $ = &' ⋅ )*+ ", $ = ", $

w. probability &'

o.w.  

"#($) =
1
&'
",($)
1
&'
0

1 2



Preserving cuts?

Benczur-Karger ‘96
Sample edges independently with
“well-chosen” coin probabilities !",
s.t. $ has on average %('()* log) *) %('()* log *)
Edges then w.h.p. for all cuts / ⊆ 1

(1 − ')45 /, ̅/ ≤ 48 /, ̅/ ≤ (1 + ')45 /, ̅/

Proof sketch
Count #cuts of each size
Chernoff concentration bound per cut



Reweighted random tree

1 1
1

1 1
"

Original weights Tree weights

=
random 

tree

1 1
1

1 1

1/%&

The average weight over trees equals the original weight

Does the tree “behave like” the original graph?



Combining trees

2
8/5

8/5 8/58/5

8/5
+

1
2 =

8/58/5

4/5 4/5
1

≈
1 1
1

1 1??

Maybe it’s better if we average a few trees?



Preserving cuts?

Fung-Harvey & Hariharan-Panigrahi ‘10
Let ! = #

$ ∑&'#
$ (& be the average of ) = *(,-. log. 2)

reweighted random spanning trees of 4
then w.h.p. for all cuts 5 ⊆ 7

(1 − ,):; 5, ̅5 ≤ :? 5, ̅5 ≤ (1 + ,):; 5, ̅5

Proof sketch
Benczur-Karger cut counting
Scalar Chernoff works for negatively correlated variables



Preserving cuts?

Goyal-Rademacher-Vempala ‘09
Given an unweighted bounded degree graph G,
let ! = #

$ ∑&'#
$ (& be the average of )(1) unweighted

random spanning trees of -
then w.h.p. for all cuts . ⊆ 0

Ω(1/ log 6)78 ., ̅. ≤ 7< ., ̅. ≤ 78 ., ̅.

Proof sketch
Benczur-Karger cut counting + first tree gets small cuts
Scalar Chernoff works for negatively correlated variables



Preserving more than cuts:
Matrices and quadratic forms



Laplacians: It’s springs!

Weighted, undirected graph ! = #, %,& ,			&: % → ℝ+
The Laplacian  , is a |#|×|#| matrix describing !
On each edge /, 0 , put a spring between the vertices.

Nail down each vertex / at position 1(/) along the real line.

1 / 1 0 1 4



Laplacians: It’s springs!

Length
Energy = spring const.     length

"#$" = ∑(',))∈, -') " . − " 0 1

" . " 0

= |" . − " 0 |
= -') " . − " 0 1)1⋅ (



Laplacians

!"#! = ∑(',))∈, -') . / − . 1 2

= ∑(',))∈, !"#(',))!

# = ∑(',))∈, #(',))

/ 1

3

L(a,b) = w(a,b)

. . . a . . . b . . .
�

�������

�

�������

...
a 1 �1
...
b �1 1
...

w(a,b)

“baby Laplacian” per edge

#(',))



Laplacian of a graph

�

�
1 �1 0

�1 1 0
0 0 0

�

�

�

�
0 0 0
0 1 �1
0 �1 1

�

�
2�

�
2 0 �2
0 0 0

�2 0 2

�

�

1
1

�

�
3 �1 �2

�1 2 �1
�2 �1 3

�

�



Preserving matrices?

Suppose ! is a random weighted graph  s.t.
for every edge ",			%&' " = &)(").

Then %,' = ,)

Does ,' “behave like” ,)?



Preserving quadratic forms?

For all ! ∈ ℝ$

1 − ' !()*! ≤ !(),! ≤ (1 + ')!()*!

with high probability?

Useful?
Since 01()*01 = 3* 4, ̅4
implies cuts are preserved by letting ! = 01.
Quadratic form crucial for solving linear equations 



Preserving quadratic forms?

