## Algorithms for Answering Linear Queries Part II

Sasho Nikolov (U Toronto)

**Gerome Miklau** (Univ. of Massachusetts, Amherst) **Ryan McKenna** (Univ. of Massachusetts, Amherst)

#### Task: batch (non-interactive) query answering

- Answer: a fixed set of linear counting queries
  - complex data analysis task into simpler queries.
  - multiple users each issuing one or more queries.
  - uncertainty about the eventual query answers needed--design workload to include all queries possibly of interest.



the "workload"

#### Outline

#### 1. Algorithm landscape

- 2. Motivating challenge: a Census workload
- 3. Scaling the matrix mechanism
- 4. Results on the Census workload
- 5. Data-adaptive algorithms and trade-offs
- 6. Open problems



#### Approach 1: data-agnostic mechanisms



#### Data-agnostic mechanisms

 Many algorithms belong to the select-measure-reconstruct paradigm, which adapt measurements to the workload

| Workload                      | Strategy (Measurements) |                              | Citation                       |
|-------------------------------|-------------------------|------------------------------|--------------------------------|
| any                           |                         | Identity                     | [Dwork, TCC '06]               |
| low-order marginals           |                         | Fourier basis queries        | [Barak, PODS '07]              |
| all one-dim range queries     | ked                     | Hierarchical ranges          | [Hay, PVLDB '10]               |
| all (multi-dim) range queries | Ę                       | Haar wavelet queries         | [Xiao, ICDE '10]               |
| 2-dim range queries           |                         | Quad-tree queries            | [Cormode, ICDE '12]            |
| set of linear queries         |                         | set of linear queries        | [Li, PODS '10] [Li, PVLDB '12] |
| sets of data cubes            | zed                     | sets of data cubes           | [Ding, SIGMOD '11]             |
| set of linear queries         | imi                     | set of linear queries        | [Yuan, VLDB '12]               |
| range queries                 | Opt                     | hierarchical ranges          | [Qardaji, PVLDB '13]           |
| range queries                 | )                       | weighted hierarchical ranges | [Li, VLDB '14]                 |

#### Selected measurements for range queries

Given workload W of range queries:

| Measurement<br>Set A | Resulting mechanism                                                       |
|----------------------|---------------------------------------------------------------------------|
| A = Identity matrix  | a common baseline                                                         |
| A = Haar wavelet     | [Xiao, ICDE '10]                                                          |
| A = tree based       | [Hay, PVLDB '10] [Bolot 2011]<br>[Cormode, ICDE '12] [Qardaji, PVLDB '13] |

#### Strategy matrices for **1D range queries**

(for a domain of size 4)

T



#### Hierarchical



| 1 | 1  | 1  | 1  |
|---|----|----|----|
| 1 | 1  | -1 | -1 |
| 1 | -1 | 0  | 0  |
| 0 | 0  | 1  | -1 |

Y

A good strategy has **low sensitivity** but permits **low-error reconstruction** of the workload queries.

#### Error: workload of all range queries



#### Strategy matrices equivalent to wavelet

![](_page_8_Figure_1.jpeg)

The haar wavelet observation matrix Y is **dominated** by alternative matrix Y".

# Given a workload W, and any full-rank strategy matrix A, the following randomized algorithm is $\epsilon$ -differentially private:

![](_page_9_Figure_2.jpeg)

Compare with the Laplace mechanism:

Laplace(W,x) = Wx + ( $||W||_1 / \varepsilon$ )b

#### OPT<sub>MM</sub>: Matrix mechanism optimization [Li et al., 2010]

• For any A that supports W, expected total squared error is:

$$Error(\mathbf{W}, \mathbf{A}) = (2/\epsilon^2) \|\mathbf{A}\|_1^2 \|\mathbf{W}\mathbf{A}^+\|_F^2$$
  
