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Reconstruction of circuits 

 Let 𝑓(𝒙) be a 𝑛-variate degree-𝑑 polynomial computed 

by a circuit of size 𝑠 from a class 𝐶. 

 

 Reconstruction problem. Given black-box access to 𝑓, 
output a small circuit computing 𝑓.   

 

𝑓 
𝒂 ∈  𝔽𝑛 𝑓(𝒂) 

        Black-box access to 𝑓 
 ( membership query access to 𝑓 ) 



Reconstruction of circuits 

 Let 𝑓(𝒙) be a 𝑛-variate degree-𝑑 polynomial computed 

by a circuit of size 𝑠 from a class 𝐶. 

 

 Reconstruction problem. Given black-box access to 𝑓, 
output a small circuit computing 𝑓.   

 

 Size of the output circuit.  Ideally,  𝑝𝑜𝑙𝑦(𝑠). 

 Proper learning. Output a circuit from class 𝐶. 

 



Reconstruction of circuits 

 Let 𝑓(𝒙) be a 𝑛-variate degree-𝑑 polynomial computed 

by a circuit of size 𝑠 from a class 𝐶. 

 

 Reconstruction problem. Given black-box access to 𝑓, 
output a small circuit computing 𝑓.   

 

 Efficiency.  Ideally,  𝑝𝑜𝑙𝑦(𝑑, 𝑠). But, even 𝑁 = 𝑛+𝑑
𝑛
 time 

reconstruction is non-trivial, for 𝑛 ≪  𝑠 ≪  𝑁 , as 

exhaustive search over size-𝑠 circuits takes exp (𝑠) time. 

 



Reconstruction implies lower bounds 

 Fortnow & Klivans (2009): A randomized poly-time 

reconstruction algorithm for 𝐶 implies there’s a function 

in BPEXP that does not have poly-size circuits from 𝐶. 

 

 Volkovich (2016): A deterministic poly-time recon. 

algorithm for 𝐶 can be used to construct a function in 

EXP that doesn’t have poly-size circuits from 𝐶.      
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 Efficient reconstruction algorithms have focussed on 

classes 𝐶 for which non-trivial lower bounds are known.     



Reconstruction implies lower bounds 

 Fortnow & Klivans (2009): A randomized poly-time 

reconstruction algorithm for 𝐶 implies there’s a function 

in BPEXP that does not have poly-size circuits from 𝐶. 

 

 Volkovich (2016): A deterministic poly-time recon. 

algorithm for 𝐶 can be used to construct a function in 

EXP that doesn’t have poly-size circuits from 𝐶.  

 

 Efficient reconstruction algorithms have focussed on 

classes 𝐶 for which non-trivial lower bounds are known.     

Does lower bound imply efficient reconstruction ? 



Reconstruction is inherently hard 

 Reconstruction is akin to approximating the minimum 

circuit size. 

 

 Minimum Circuit Size Problem (MCSP). Given a truth-

table 𝑇 of size 𝑁 = 2𝑛 and an integer 𝑠, check if the 

function defined by 𝑇 has a circuit of size at most 𝑠.  

 



Reconstruction is inherently hard 

 Reconstruction is akin to approximating the minimum 

circuit size. 

 

 Minimum Circuit Size Problem (MCSP). Given a truth-

table 𝑇 of size 𝑁 = 2𝑛 and an integer 𝑠, check if the 

function defined by 𝑇 has a circuit of size at most 𝑠.  

 

 Allender & Hirahara (2017): There’s a є(𝑁) = 𝑜(1) such 

that approximating the minimum circuit size to within 

𝑁1− є factor cannot be done in 𝑝𝑜𝑙𝑦(𝑁) time, assuming 

the existence of one-way function.  



Reconstruction is inherently hard 

 Reconstruction is akin to approximating the minimum 

circuit size. 

 

 Minimum Circuit Size Problem (MCSP). Given a truth-

table 𝑇 of size 𝑁 = 2𝑛  and an integer 𝑠, check if the 

function defined by 𝑇 has a circuit of size at most 𝑠.  

 

 Drawing analogy between Boolean and arithmetic 

circuits, reconstruction is expected to be a hard 

problem even if 𝑓 is given verbosely as a list of 

𝑁 = 𝑛+𝑑
𝑛
 coefficients.  



Natural lower bound to reconstruction? 

 Razborov & Rudich (1997); Forbes, Shpilka & Volk 

(2017); Grochow, Kumar, Saks & Saraf (2017): 

    

   Constructivity. 

