Algorithms for Answering Linear Queries Part II

Sasho Nikolov (U Toronto)

Gerome Miklau (Univ. of Massachusetts, Amherst) **Ryan McKenna** (Univ. of Massachusetts, Amherst)

Task: batch (non-interactive) query answering

- Answer: a fixed set of linear counting queries
 - complex data analysis task into simpler queries.
 - multiple users each issuing one or more queries.
 - uncertainty about the eventual query answers needed--design workload to include all queries possibly of interest.

the "workload"

Outline

1. Algorithm landscape

- 2. Motivating challenge: a Census workload
- 3. Scaling the matrix mechanism
- 4. Results on the Census workload
- 5. Data-adaptive algorithms and trade-offs
- 6. Open problems

Approach 1: data-agnostic mechanisms

Data-agnostic mechanisms

 Many algorithms belong to the select-measure-reconstruct paradigm, which adapt measurements to the workload

Workload	Strategy (Measurements)		Citation
any		Identity	[Dwork, TCC '06]
low-order marginals		Fourier basis queries	[Barak, PODS '07]
all one-dim range queries	ked	Hierarchical ranges	[Hay, PVLDB '10]
all (multi-dim) range queries	Ę	Haar wavelet queries	[Xiao, ICDE '10]
2-dim range queries		Quad-tree queries	[Cormode, ICDE '12]
set of linear queries		set of linear queries	[Li, PODS '10] [Li, PVLDB '12]
sets of data cubes	zed	sets of data cubes	[Ding, SIGMOD '11]
set of linear queries	imi	set of linear queries	[Yuan, VLDB '12]
range queries	Opt	hierarchical ranges	[Qardaji, PVLDB '13]
range queries)	weighted hierarchical ranges	[Li, VLDB '14]

Selected measurements for range queries

Given workload W of range queries:

Measurement Set A	Resulting mechanism
A = Identity matrix	a common baseline
A = Haar wavelet	[Xiao, ICDE '10]
A = tree based	[Hay, PVLDB '10] [Bolot 2011] [Cormode, ICDE '12] [Qardaji, PVLDB '13]

Strategy matrices for **1D range queries**

(for a domain of size 4)

T

Hierarchical

1	1	1	1
1	1	-1	-1
1	-1	0	0
0	0	1	-1

Y

A good strategy has **low sensitivity** but permits **low-error reconstruction** of the workload queries.

Error: workload of all range queries

Strategy matrices equivalent to wavelet

The haar wavelet observation matrix Y is **dominated** by alternative matrix Y".

Given a workload W, and any full-rank strategy matrix A, the following randomized algorithm is ϵ -differentially private:

Compare with the Laplace mechanism:

Laplace(W,x) = Wx + ($||W||_1 / \varepsilon$)b

OPT_{MM}: Matrix mechanism optimization [Li et al., 2010]

• For any A that supports W, expected total squared error is:

$$Error(\mathbf{W}, \mathbf{A}) = (2/\epsilon^2) \|\mathbf{A}\|_1^2 \|\mathbf{W}\mathbf{A}^+\|_F^2$$

Measurement Reconstruction Error

Error independent of the input data

Matrix Mechanism optimization is hard

• To find the A that minimizes error on W:

$$\begin{array}{ll} \underset{\mathbf{A}}{\operatorname{minimize}} & \left\|\mathbf{A}\right\|_{1}^{2} \left\|\mathbf{W}\mathbf{A}^{+}\right\|_{F}^{2} & \longleftarrow \text{Expected Error}\\ \text{subject to} & \mathbf{W}\mathbf{A}^{+}\mathbf{A} = \mathbf{W} & \longleftarrow \text{A supports W} \end{array}$$

• It is hard for a number of reasons:

- 1. There are **many parameters** to optimize
- 2. The pseudo inverse is expensive to compute and not well-behaved
- 3. The constraints are hard to encode
- 4. The problem is **not smooth or convex**

Optimal selection of observations

Objective: given workload **W**, find the observation matrix **A** that minimizes the **total** error.