Measurement Reconstruction Error

### Error independent of the input data

Matrix Mechanism optimization is hard

• To find the A that minimizes error on W:

$$\begin{array}{ll} \underset{\mathbf{A}}{\operatorname{minimize}} & \left\|\mathbf{A}\right\|_{1}^{2} \left\|\mathbf{W}\mathbf{A}^{+}\right\|_{F}^{2} & \longleftarrow \text{Expected Error}\\ \text{subject to} & \mathbf{W}\mathbf{A}^{+}\mathbf{A} = \mathbf{W} & \longleftarrow \text{A supports W} \end{array}$$

• It is hard for a number of reasons:

- 1. There are **many parameters** to optimize
- 2. The pseudo inverse is expensive to compute and not well-behaved
- 3. The constraints are hard to encode
- 4. The problem is **not smooth or convex**

#### Optimal selection of observations

Objective: given workload **W**, find the observation matrix **A** that minimizes the **total** error.

| Privacy     | Optimization Objective                                                                                                                     | Problem Type            | Runtime            |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|
| ε<br>DP     | Given W consisting of data cube queries, choose A consisting of data cube queries to minimize simplified error measure. [Ding, SIGMOD '11] | set-cover<br>approx     | O(n)               |
| ε<br>DP     | Given W, choose A to minimize TotalError <sub>A</sub> (W)<br>[Li, PODS '10]                                                                | SDP w/ rank constraints | O(n <sup>8</sup> ) |
| (ε,δ)<br>DP | Given W, choose A to minimize TotalError <sub>A</sub> (W)<br>[Li, PODS '10]                                                                | SDP                     | O(n <sup>8</sup> ) |
| ε<br>DP     | Given W, choose AB≈W to minimize<br>TotalError <sub>A</sub> (AB) [Yuan, VLDB '12]                                                          | bi-convex<br>opt        | O(n⁴)              |
| (ε,δ)<br>DP | Given W, choose optimal scaling of eigenvectors of W to minimize TotalError <sub>A</sub> (W) [Li, PVLDB '12]                               | convex<br>opt           | O(n⁴)              |

#### Approach 2: data-adaptive mechanisms

![](_page_13_Figure_1.jpeg)

## Selected data-adaptive mechanisms

| Workload             | Measurements                 | Citation             |
|----------------------|------------------------------|----------------------|
| 1D range queries     | approx. v-optimal histogram  | [Xu, ICDE '12]       |
| 2D range queries     | kd-tree queries              | [Xiao, SDM '10]      |
| 2D range queries     | hybrid kd-tree queries       | [Cormode, ICDE '12]  |
| Marginals            | scaled workload queries      | [Xiao, SIGMOD '11]   |
| Linear queries       | subset of workload           | [Hardt, NIPS '12]    |
| Any (none specified) | stats of Bayes Net           | [Zhang, SIGMOD '14]  |
| 1D/2D range queries  | tree queries; reduced domain | [Li, VLDB '14]       |
| Linear queries       | minimum payoff records       | [Gaboardi, ICML '14] |

### Comparison of approaches

| Data-agnostic                                             | Data-adaptive                                             |
|-----------------------------------------------------------|-----------------------------------------------------------|
| Most fit the "select-measure-<br>reconstruct" paradigm    | Greater variety of techniques                             |
| Workload query error easily computable and non-sensitive. | Workload query error is data-<br>dependent and sensitive. |
| Unbiased query answers                                    | Reduce variance by introducing bias into query answers    |
| Lower error in "high signal" settings                     | Lower error in "low signal" settings                      |
| Scalability challenges                                    | Scalability challenges (with some exceptions)             |

## Outline

1. Algorithm landscape

#### 2. Motivating challenge: a Census workload

- 3. Scaling the matrix mechanism
- 4. Results on the Census workload
- 5. Data-adaptive algorithms and trade-offs
- 6. Open problems

#### Census of Population and Housing

![](_page_17_Picture_1.jpeg)

#### Describes Persons and their Households

#### Example data and workload

- Persons table:
  - sex (2)
  - relation (17)
  - age (115)
  - race/ethnicity (126)
  - geography-state (52)
  - geography-tract (73,768)
  - geography-blocks (10,620,683)

#### Workload

![](_page_18_Figure_10.jpeg)

4151 predicate counting queries on **Persons** 

#### Person table, in vector form

![](_page_19_Figure_1.jpeg)

#### Product workloads

Given a set of predicates on each attribute, a **product workload** consists of all predicate queries that conjunctively combine one predicate on each attribute.