Spielman-Srivastava ’08 (a la Tropp)
Sample edges independently with
“well-chosen” coin probabilities !",
s.t. $ has on average %('()* log *) edges
then w.h.p. for all / ∈ ℝ2

1 − ' /567/ ≤ /569/ ≤ (1 + ')/567/

Proof sketch
Bound spectral norm of sampled edge “baby Laplacians”
Matrix Chernoff concentration



What sampling probabilities?

Spielman-Srivastava ’08
“well-chosen” coin probabilities 

!" ∝ max'
'()"'
'()'

What is the marginal probability of edges being 
present in a random spanning tree?

Also proportional to max'
'*)+'
'*)' (!)

Random spanning trees similar to sparsification?



Preserving quadratic forms?

K.-Song ’18
Let ! = #

$ ∑&'#
$ (& be the average of ) = *(,-. log. 2)

reweighted random spanning trees of 4
then w.h.p. for all 5 ∈ ℝ8

1 − , 5;<=5 ≤ 5;<?5 ≤ (1 + ,)5;<=5

Proof sketch
Bound norms of sampled matrices (immediate via SS’08)
Strongly Rayleigh matrix Chernoff concentration



Random spanning trees

!" #
$ ∑&'#

$ ()* ! ≈, !"(-!, . = 012log26

Lower bound (K.-Song ’18)
. = Ω(012 log 6) needed for 0-spectral sparsifier

Open question
Right number of logs?
Guess: O(012 log 6) trees



Random spanning trees

More results (K.-Song ’18)
!"#$! ≤ &(log +) !"#-! for all ! w.h.p.
⇒ in /-spectrally connected graphs
random tree is &(/ log +)-spectrally thin 

Lower bounds
In some graphs, w. prob. ≥ 1− 345.78 there exists ! s.t.

!"#$! ≰ :
;

<=> 8
<=> <=> 8 !

"#-!
and for some ?, ?"#-? ≰ ?"#$?

In a ring graph, there exists !, ? s.t.

!"#$! ≰ !" #-! and    :
84A ?

"#-? ≰ ?"#$?



Proving the strongly Rayleigh 
matrix Chernoff bound



An illustrative case

!"#$! ≤ &(log +) !"#-! for all ! w.h.p.



Loewner order

! ≼ # iff for all $ $%!$ ≤ $%#$

$%'($ ≤ )(log .) $%'0$ for all $

'( ≼ )(log .)'0



Proof strategy?

Convert problem to Doob martingales

Matrix martingale concentration

Control effect of conditioning via coupling

Norm bound from coupling

Variance bound: coupling symmetry + shrinking marginals



What is a martingale?

A sequence of random variables  !",… , !% s.t. 
& !' !", … , !'() = !'()

Many concentration bounds for independent random 
variables can be generalized to the martingale case,
to show !% ≈ !" w.h.p.



Concentration of martingales

Why do martingales exhibit concentration?

Each difference is zero mean, 
conditional on previous outcomes
! "# − "#%& "', … , "#%& = 0

If each difference "# − "#%& is small, then

", − "' = ∑# "# − "#%& ≈ 0



Doob martingales

Random variables !", … , !%
Goal: Prove concentration for &(!", … , !%)

where & is ``stable” under small changes to !", … , !%
& !", … , !% ≈ *& !", … , !% ?

NOT indep.