Privacy	Optimization Objective	Problem Type	Runtime
ε DP	Given W consisting of data cube queries, choose A consisting of data cube queries to minimize simplified error measure. [Ding, SIGMOD '11]	set-cover approx	O(n)
ε DP	Given W, choose A to minimize TotalError _A (W) [Li, PODS '10]	SDP w/ rank constraints	O(n ⁸)
(ε,δ) DP	Given W, choose A to minimize TotalError _A (W) [Li, PODS '10]	SDP	O(n ⁸)
ε DP	Given W, choose AB≈W to minimize TotalError _A (AB) [Yuan, VLDB '12]	bi-convex opt	O(n⁴)
(ε,δ) DP	Given W, choose optimal scaling of eigenvectors of W to minimize TotalError _A (W) [Li, PVLDB '12]	convex opt	O(n⁴)

Approach 2: data-adaptive mechanisms

Selected data-adaptive mechanisms

Workload	Measurements	Citation
1D range queries	approx. v-optimal histogram	[Xu, ICDE '12]
2D range queries	kd-tree queries	[Xiao, SDM '10]
2D range queries	hybrid kd-tree queries	[Cormode, ICDE '12]
Marginals	scaled workload queries	[Xiao, SIGMOD '11]
Linear queries	subset of workload	[Hardt, NIPS '12]
Any (none specified)	stats of Bayes Net	[Zhang, SIGMOD '14]
1D/2D range queries	tree queries; reduced domain	[Li, VLDB '14]
Linear queries	minimum payoff records	[Gaboardi, ICML '14]

Comparison of approaches

Data-agnostic	Data-adaptive
Most fit the "select-measure- reconstruct" paradigm	Greater variety of techniques
Workload query error easily computable and non-sensitive.	Workload query error is data- dependent and sensitive.
Unbiased query answers	Reduce variance by introducing bias into query answers
Lower error in "high signal" settings	Lower error in "low signal" settings
Scalability challenges	Scalability challenges (with some exceptions)

Outline

1. Algorithm landscape

2. Motivating challenge: a Census workload

- 3. Scaling the matrix mechanism
- 4. Results on the Census workload
- 5. Data-adaptive algorithms and trade-offs
- 6. Open problems

Census of Population and Housing

Describes Persons and their Households

Example data and workload

- Persons table:
 - sex (2)
 - relation (17)
 - age (115)
 - race/ethnicity (126)
 - geography-state (52)
 - geography-tract (73,768)
 - geography-blocks (10,620,683)

Workload

4151 predicate counting queries on **Persons**

Person table, in vector form

Product workloads

Given a set of predicates on each attribute, a **product workload** consists of all predicate queries that conjunctively combine one predicate on each attribute.

Note: marginals are product workloads where predicate sets are either {True} or "Identity":

lage x lrace x {True}relp x {True}sex

Product workload example

- Many SF1 "tables" can be represented as product workloads
- For example, table P12 (excluding the Total) is:

Products and Union of Products

- A product workload can encode a cartesian product of counting queries in which conditions are combined conjunctively. Examples include:
 - All multi-dimensional range queries
 - a single marginal
 - all marginals
- A union of products workload can encode an arbitrary collection of counting queries in which conditions are combined conjunctively. Examples include:
 - Arbitrary collection of multi-dimensional range queries
 - Arbitrary collection of marginals
 - Census Summary File 1 (SF1): union of 32 product workloads, sensitivity=50

Census SF1 workload (Person queries)

Sex	age	race	ethnicity	relp	geo
Ι	{coarse ranges}	Т	Т	Т	{Block}
Ι			Λ/ 9 <u>/</u> _17 [·]	1•	{Block}
Т	Impor	tant Rec	listricting	g data	{Block}
Т	Т	{race-comb}	Т	Т	{Block}
Т	{over 18}	{race-comb}	Ι	Т	{Block}
Ι	Ι	Ι	Ι	Т	{Tract}
••••					

Can we scale the matrix mechanism?