![](_page_20_Figure_2.jpeg)

Note: marginals are product workloads where predicate sets are either {True} or "Identity":

lage x lrace x {True}relp x {True}sex

#### Product workload example

- Many SF1 "tables" can be represented as product workloads
- For example, table P12 (excluding the Total) is:

![](_page_21_Figure_3.jpeg)

![](_page_21_Figure_4.jpeg)

## Products and Union of Products

- A product workload can encode a cartesian product of counting queries in which conditions are combined conjunctively. Examples include:
  - All multi-dimensional range queries
  - a single marginal
  - all marginals
- A union of products workload can encode an arbitrary collection of counting queries in which conditions are combined conjunctively. Examples include:
  - Arbitrary collection of multi-dimensional range queries
  - Arbitrary collection of marginals
  - Census Summary File 1 (SF1): union of 32 product workloads, sensitivity=50

#### Census SF1 workload (Person queries)

| Sex  | age                | race        | ethnicity                      | relp   | geo     |
|------|--------------------|-------------|--------------------------------|--------|---------|
| Ι    | {coarse<br>ranges} | Т           | Т                              | Т      | {Block} |
| Ι    |                    |             | Λ/ 9 <u>/</u> _17 <sup>·</sup> | 1•     | {Block} |
| Т    | Impor              | tant Rec    | listricting                    | g data | {Block} |
| Т    | Т                  | {race-comb} | Т                              | Т      | {Block} |
| Т    | {over 18}          | {race-comb} | Ι                              | Т      | {Block} |
| Ι    | Ι                  | Ι           | Ι                              | Т      | {Tract} |
| •••• |                    |             |                                |        |         |

#### Can we scale the matrix mechanism?

![](_page_24_Figure_1.jpeg)

#### Can we scale the matrix mechanism?

![](_page_25_Figure_1.jpeg)

### Outline

- 1. Algorithm landscape
- 2. Motivating challenge: a Census workload

#### 3. Scaling the matrix mechanism

- 4. Results on the Census workload
- 5. Data-adaptive algorithms and trade-offs
- 6. Open problems

## Matrix Mechanism vs. HDMM

![](_page_27_Figure_1.jpeg)

#### Main obstacles **solution**:

1. OPT<sub>MM</sub> is intractable in local, parameterized search

#### OPT<sub>0</sub>: Optimizing over p-Identity strategies

![](_page_28_Figure_1.jpeg)

#### OPT<sub>0</sub>: Optimizing over p-Identity strategies

• Key Idea: Instead of optimizing over all strategies, optimize over the space of "p-Identity" strategies:

$$\mathbf{A}(\mathbf{\Theta}) = \begin{bmatrix} \mathbf{I} \\ \mathbf{\Theta} \end{bmatrix} diag(1 + \mathbf{1}^T \mathbf{\Theta})^{-1}$$
  
Carefully designed to  
nake optimization easier

![](_page_29_Picture_3.jpeg)

![](_page_29_Figure_4.jpeg)

#### OPT<sub>0</sub>: Optimizing over p-Identity strategies

• Sensitivity is always 1 by construction:

$$||\mathbf{A}(\mathbf{\Theta})||_1 = 1$$

• A supports all workloads because it has full column rank:

$$\mathbf{W}\mathbf{A}^{+}\mathbf{A} = \mathbf{W}$$
 for all  $\mathbf{A}(\mathbf{\Theta})$ 

• Optimization is much simpler over this space:

$$\underset{\boldsymbol{\Theta}}{\text{minimize}} \left\| \mathbf{W} \mathbf{A}(\boldsymbol{\Theta})^+ \right\|_F^2$$

 Objective can be evaluated 240X faster by exploiting structure of A(Θ) (for n=8192, p=512)

![](_page_30_Figure_8.jpeg)

## Visualizing OPT<sub>0</sub> output

Workload of all range queries on 1D domain n=256

The strategy computed by OPT<sub>0</sub> for this workload (p=12)