 

 

 

 

 

Coeff. vector of 𝑓 
Efficient 

algorithm 
0, if 𝑓 is computed by 

a circuit from 𝐶 

Separator for 𝐶 



Natural lower bound to PAC learning 

 Carmosino, Impagliazzo, Kabanets & Kolokolova (2016):  

The natural lower bound framework for 𝐴𝐶0,𝑝- circuits 

can be used to give quasi-polynomial time PAC learning 

algorithm for the same class.   

 

 Linial, Mansour & Nisan (1993): Similar result for 𝐴𝐶0 . 

 

 Jackson, Klivans & Servedio (2002): Similar result for 

𝐴𝐶0 with poly-logarithmic majority gates. 

 

 



Natural lower bound to PAC learning 
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can be used to give quasi-polynomial time PAC learning 

algorithm for the same class.   

 

 Linial, Mansour & Nisan (1993): Similar result for 𝐴𝐶0 . 

 

 Jackson, Klivans & Servedio (2002): Similar result for 

𝐴𝐶0 with poly-logarithmic majority gates. 

 

 These learning algorithms are not proper. 
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 Can we hope to get such natural lower bound to 

reconstruction translations for arithmetic circuits? 

 



Natural lower bound to reconstruction? 

 Can we hope to get such natural lower bound to 

reconstruction translations for arithmetic circuits? 

 

 Klivans & Shpilka (2006); Forbes & Shpilka (2013): Gave 

efficient reconstruction for read-once oblivious ABP 

(ROABP) and non-commutative ABP. (Natural lower 

bounds were known for these models.) 

 



Natural lower bound to reconstruction? 

 Can we hope to get such natural lower bound to 

reconstruction translations for arithmetic circuits? 

 

 There are a few challenges: 

Exact learning. Two polynomials differ at many points. 

If the output is an arithmetic circuit then it has to 

compute 𝑓 exactly. 



Natural lower bound to reconstruction? 

 Can we hope to get such natural lower bound to 

reconstruction translations for arithmetic circuits? 

 

 There are a few challenges: 

Exact learning. Two polynomials differ at many points. 

If the output is an arithmetic circuit then it has to 

compute 𝑓 exactly. 

Depth reduction. Constant depth arithmetic circuits 

are too powerful. 

Homogenization. Makes reconstruction challenging 

even for classes with exponential lower bounds.   



Homogeneous depth-3 circuits 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Each term 𝑇𝑖  is a product of 𝑑  linear forms in 𝑛 
variables. 
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A (𝑛, 𝑑, 𝑠) homogeneous 

depth-3 circuit 



Homogeneous depth-3 circuits 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Each term 𝑇𝑖  is a product of 𝑑  linear forms in 𝑛 
variables. 

 

 Nisan & Wigderson (1997): Showed a (𝑛/𝑑)Ω(𝑑) lower 

bound on 𝑠 for 𝑑 ≤ 𝑛. 

 

 Kayal, S., Tavenas (2016): Showed a 2Ω(𝑛) lower bound 

on 𝑠 for 𝑑 ≥ 𝑛. 

 



Homogeneous depth-3 circuits 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Each term 𝑇𝑖  is a product of 𝑑  linear forms in 𝑛 
variables. 

 

 Nisan & Wigderson (1997): Showed a (𝑛/𝑑)Ω(𝑑) lower 

bound on 𝑠 for 𝑑 ≤ 𝑛. 

 

 Kayal, S., Tavenas (2016): Showed a 2Ω(𝑛) lower bound 

on 𝑠 for 𝑑 ≥ 𝑛. 

 Both the lower bound proofs are natural. 



Homogeneous depth-3 circuits 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Each term 𝑇𝑖  is a product of 𝑑  linear forms in 𝑛 
variables. 

 

 Klivans & Shpilka (2003): Can we reconstruct 

homogeneous depth-3 circuits efficiently ? 



Our result 
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randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time algorithm to reconstruct 

non-degenerate (𝑛, 𝑑, 𝑠) homogeneous depth-3 circuits.  
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 Theorem. Let 𝑛 ≥ (3𝑑)2 and 𝑠 ≤ (𝑛/3𝑑)𝑑/3. There is a 

randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time algorithm to reconstruct 

non-degenerate (𝑛, 𝑑, 𝑠) homogeneous depth-3 circuits.  