Can we scale the matrix mechanism?

Outline

- 1. Algorithm landscape
- 2. Motivating challenge: a Census workload

3. Scaling the matrix mechanism

- 4. Results on the Census workload
- 5. Data-adaptive algorithms and trade-offs
- 6. Open problems

Matrix Mechanism vs. HDMM

Main obstacles **solution**:

1. OPT_{MM} is intractable in local, parameterized search

OPT₀: Optimizing over p-Identity strategies

OPT₀: Optimizing over p-Identity strategies

• Key Idea: Instead of optimizing over all strategies, optimize over the space of "p-Identity" strategies:

$$\mathbf{A}(\mathbf{\Theta}) = \begin{bmatrix} \mathbf{I} \\ \mathbf{\Theta} \end{bmatrix} diag(1 + \mathbf{1}^T \mathbf{\Theta})^{-1}$$

Carefully designed to
nake optimization easier

OPT₀: Optimizing over p-Identity strategies

• Sensitivity is always 1 by construction:

$$||\mathbf{A}(\mathbf{\Theta})||_1 = 1$$

• A supports all workloads because it has full column rank:

$$\mathbf{W}\mathbf{A}^{+}\mathbf{A} = \mathbf{W}$$
 for all $\mathbf{A}(\mathbf{\Theta})$

• Optimization is much simpler over this space:

$$\underset{\boldsymbol{\Theta}}{\text{minimize}} \left\| \mathbf{W} \mathbf{A}(\boldsymbol{\Theta})^+ \right\|_F^2$$

 Objective can be evaluated 240X faster by exploiting structure of A(Θ) (for n=8192, p=512)

Visualizing OPT₀ output

Workload of all range queries on 1D domain n=256

The strategy computed by OPT₀ for this workload (p=12)

Both strategies include the 256 identity queries (not shown)

Error on Prefix workload

Domain	HDMM	Identity	H2	Privelet	HB	GreedyH
128	1.00	1.80	1.79	1.78	1.80	1.20
256	1.00	2.18	1.79	1.78	1.22	1.24
512	1.00	2.68	1.80	1.79	1.28	1.41
1024	1.00	3.34	1.80	1.80	1.34	1.49
2048	1.00	4.18	1.80	1.79	1.42	1.71
4096	1.00	5.25	1.78	1.78	1.22	1.84
8192	1.00	6.40	1.71	1.70	1.20	2.09

Implicit workload representation

• Idea: we can store some workloads more efficiently

We can **represent large multi-dimensional workloads** by storing only small sub-workloads

Implicit representations are extremely compact

Workload	Explicit size	Implicit size
P12 table	96 MB	24 KB
SF1-national	8 GB	335 KB
SF1-state	22 TB	687 KB

Properties of Kronecker products

 $(\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C} = \mathbf{A} \otimes (\mathbf{B} \otimes \mathbf{C})$ Associativity

 $(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D}) = \mathbf{A}\mathbf{C} \otimes \mathbf{B}\mathbf{D}$ Matrix multiplication

 $(\mathbf{A} \otimes \mathbf{B})^+ = \mathbf{A}^+ \otimes \mathbf{B}^+$ Pseudo inverse

 $||A \otimes B|| = ||A|| \cdot ||B||$ Matrix norm

 $\mathbf{C} = \mathbf{A} \otimes \mathbf{B} \qquad \sigma_{ij}^{\mathbf{C}} = \sigma_i^{\mathbf{A}} \sigma_j^{\mathbf{B}}$

Singular values

OPT_®: Optimizing Kronecker product workloads

• Given a Kronecker product workload:

$$\mathbb{W} = \mathbf{W}_1 \otimes \ldots \otimes \mathbf{W}_d$$

- What can we do?
 - Finding a p-Identity strategy won't work workload may be too large to represent as a dense matrix