![](_page_31_Figure_3.jpeg)

![](_page_31_Figure_4.jpeg)

Both strategies include the 256 identity queries (not shown)

#### Error on Prefix workload

| Domain | HDMM | Identity | H2   | Privelet | HB   | GreedyH |
|--------|------|----------|------|----------|------|---------|
| 128    | 1.00 | 1.80     | 1.79 | 1.78     | 1.80 | 1.20    |
| 256    | 1.00 | 2.18     | 1.79 | 1.78     | 1.22 | 1.24    |
| 512    | 1.00 | 2.68     | 1.80 | 1.79     | 1.28 | 1.41    |
| 1024   | 1.00 | 3.34     | 1.80 | 1.80     | 1.34 | 1.49    |
| 2048   | 1.00 | 4.18     | 1.80 | 1.79     | 1.42 | 1.71    |
| 4096   | 1.00 | 5.25     | 1.78 | 1.78     | 1.22 | 1.84    |
| 8192   | 1.00 | 6.40     | 1.71 | 1.70     | 1.20 | 2.09    |

#### Implicit workload representation

• Idea: we can store some workloads more efficiently

![](_page_33_Figure_2.jpeg)

We can **represent large multi-dimensional workloads** by storing only small sub-workloads

### Implicit representations are extremely compact

| Workload     | Explicit size | Implicit size |
|--------------|---------------|---------------|
| P12 table    | 96 MB         | 24 KB         |
| SF1-national | 8 GB          | 335 KB        |
| SF1-state    | 22 TB         | 687 KB        |

Properties of Kronecker products

 $(\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C} = \mathbf{A} \otimes (\mathbf{B} \otimes \mathbf{C})$  Associativity

 $(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D}) = \mathbf{A}\mathbf{C} \otimes \mathbf{B}\mathbf{D}$  Matrix multiplication

 $(\mathbf{A} \otimes \mathbf{B})^+ = \mathbf{A}^+ \otimes \mathbf{B}^+$  Pseudo inverse

 $||A \otimes B|| = ||A|| \cdot ||B||$  Matrix norm

 $\mathbf{C} = \mathbf{A} \otimes \mathbf{B} \qquad \sigma_{ij}^{\mathbf{C}} = \sigma_i^{\mathbf{A}} \sigma_j^{\mathbf{B}}$ 

Singular values

#### **OPT**<sub>®</sub>: Optimizing Kronecker product workloads

• Given a Kronecker product workload:

$$\mathbb{W} = \mathbf{W}_1 \otimes \ldots \otimes \mathbf{W}_d$$

- What can we do?
  - Finding a p-Identity strategy won't work workload may be too large to represent as a dense matrix

• A natural idea: try to find a Kronecker product strategy

$$\mathbb{A} = \mathbf{A}_1 \otimes \ldots \otimes \mathbf{A}_d$$

Given a Kronecker product workload and strategy:

$$\mathbb{W} = \mathbf{W}_1 \otimes \ldots \otimes \mathbf{W}_d \qquad \qquad \mathbb{A} = \mathbf{A}_1 \otimes \ldots \otimes \mathbf{A}_d$$

• Sepectivity error error profiles a compressant of the factors:

$$Error(\mathbf{W},\mathbf{A}) \equiv \prod_{\substack{i=1\\i=1}}^{d} |\mathbf{A}_{i}| = 1$$

• SVD lower bound decomposes over the factors:  $||\mathbb{W}\mathbb{A}^+||_F = \prod_{\substack{i \leq 1 \\ I=1}} ||\mathbf{W}_i \mathbf{A}_i^+||_F$   $SVDB(\mathbb{W}) = \prod_{\substack{i \leq 1 \\ I=1}} SVDB(\mathbf{W}_i)$ 

Given a Kronecker product workload and strategy:

 $\mathbb{W} = \mathbf{W}_1 \otimes \ldots \otimes \mathbf{W}_d \qquad \qquad \mathbb{A} = \mathbf{A}_1 \otimes \ldots \otimes \mathbf{A}_d$ 