 

 Proper learning. The output is a (𝑛, 𝑑, 𝑠) homogeneous 

depth-3 circuit. 



Our result 
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non-degenerate (𝑛, 𝑑, 𝑠) homogeneous depth-3 circuits.  

 

 The algorithm works under two restrictions:  

 Degree restriction:  𝑛 ≥ (3𝑑)2 

 Non-degeneracy:  Next slide… 



Our result 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Theorem. Let 𝑛 ≥ (3𝑑)2 and 𝑠 ≤ (𝑛/3𝑑)𝑑/3. There is a 

randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time algorithm to reconstruct 

non-degenerate (𝑛, 𝑑, 𝑠) homogeneous depth-3 circuits.  

 

 The algorithm works under two restrictions:  

 Degree restriction:  𝑛 ≥ (3𝑑)2     Let’s ignore it! 

 Non-degeneracy:  Next slide… 



Non-degeneracy condition 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Let 𝑘 =  log 𝑠
log(𝑛/𝑒𝑑)

 ,  𝑈 ≔ 𝜕𝑘𝑓   and  𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 . 

 Clearly,   𝑈 ⊆ 𝑈1 + 𝑈2 +⋯+ 𝑈𝑠 . 

 

 Non-degeneracy*:   𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠 
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Non-degeneracy condition 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Let 𝑘 =  log 𝑠
log(𝑛/𝑒𝑑)

 ,  𝑈 ≔ 𝜕𝑘𝑓   and  𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 . 

 Clearly,   𝑈 ⊆ 𝑈1 + 𝑈2 +⋯+ 𝑈𝑠 . 

 

 Non-degeneracy*:   𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠 

direct sum equality 

𝑘 =  𝑂(1)  if  𝑠 = 𝑝𝑜𝑙𝑦(𝑛)   



Non-degeneracy condition 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Let 𝑘 =  log 𝑠
log(𝑛/𝑒𝑑)

 ,  𝑈 ≔ 𝜕𝑘𝑓   and  𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 . 

 Clearly,   𝑈 ⊆ 𝑈1 + 𝑈2 +⋯+ 𝑈𝑠 . 

 

 Non-degeneracy*:   𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠 

 

 A random homogeneous depth-3 circuit is almost surely 

non-degenerate. 
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 Can we get rid of non-degeneracy condition entirely?   

If yes, then… 



Non-degeneracy condition 

 Can we get rid of non-degeneracy condition entirely?   

If yes, then… 

 

 Lower bound for depth-3 circuits: (homogenization)  

If 𝑓(𝒙) is computed by a (𝑛, 𝑑, 𝑠) depth-3 circuit then 

𝑧𝑑𝑓(𝒙/𝑧) is computed by (𝑛 + 1, 𝑑, 𝑠) homogeneous 

depth-3 circuit. Thus, we get efficient reconstruction 

for depth-3 circuits, and [FK09] implies a lower bound 

for the same class! 



Non-degeneracy condition 

 Can we get rid of non-degeneracy condition entirely?   

If yes, then… 

 

 Reconstruction for general circuits: (depth reduction)  

We get 𝑛𝑂( 𝑑) time reconstruction for circuits of size 

𝑝𝑜𝑙𝑦(𝑛) via the depth reduction to depth-3 result. 

[Gupta, Kamath, Kayal, Saptharishi (2013); Tavenas 

(2013); Koiran (2012);  Agrawal & Vinay (2008)] 



Non-degeneracy condition 

 Thus, getting an unconditional translation from natural 

lower bound proofs to efficient reconstruction seems 

extremely challenging even for homogeneous depth-3 

circuits. 

 



Non-degeneracy condition 

 Thus, getting an unconditional translation from natural 

lower bound proofs to efficient reconstruction seems 

extremely challenging even for homogeneous depth-3 

circuits. 

 

 However, it may be possible to use the natural lower 

bound framework of a model to do efficient 

reconstruction for the same model under some non-

degeneracy condition that originates from the lower 

bound proof. 



Non-degeneracy condition 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Let 𝑘 =  log 𝑠
log(𝑛/𝑒𝑑)

 ,  𝑈 ≔ 𝜕𝑘𝑓   and  𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 . 

 

 Non-degeneracy*:   𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠 

 

 Fact:  A crucial aspect of the [NW95] lower bound 

proof is that each 𝑈𝑖 is ‘‘simple’’ in the sense that it is a 

low-dimensional space. 
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 The non-degeneracy condition exploits this fact and 

reduces the reconstruction problem to decomposing 

the space 𝑈 into a direct sum of  ‘‘simple’’ spaces. 