• A natural idea: try to find a Kronecker product strategy

$$\mathbb{A} = \mathbf{A}_1 \otimes \ldots \otimes \mathbf{A}_d$$

Given a Kronecker product workload and strategy:

$$\mathbb{W} = \mathbf{W}_1 \otimes \ldots \otimes \mathbf{W}_d \qquad \qquad \mathbb{A} = \mathbf{A}_1 \otimes \ldots \otimes \mathbf{A}_d$$

• Sepectivity error error profiles a compressant of the factors:

$$Error(\mathbf{W},\mathbf{A}) \equiv \prod_{\substack{i=1\\i=1}}^{d} |\mathbf{A}_{i}| = 1$$

• SVD lower bound decomposes over the factors: $||\mathbb{W}\mathbb{A}^+||_F = \prod_{\substack{i \leq 1 \\ I=1}} ||\mathbf{W}_i \mathbf{A}_i^+||_F$ $SVDB(\mathbb{W}) = \prod_{\substack{i \leq 1 \\ I=1}} SVDB(\mathbf{W}_i)$

Given a Kronecker product workload and strategy:

 $\mathbb{W} = \mathbf{W}_1 \otimes \ldots \otimes \mathbf{W}_d \qquad \qquad \mathbb{A} = \mathbf{A}_1 \otimes \ldots \otimes \mathbf{A}_d$

Expected error decomposes over the factors

$$Error(\mathbb{W}, \mathbb{A}) = \prod_{i=1}^{d} Error(\mathbf{W}_i, \mathbf{A}_i)$$

To minimize error:

solve d small optimization problems over the sub-workloads (which we can do efficiently using p-Identity strategies)

108

107

106

10⁵

104

10³

10²

• Given a union of Kronecker product workload:

$$\mathbb{W} = \begin{bmatrix} \mathbb{W}^{(1)} \\ \vdots \\ \mathbb{W}^{(k)} \end{bmatrix} = \begin{bmatrix} \mathbf{W}_1^{(1)} \otimes \dots \otimes \mathbf{W}_d^{(1)} \\ \vdots \otimes \dots \otimes \vdots \\ \mathbf{W}_1^{(k)} \otimes \dots \otimes \mathbf{W}_d^{(k)} \end{bmatrix}$$

- There are three strategy optimization routines:
 - 1. **OPT**₊ searches over union of Kron product of p-Identity strategies
 - 2. **OPT** $_{\otimes}$ searches over Kron product of p-Identity strategies
 - 3. **OPT_M** searches over weighted marginals strategies

Add the second sec

Optimizing Union of Product Workloads

Do these regions contain high quality strategies?

It depends on the workload, but experimental evidence suggests Yes.

• Simple idea: optimize each sub workload separately:

$$\mathbb{A}^{(j)} = OPT_{\otimes}(\mathbb{W}^{(j)})$$

• And form a union of Kronecker strategy:

$$\mathbb{A} = \begin{bmatrix} \mathbb{A}^{(1)} \\ \vdots \\ \mathbb{A}^{(k)} \end{bmatrix}$$

$$Error(\mathbb{W},\mathbb{A}) \leq \sum_{j} Error(\mathbb{W}^{(j)},\mathbb{A}^{(j)})$$

• Given a Kronecker product strategy:

$$\mathbb{A} = \mathbf{A}_1 \otimes \ldots \otimes \mathbf{A}_d$$

• Expected error still decomposes for a union of Kronecker workload:

$$Error(\mathbb{W}, \mathbb{A}) = \sum_{j=1}^{k} Error(\mathbb{W}^{(j)}, \mathbb{A})$$
$$= \sum_{j=1}^{k} \prod_{i=1}^{d} Error(\mathbf{W}_{i}^{(j)}, \mathbf{A}_{i})$$

• Thus we can solve the optimization problem efficiently

OPT_M: Optimizing marginals strategies

• Marginals are Kronecker products:

$$\mathbb{M}_{1100} = \mathbf{I} \otimes \mathbf{I} \otimes \mathbf{T} \otimes \mathbf{T}$$