Expected error decomposes over the factors

$$Error(\mathbb{W}, \mathbb{A}) = \prod_{i=1}^{d} Error(\mathbf{W}_i, \mathbf{A}_i)$$

To minimize error:

**solve d small optimization problems** over the sub-workloads (which we can do efficiently using p-Identity strategies)

108

107

106

**10**<sup>5</sup>

104

**10**<sup>3</sup>

10<sup>2</sup>

• Given a union of Kronecker product workload:

$$\mathbb{W} = \begin{bmatrix} \mathbb{W}^{(1)} \\ \vdots \\ \mathbb{W}^{(k)} \end{bmatrix} = \begin{bmatrix} \mathbf{W}_1^{(1)} \otimes \dots \otimes \mathbf{W}_d^{(1)} \\ \vdots \otimes \dots \otimes \vdots \\ \mathbf{W}_1^{(k)} \otimes \dots \otimes \mathbf{W}_d^{(k)} \end{bmatrix}$$

- There are three strategy optimization routines:
  - 1. **OPT**<sub>+</sub> searches over union of Kron product of p-Identity strategies
  - 2. **OPT** $_{\otimes}$  searches over Kron product of p-Identity strategies
  - 3. **OPT<sub>M</sub>** searches over weighted marginals strategies

Add the second sec

#### Optimizing Union of Product Workloads

![](_page_40_Figure_1.jpeg)

#### Do these regions contain high quality strategies?

It depends on the workload, but experimental evidence suggests Yes.

• Simple idea: optimize each sub workload separately:

$$\mathbb{A}^{(j)} = OPT_{\otimes}(\mathbb{W}^{(j)})$$

• And form a union of Kronecker strategy:

$$\mathbb{A} = \begin{bmatrix} \mathbb{A}^{(1)} \\ \vdots \\ \mathbb{A}^{(k)} \end{bmatrix}$$

$$Error(\mathbb{W},\mathbb{A}) \leq \sum_{j} Error(\mathbb{W}^{(j)},\mathbb{A}^{(j)})$$

• Given a Kronecker product strategy:

$$\mathbb{A} = \mathbf{A}_1 \otimes \ldots \otimes \mathbf{A}_d$$

• Expected error still decomposes for a union of Kronecker workload:

$$Error(\mathbb{W}, \mathbb{A}) = \sum_{j=1}^{k} Error(\mathbb{W}^{(j)}, \mathbb{A})$$
$$= \sum_{j=1}^{k} \prod_{i=1}^{d} Error(\mathbf{W}_{i}^{(j)}, \mathbf{A}_{i})$$

• Thus we can solve the optimization problem efficiently

### **OPT<sub>M</sub>**: Optimizing marginals strategies

• Marginals are Kronecker products:

$$\mathbb{M}_{1100} = \mathbf{I} \otimes \mathbf{I} \otimes \mathbf{T} \otimes \mathbf{T}$$

• A collection of weighted marginals is a union of Kronecker products:

$$Error(\mathbb{M}(\mathbb{A}(\mathbb{A})) \begin{bmatrix} \theta_1(\mathbf{T} \otimes \cdots \otimes \mathbf{T}) \\ = ||M(\theta)||_1^2 ||\mathbb{W} \mathbb{M}(\theta)^+||_F^2 \\ \theta_{2^d}(\mathbb{V} \otimes \cdots \otimes \mathbf{I}) \end{bmatrix} \\ (\sum_i \theta_i)^2 \qquad \begin{array}{c} \text{Can compute pseudo inverse} \\ \text{efficiently by exploiting structure} \end{array}$$

## Overview: running HDMM

Given: schema of R, and (logical) workload W

#### 1. Represent workload implicitly as union of Kronecker products

Combine columns if necessary

#### 2. Select best strategy from $OPT_{\otimes}$ , $OPT_{+}$ , and $OPT_{M}$

• (Optional) perform multiple random restarts

#### 3. Run the matrix mechanism:

- Measure queries in  $\mathbb A$  with Laplace mechanism
- Reconstruct W answers (by solving least squares prok