Also need !", … , !% stable under conditioning 



Doob martingales

Pick random outcome !", … , !% from distribution
&' = ) *(!", … , !%)
&" = ) * !", … , !% |!"
&. = ) * !", … , !% |!", !.
⋮
&% = ) * !", … , !% |!", !., … , !% = * !", … , !%
)&" = )01 ) * !", … , !% |!" = ) *(!", … , !%) = &'
) &2 − &24"|prev. steps = 0

Show &% ≈ &', i.e. * !", … , !% ≈ )* !", … , !%

Martingale!
Despite !",… , !%
NOT independent



Our Doob martingale

Reveal one edge of tree at a time
Let !" denote the index of the #th edge of the tree
Pick random tree as $ = !&, !(, … , !*+&
,- = . !&, !(, … , !*+&
/0 = 1 ,-
/& = 1 ,-|!&
⋮
/*+& = 1 ,-|!&, !(, … , !*+& =,-
1 /" − /"+&|prev. steps = <



Our Doob martingale

Want to show
!"#$= &' is close to !( = ) &'
!"#$ − !( = ∑, !, − !,#$
Matrix martingale concentration?

Matrix Freedman (Tropp ‘11)
Norm !, − !,#$ ≤ 1
Variance    ∑, ) (!,−!,#$)1| prev. steps ≤ : log >
implies w.h.p
&' ≼ :(log >)&@



Our Doob martingale

Want to show
!"#$= &' is close to !( = ) &'
!"#$ − !( = ∑, !, − !,#$
Matrix martingale concentration?

Matrix Freedman (Tropp ‘11)
Norm !, − !,#$ ≤ 1
Variance    ∑, ) (!,−!,#$)1| prev. steps ≤ : log >
implies w.h.p
&' ≼ :(log >)&@

difficult

How can we understand !A1 = ) &' |B$, … , BA1 ?



How does conditioning change the distribution?
Graph

Tree distribution
All 

Conditional

Pick a random tree, conditional on red edge present?



How similar are the distributions?
Tree distribution
All 

Conditional

How does conditioning change the distribution?



How similar are the distributions?
Tree distribution
All 

Conditional

How does conditioning change the distribution?



How similar are the distributions?
Tree distribution
All 

Cond.

Coupling Pick pair !, !# with marginals as above

!

!′

How does conditioning change the distribution?



How similar are the distributions?
Tree distribution
All 

Cond.

Coupling Pick pair !, !# with marginals as above

!
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How does conditioning change the distribution?



How similar are the distributions?
Tree distribution
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Cond.
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How similar are the distributions?
Tree distribution
All 

Cond.

Coupling Pick pair !, !# with marginals as above

!

!′
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How does conditioning change the distribution?
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How similar are the distributions?
Tree distribution
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Cond.
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How similar are the distributions?
Tree distribution
All 

Cond.

Coupling Pick pair !, !# with marginals as above

!
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How does conditioning change the distribution?



How similar are the distributions?
Tree distribution
All 

Cond.

Coupling Pick pair !, !# with marginals as above

!

!′

− =

How does conditioning change the distribution?



Coupling table – difference ≤ 2
1

2

3

4

e1
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e4 e6
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1
8 e3,
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40 e2,

2
40
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e4,
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1
8

e1,
1
8 e4,
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Good couplings

Stochastic covering property 
For !-homogenous strongly Rayleigh distributions
a coupling of ", "$ with difference ≤ 2 always exists.

[Borcea-Branden-Liggett ’09]
[Peres-Pemantle ‘14]



Coupling table has more structure
Alice, Bob, Charlie want to form a tree,
by each selecting one edge: !", !#, !$
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Coupling table has more structure
Alice picks !"
How much does this restrict Bob and Charlie?
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Coupling table has more structure
Alice picks !"
How much does this restrict Bob and Charlie?
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After Bob and Charlie choose their edges,
they enlist Anna to pick an extra edge, #!"

Anna can choose that edge s.t.
Anna, Bob, & Charlie, obtain original distribution



Coupling table has more structure
Recover the original distribution by adding 
a “make-up edge” to conditional distribution
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Coupling table has more structure
Recover the original distribution by adding ≤ 1
“make-up edge” to conditional distribution
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Coupling table has more structure
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Coupling table has more structure
Recover the original distribution by adding ≤ 1
“make-up edge” to conditional distribution
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Coupling table has more structure

Alice, Bob, Charlie
!"