• A collection of weighted marginals is a union of Kronecker products:

$$Error(\mathbb{M}(\mathbb{A}(\mathbb{A})) \begin{bmatrix} \theta_1(\mathbf{T} \otimes \cdots \otimes \mathbf{T}) \\ = ||M(\theta)||_1^2 ||\mathbb{W} \mathbb{M}(\theta)^+||_F^2 \\ \theta_{2^d}(\mathbb{V} \otimes \cdots \otimes \mathbf{I}) \end{bmatrix} \\ (\sum_i \theta_i)^2 \qquad \begin{array}{c} \text{Can compute pseudo inverse} \\ \text{efficiently by exploiting structure} \end{array}$$

Overview: running HDMM

Given: schema of R, and (logical) workload W

1. Represent workload implicitly as union of Kronecker products

Combine columns if necessary

2. Select best strategy from OPT_{\otimes} , OPT_{+} , and OPT_{M}

• (Optional) perform multiple random restarts

3. Run the matrix mechanism:

- Measure queries in $\mathbb A$ with Laplace mechanism
- Reconstruct W answers (by solving least squares prok

All 3D range queries \rightarrow OPT $_{\otimes}$ All up-to-3 way marginals \rightarrow OPT_M Some other workloads \rightarrow OPT+

How close to optimal are we?

- For (ε, δ) -differential privacy:
 - We have algorithms that can find globally optimal strategy
 - For all 2D range queries, we can get within a factor 1.04 of the SVD bound with a Kronecker product strategy.
- For ε-differential privacy:
 - Algorithms are approximate
 - 2-3X difference between lower bounds and what we can currently achieve
 - Open problem: need better bounds and/or optimization routines to close gap in (ε, 0)-differential privacy

Outline

- 1. Algorithm landscape
- 2. Motivating challenge: a Census workload
- 3. Scaling the matrix mechanism

4. Results on the Census workload

- 5. Data-adaptive algorithms and trade-offs
- 6. Open problems

More accuracy results: multi-dimensional workloads

- HDMM is one of the only algorithms that is general and scalable enough to handle complex multi-dimensional workloads
- HDMM offers lower error than competing methods

Dataset/		HDMM	Best competitor		
Domain	workioau	Error	Error	Method	
СРН	SF1	1.00	3.07	Identity	
2 x 2 x 17 x 51 x 63 x 115	SF1+	1.00	3.15	Identity	
Adult 2 x 5 x 16 x 20 x 75	All Marginals	1.00	1.38	Identity	
	2-way Marginals	1.00	2.01	DataCube	
CPS	All Range Marginals	1.00	1.49	Identity	
2 x 4 x 7 x 50 x 100	2-way Range Marginals	1.00	5.79	Identity 4	

Many additional Census challenges

- Materializing data vector is prohibitive for full geography.
- Sophisticated post-processing is required on HDMM output: nonnegativity, consistency (structural zeros and other known counts).
- Workload "tuning":
 - What if we want lower error for sub-workload X?
 - What if we omit sub-workload Y? Is error improved elsewhere?
- Multiple releases: optimize and release sub-workload X; later, optimize and release related sub-workload Y consistent with X.
- Error rates can be computed and published, but how should they be communicated and utilized by stakeholders?

Tuning workload error

- The PL94 queries are an important subset of the SF1 workload.
 - PL94: 288 queries
 - SF1: 4151 queries

Optimized Workload	Avg. Per Query	Error On
	SF1	7.28
SF1	PL94	16.45
	SF1 - PL94	6.07
PL94	PL94	3.91

Tuning workload error

- Optimizing for a workload in which PL94 is weighted
 - $W = c^*PL94 + 1^*SF1$ for positive constant c

Error on SF1 - PL94 vs. Error on PL94

Error on PL94

Outline

- 1. Algorithm landscape
- 2. Motivating challenge: a Census workload
- 3. Scaling the matrix mechanism
- 4. Results on the Census workload

5. Data-adaptive algorithms and trade-offs

6. Open problems

Data-adaptive mechanisms

- Understanding and evaluating data-adaptive algorithms is complex.
- The differential privacy community lacks benchmarks and standards for empirical evaluation.