All 3D range queries  $\rightarrow$  OPT $_{\otimes}$ All up-to-3 way marginals  $\rightarrow$  OPT<sub>M</sub> Some other workloads  $\rightarrow$  OPT+

#### How close to optimal are we?

- For  $(\varepsilon, \delta)$ -differential privacy:
  - We have algorithms that can find globally optimal strategy
  - For all 2D range queries, we can get within a factor 1.04 of the SVD bound with a Kronecker product strategy.
- For ε-differential privacy:
  - Algorithms are approximate
  - 2-3X difference between lower bounds and what we can currently achieve
  - Open problem: need better bounds and/or optimization routines to close gap in (ε, 0)-differential privacy

## Outline

- 1. Algorithm landscape
- 2. Motivating challenge: a Census workload
- 3. Scaling the matrix mechanism

#### 4. Results on the Census workload

- 5. Data-adaptive algorithms and trade-offs
- 6. Open problems

#### More accuracy results: multi-dimensional workloads

- HDMM is one of the only algorithms that is general and scalable enough to handle complex multi-dimensional workloads
- HDMM offers lower error than competing methods

| Dataset/                      |                          | HDMM  | Best competitor |            |  |
|-------------------------------|--------------------------|-------|-----------------|------------|--|
| Domain                        | workioau                 | Error | Error           | Method     |  |
| СРН                           | SF1                      | 1.00  | 3.07            | Identity   |  |
| 2 x 2 x 17 x 51 x 63 x 115    | SF1+                     | 1.00  | 3.15            | Identity   |  |
| Adult<br>2 x 5 x 16 x 20 x 75 | All Marginals            | 1.00  | 1.38            | Identity   |  |
|                               | 2-way Marginals          | 1.00  | 2.01            | DataCube   |  |
| CPS                           | All Range<br>Marginals   | 1.00  | 1.49            | Identity   |  |
| 2 x 4 x 7 x 50 x 100          | 2-way Range<br>Marginals | 1.00  | 5.79            | Identity 4 |  |

## Many additional Census challenges

- Materializing data vector is prohibitive for full geography.
- Sophisticated post-processing is required on HDMM output: nonnegativity, consistency (structural zeros and other known counts).
- Workload "tuning":
  - What if we want lower error for sub-workload X?
  - What if we omit sub-workload Y? Is error improved elsewhere?
- Multiple releases: optimize and release sub-workload X; later, optimize and release related sub-workload Y consistent with X.
- Error rates can be computed and published, but how should they be communicated and utilized by stakeholders?

# Tuning workload error

- The PL94 queries are an important subset of the SF1 workload.
  - PL94: 288 queries
  - SF1: 4151 queries

| <b>Optimized Workload</b> | Avg. Per Query | Error On |
|---------------------------|----------------|----------|
|                           | SF1            | 7.28     |
| SF1                       | PL94           | 16.45    |
|                           | SF1 - PL94     | 6.07     |
| PL94                      | PL94           | 3.91     |

# Tuning workload error

- Optimizing for a workload in which PL94 is weighted
  - $W = c^*PL94 + 1^*SF1$  for positive constant c

Error on SF1 - PL94 vs. Error on PL94

![](_page_50_Figure_3.jpeg)

Error on PL94

## Outline

- 1. Algorithm landscape
- 2. Motivating challenge: a Census workload
- 3. Scaling the matrix mechanism
- 4. Results on the Census workload

#### 5. Data-adaptive algorithms and trade-offs

6. Open problems

#### Data-adaptive mechanisms

- Understanding and evaluating data-adaptive algorithms is complex.
- The differential privacy community lacks benchmarks and standards for empirical evaluation.

![](_page_52_Picture_3.jpeg)

![](_page_53_Figure_0.jpeg)

Properties:

- domain size: length of frequency vector
- scale: total number of records in database
- **shape**: the frequency vector normalized by scale.