Non-degeneracy condition 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Let 𝑘 =  log 𝑠
log(𝑛/𝑒𝑑)

 ,  𝑈 ≔ 𝜕𝑘𝑓   and  𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 . 

 

 Non-degeneracy*:   𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠 

 

 The non-degeneracy condition exploits this fact and 

reduces the reconstruction problem to decomposing 

the space 𝑈 into a direct sum of  ‘‘simple’’ spaces. 

A priori, it is not clear if this 

decomposition can be done efficiently. 



Conceptual contribution 

 A paradigm for handling large fan-in sum gates.  

 

 𝑆𝑡𝑒𝑝 1: Reduce the problem of finding children of a 

sum gate to decomposition of a suitable space 𝑈 into 

‘‘simpler’’ spaces (using the lower bound framework).  

 

 𝑆𝑡𝑒𝑝 2:  Define an appropriate space 𝓢  of linear 

operators on 𝑈. The structure of 𝓢 (in our case, the 

irreducible invariant subspaces of 𝑈 induced by 𝓢) helps 

retrieve the ‘‘simpler’’ spaces efficiently.  
 



Conceptual contribution 

 A paradigm for handling large fan-in sum gates.  

 

 We feel that this paradigm has the potential to give 

efficient reconstruction for other circuit models for 

which natural lower bounds are known. 

 

 



Conceptual contribution 

 A paradigm for handling large fan-in sum gates.  

 

 We feel that this paradigm has the potential to give 

efficient reconstruction for other circuit models for 

which natural lower bounds are known. 

 

 Prior work on efficient reconstruction (barring those on 

ROABP / non-commutative ABP / read-once formula) 

could only handle very low fan-in sum gates. 
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Back to homogeneous 
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The algorithm 
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 𝑆𝑡𝑒𝑝 3: Compute 𝑇𝑖 from a basis of 𝑈𝑖. 
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 𝑆𝑡𝑒𝑝 1: Compute a basis of 𝑈. 

 𝑆𝑡𝑒𝑝 2:  Decompose  𝑈 =  𝑈1 𝑈2 ⋯ 𝑈𝑠 . 
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                                                        =
𝜕𝑘𝑇1

𝜕𝛼
+⋯+
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𝑘

𝛼
𝛼 ∈ 𝐷𝑒𝑔(𝑘)

∙ 𝛼 ∙
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𝜕𝛼

 

Identifying 𝛼 with its 

exponent vector 
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Thanks to Gaurav Sinha for showing 

us this argument for executing Step 3 ! 
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 Definition. The closure of vector 𝑣 ∈ 𝑈 with respect to 

𝓢 is the smallest invariant subspace of 𝑈 containing 𝑣.  

 

 𝐹𝑎𝑐𝑡 3: Given 𝑣 ∈ 𝔽𝑚 and a set of matrices *𝑀1, … ,𝑀𝑡+ 
in 𝔽𝑚×𝑚, the closure of 𝑣 with respect to 𝑀1, … ,𝑀𝑡  

can be computed in deterministic 𝑝𝑜𝑙𝑦(𝑚) time. 



𝑆𝑡𝑒𝑝 2: Decomposing 𝑈 

 The idea:  

 

 Define a suitable space 𝓢 of linear operators on 𝑈 

such that 𝑈1, … , 𝑈𝑠 are irreducible invariant subspaces 

of 𝑈 induced by 𝓢. 

 

 Pick vectors in 𝑈 carefully such that the closures of 

these vectors with respect to 𝓢 give 𝑈1, … , 𝑈𝑠. 
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such that 𝑈1, … , 𝑈𝑠 are irreducible invariant subspaces 

of 𝑈 induced by 𝓢. 

 

 Pick vectors in 𝑈 carefully such that the closures of 

these vectors with respect to 𝓢 give 𝑈1, … , 𝑈𝑠. 

Simultaneous block diagonalization of a basis of 𝓢. 
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     𝓢𝓓𝑘 ≔ 𝛽 ∙
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Nice properties of 𝓢 
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𝑆𝑡𝑒𝑝 2: Decomposing 𝑈 

 The algorithm. 

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚). 
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖. 

 

Once a basis Γ of 𝑈 is fixed, every operator 𝜓 ∈ 𝓢  
can be identified with a unique matrix 𝑀Γ(𝜓).  
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Thanks! 