Anna, Bob, Charlie
“makeup edge”

Conditional distribution Original distribution (!)

= $ Alice + Bob + Charlie|Alice − $ Anna + Bob + Charlie|Alice

'" − '(

)!"

= *+, − $ *-+,|!"

= $ *.|!" − $ *.

= Alice − $ Anna|Alice



Coupling table has more structure

Alice, Bob, Charlie
!"

Anna, Bob, Charlie
“makeup edge”

Conditional distribution Original distribution (!)

#" − #%

&!"

= ()* − + (,)*|!"

= + (.|!" − + (.

#" − #% ≤ max ()* , + (,)*|!"
≤ max ()* , + (,)* |!"
≤ max

4
(4 ≤ 1



Coupling table has more structure

Alice, Bob, Charlie
!"

Anna, Bob, Charlie
“makeup edge”

Conditional distribution Original distribution (!)

# $" − $&

'!"

So
# ()* = # # (,)*|!"

= # ()* − # (,)*|!" = .
# $" − $& = .

Alice Anna, “makeup edge”

Important symmery
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1
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3
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1
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1
8 e4,

3
40
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1
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1
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1
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Coupling table has more structure

Alice, Bob, Charlie
!"

Anna, Bob, Charlie
“makeup edge”

Conditional distribution Original distribution (!)

#!"

$ (&"−&()* = $ ,-. − $ ,/-.|!"
*

= $ ,-.* + $ ,/-.|!"
*

≼ $ ,-. + $ ,/-.|!"
≼ 2$ ,-.



Coupling table has more structure

So ! (#$−#&)( ≼ (
*+$ ,-

! ,./ = $
*+$! ,1 = $

*+$ ,-

! (#$−#&)( ≼ 2! ,./



What about !" − !"$%?
Boils down to bounding & '()| +%, +-, … , +"$%

Later steps



How does conditioning change the distribution?
Graph

Tree distribution
All 

Conditional

Pick a random tree, conditional on red edge present?



How does conditioning change the distribution?
Graph

Tree distribution
All 

Conditional

“Shrinking Marginals Lemma”
All other edges become less likely 



How does conditioning change the distribution?
Graph

Tree distribution
All 

Conditional

“Shrinking Marginals Lemma”
All other edges become less likely !

" = 0.625 vs    )! = 0.6



How does conditioning change the distribution?
Graph

Tree distribution
All 

Conditional

“Shrinking Marginals Lemma”
All other edges become less likely !

" = 0.5 vs    '( = 0.4



! remaining edges| #$, #&, … , #()$ ≼ ! +, = +.

Later steps 

! +/0| #$, #&, … , #()$ ≼ $
1)( +.

∑( ! (4(−4()$)&| prev. steps ≼ ∑( &
1)( +. = >(log B) +.

Shrinking 
marginals



Our Doob martingale

Want to show
!"#$= &' is close to !( = ) &'
!"#$ − !( = ∑, !, − !,#$

Matrix Freedman (Tropp ‘11)
Norm !, − !,#$ ≤ 1
Variance    ∑, ) (!,−!,#$)1| prev. steps ≤ : log >
implies
&' ≼ :(log >)&@ w.h.p



Concentration of random matrices

Strongly Rayleigh matrix Chernoff [K. & Song ’18]
Fixed !" ∈ ℝ%×%, positive semi-definite
( ∈ 0,1 + is ,-homogeneous strongly Rayleigh

Random - = ∑" ((1)!"
1. 3- = 4
2. !" ≤ 6

gives

ℙ[ - − 3- > 4;] ≤ = 2exp −
BCD

E FGH IJC



Open Questions

Our bound for !-homogeneous strongly Rayleigh

ℙ[ $ − &$ > ()] ≤ , 2exp − (12
3 log ! + 1

Remove the log !?

Remove homogeneity condition

Find more applications

Show log 8 sparsifier from 9 1 spanning trees?



Thanks!