**Desideratum**: datasets that are diverse with respect to all three properties.

## Data-dependent algorithms for lowdimensional linear queries

| Uniform  | baseline      | Noisy total count; uniformity       |
|----------|---------------|-------------------------------------|
| MWEM     | [Hardt '12]   | Multiplicative Weights Exp. Mech.   |
| AHP      | [Zhang '14]   | Private data reduction; measurement |
| DAWA     | [Li '14]      | Private data reduction; measurement |
| PHP      | [Acs '12]     | Private data reduction; measurement |
| QuadTree | [Cormode '12] | 2D adaptive grid-based techniques   |
| UGrid    | [Qardaji '13] | 2D adaptive grid-based techniques   |
| AGrid    | [Qardaji '13] | 2D adaptive grid-based techniques   |
| EFPA     | [Acs '12]     | Fourier; top-k coefficients         |

## Error metric

DEFINITION 7 (SCALED AVERAGE PER-QUERY ERROR). Let **W** be a workload of q queries, **x** a data vector and  $s = ||\mathbf{x}||_1$  its scale. Let  $\hat{\mathbf{y}} = \mathcal{K}(\mathbf{x}, \mathbf{W}, \epsilon)$  denote the noisy output of algorithm  $\mathcal{K}$ . Given a loss function L, we define scale average per-query error as  $\frac{1}{s \cdot q} L(\hat{\mathbf{y}}, \mathbf{Wx})$ .

#### Example (scaled error):

|           | Scale   | Absolute Error | Scaled<br>Absolute Error |
|-----------|---------|----------------|--------------------------|
| Dataset 1 | 1,000   | 100            | 0.100                    |
| Dataset 2 | 100,000 | 100            | 0.001                    |

Scaled error is also error in units of a "population percentage"

## Variation with "shape"

1D

![](_page_56_Figure_2.jpeg)

## Variation with shape

1D

![](_page_57_Figure_2.jpeg)

#### Algorithm error varies significantly with dataset shape

1D

![](_page_58_Figure_2.jpeg)

![](_page_58_Figure_3.jpeg)

![](_page_58_Figure_4.jpeg)

## Data-independent alternatives

![](_page_59_Figure_1.jpeg)

#### Data independent yardsticks

Identity: Laplace noise added to frequency vector x

HB: hierarchy of noisy counts [Qardaji et al. ICDE 2013]

## Data-dependence can offer significant improvements in error (at smaller scales or lower epsilon).

**1D** 

**2D** 

![](_page_60_Figure_3.jpeg)

![](_page_60_Figure_4.jpeg)

![](_page_61_Figure_0.jpeg)

## Some data-dependent algorithms fail to offer benefits at larger scales (or higher epsilons).

![](_page_62_Figure_1.jpeg)

## Summary

- Empirical study on 1D and 2D range query workloads shows:
  - Significant variation in error for data-dependent methods
  - Significant trade-offs with "signal strength"
    - Low signal: data-dependent methods outperform
    - High signal: data-independent method outperform

### Outline

- 1. Algorithm landscape
- 2. Motivating challenge: a Census workload
- 3. Scaling the matrix mechanism
- 4. Results on the Census workload
- 5. Data-adaptive algorithms and trade-offs

#### 6. Open problems

### Open problems

- Scaling to high dimensional data
  - HDMM: strategy selection is no longer bottleneck; data vector is.
    - Recent approach: measure low-dimensional projections, use graphical model techniques for global inference
    - Mis-match between strategy optimization and inference
  - Better understanding of tradeoffs between algorithmic approaches in high dimensions.

## Open problems

- Beyond linear queries
  - Common SQL aggregate queries are not linear; how do we answer them effectively?

## Thank you

- Optimizing Error of High-Dimensional Statistical Queries Under Differential Privacy. Ryan McKenna, Gerome Miklau, Michael Hay, Ashwin Machanavajjhala PVLDB 2018
- The matrix mechanism: optimizing linear counting queries under differential privacy. Chao Li, Gerome Miklau, Michael Hay, Andrew McGregor and Vibhor Rastogi VLDB Journal 2015
- Principled Evaluation of Differentially Private Algorithms using DPBench. Michael Hay, Ashwin Machanavajjhala, Gerome Miklau, Yan Chen, and Dan Zhang. SIGMOD 2016