Properties:

- domain size: length of frequency vector
- scale: total number of records in database
- **shape**: the frequency vector normalized by scale.

Desideratum: datasets that are diverse with respect to all three properties.

Data-dependent algorithms for lowdimensional linear queries

Uniform	baseline	Noisy total count; uniformity
MWEM	[Hardt '12]	Multiplicative Weights Exp. Mech.
AHP	[Zhang '14]	Private data reduction; measurement
DAWA	[Li '14]	Private data reduction; measurement
PHP	[Acs '12]	Private data reduction; measurement
QuadTree	[Cormode '12]	2D adaptive grid-based techniques
UGrid	[Qardaji '13]	2D adaptive grid-based techniques
AGrid	[Qardaji '13]	2D adaptive grid-based techniques
EFPA	[Acs '12]	Fourier; top-k coefficients

Error metric

DEFINITION 7 (SCALED AVERAGE PER-QUERY ERROR). Let **W** be a workload of q queries, **x** a data vector and $s = ||\mathbf{x}||_1$ its scale. Let $\hat{\mathbf{y}} = \mathcal{K}(\mathbf{x}, \mathbf{W}, \epsilon)$ denote the noisy output of algorithm \mathcal{K} . Given a loss function L, we define scale average per-query error as $\frac{1}{s \cdot q} L(\hat{\mathbf{y}}, \mathbf{Wx})$.

Example (scaled error):

	Scale	Absolute Error	Scaled Absolute Error
Dataset 1	1,000	100	0.100
Dataset 2	100,000	100	0.001

Scaled error is also error in units of a "population percentage"

Variation with "shape"

1D

Variation with shape

1D

Algorithm error varies significantly with dataset shape

1D

Data-independent alternatives

Data independent yardsticks

Identity: Laplace noise added to frequency vector x

HB: hierarchy of noisy counts [Qardaji et al. ICDE 2013]

Data-dependence can offer significant improvements in error (at smaller scales or lower epsilon).

1D

2D

Some data-dependent algorithms fail to offer benefits at larger scales (or higher epsilons).

Summary

- Empirical study on 1D and 2D range query workloads shows:
 - Significant variation in error for data-dependent methods
 - Significant trade-offs with "signal strength"
 - Low signal: data-dependent methods outperform
 - High signal: data-independent method outperform

Outline

- 1. Algorithm landscape
- 2. Motivating challenge: a Census workload
- 3. Scaling the matrix mechanism
- 4. Results on the Census workload
- 5. Data-adaptive algorithms and trade-offs

6. Open problems

Open problems

- Scaling to high dimensional data
 - HDMM: strategy selection is no longer bottleneck; data vector is.
 - Recent approach: measure low-dimensional projections, use graphical model techniques for global inference
 - Mis-match between strategy optimization and inference
 - Better understanding of tradeoffs between algorithmic approaches in high dimensions.

Open problems

- Beyond linear queries
 - Common SQL aggregate queries are not linear; how do we answer them effectively?

Thank you

- Optimizing Error of High-Dimensional Statistical Queries Under Differential Privacy. Ryan McKenna, Gerome Miklau, Michael Hay, Ashwin Machanavajjhala PVLDB 2018
- The matrix mechanism: optimizing linear counting queries under differential privacy. Chao Li, Gerome Miklau, Michael Hay, Andrew McGregor and Vibhor Rastogi VLDB Journal 2015
- Principled Evaluation of Differentially Private Algorithms using DPBench. Michael Hay, Ashwin Machanavajjhala, Gerome Miklau, Yan Chen, and Dan Zhang. SIGMOD 2016