
Reconstruction of non-degenerate

homogeneous depth-3 circuits

Chandan Saha

Joint work with Neeraj Kayal

Reconstruction of circuits

 Let 𝑓(𝒙) be a 𝑛-variate degree-𝑑 polynomial computed

by a circuit of size 𝑠 from a class 𝐶.

 Reconstruction problem. Given black-box access to 𝑓,
output a small circuit computing 𝑓.

𝑓
𝒂 ∈ 𝔽𝑛 𝑓(𝒂)

 Black-box access to 𝑓
 (membership query access to 𝑓)

Reconstruction of circuits

 Let 𝑓(𝒙) be a 𝑛-variate degree-𝑑 polynomial computed

by a circuit of size 𝑠 from a class 𝐶.

 Reconstruction problem. Given black-box access to 𝑓,
output a small circuit computing 𝑓.

 Size of the output circuit. Ideally, 𝑝𝑜𝑙𝑦(𝑠).

 Proper learning. Output a circuit from class 𝐶.

Reconstruction of circuits

 Let 𝑓(𝒙) be a 𝑛-variate degree-𝑑 polynomial computed

by a circuit of size 𝑠 from a class 𝐶.

 Reconstruction problem. Given black-box access to 𝑓,
output a small circuit computing 𝑓.

 Efficiency. Ideally, 𝑝𝑜𝑙𝑦(𝑑, 𝑠). But, even 𝑁 = 𝑛+𝑑
𝑛
 time

reconstruction is non-trivial, for 𝑛 ≪ 𝑠 ≪ 𝑁 , as

exhaustive search over size-𝑠 circuits takes exp (𝑠) time.

Reconstruction implies lower bounds

 Fortnow & Klivans (2009): A randomized poly-time

reconstruction algorithm for 𝐶 implies there’s a function

in BPEXP that does not have poly-size circuits from 𝐶.

 Volkovich (2016): A deterministic poly-time recon.

algorithm for 𝐶 can be used to construct a function in

EXP that doesn’t have poly-size circuits from 𝐶.

Reconstruction implies lower bounds

 Fortnow & Klivans (2009): A randomized poly-time

reconstruction algorithm for 𝐶 implies there’s a function

in BPEXP that does not have poly-size circuits from 𝐶.

 Volkovich (2016): A deterministic poly-time recon.

algorithm for 𝐶 can be used to construct a function in

EXP that doesn’t have poly-size circuits from 𝐶.

 Efficient reconstruction algorithms have focussed on

classes 𝐶 for which non-trivial lower bounds are known.

Reconstruction implies lower bounds

 Fortnow & Klivans (2009): A randomized poly-time

reconstruction algorithm for 𝐶 implies there’s a function

in BPEXP that does not have poly-size circuits from 𝐶.

 Volkovich (2016): A deterministic poly-time recon.

algorithm for 𝐶 can be used to construct a function in

EXP that doesn’t have poly-size circuits from 𝐶.

 Efficient reconstruction algorithms have focussed on

classes 𝐶 for which non-trivial lower bounds are known.

Does lower bound imply efficient reconstruction ?

Reconstruction is inherently hard

 Reconstruction is akin to approximating the minimum

circuit size.

 Minimum Circuit Size Problem (MCSP). Given a truth-

table 𝑇 of size 𝑁 = 2𝑛 and an integer 𝑠, check if the

function defined by 𝑇 has a circuit of size at most 𝑠.

Reconstruction is inherently hard

 Reconstruction is akin to approximating the minimum

circuit size.

 Minimum Circuit Size Problem (MCSP). Given a truth-

table 𝑇 of size 𝑁 = 2𝑛 and an integer 𝑠, check if the

function defined by 𝑇 has a circuit of size at most 𝑠.

 Allender & Hirahara (2017): There’s a є(𝑁) = 𝑜(1) such

that approximating the minimum circuit size to within

𝑁1− є factor cannot be done in 𝑝𝑜𝑙𝑦(𝑁) time, assuming

the existence of one-way function.

Reconstruction is inherently hard

 Reconstruction is akin to approximating the minimum

circuit size.

 Minimum Circuit Size Problem (MCSP). Given a truth-

table 𝑇 of size 𝑁 = 2𝑛 and an integer 𝑠, check if the

function defined by 𝑇 has a circuit of size at most 𝑠.

 Drawing analogy between Boolean and arithmetic

circuits, reconstruction is expected to be a hard

problem even if 𝑓 is given verbosely as a list of

𝑁 = 𝑛+𝑑
𝑛
 coefficients.

Natural lower bound to reconstruction?

 Razborov & Rudich (1997); Forbes, Shpilka & Volk

(2017); Grochow, Kumar, Saks & Saraf (2017):

 Constructivity.

Coeff. vector of 𝑓
Efficient

algorithm
0, if 𝑓 is computed by

a circuit from 𝐶

Separator for 𝐶

Natural lower bound to PAC learning

 Carmosino, Impagliazzo, Kabanets & Kolokolova (2016):

The natural lower bound framework for 𝐴𝐶0,𝑝- circuits

can be used to give quasi-polynomial time PAC learning

algorithm for the same class.

 Linial, Mansour & Nisan (1993): Similar result for 𝐴𝐶0 .

 Jackson, Klivans & Servedio (2002): Similar result for

𝐴𝐶0 with poly-logarithmic majority gates.

Natural lower bound to PAC learning

 Carmosino, Impagliazzo, Kabanets & Kolokolova (2016):

The natural lower bound framework for 𝐴𝐶0,𝑝- circuits

can be used to give quasi-polynomial time PAC learning

algorithm for the same class.

 Linial, Mansour & Nisan (1993): Similar result for 𝐴𝐶0 .

 Jackson, Klivans & Servedio (2002): Similar result for

𝐴𝐶0 with poly-logarithmic majority gates.

 These learning algorithms are not proper.

Natural lower bound to reconstruction?

 Can we hope to get such natural lower bound to

reconstruction translations for arithmetic circuits?

Natural lower bound to reconstruction?

 Can we hope to get such natural lower bound to

reconstruction translations for arithmetic circuits?

 Klivans & Shpilka (2006); Forbes & Shpilka (2013): Gave

efficient reconstruction for read-once oblivious ABP

(ROABP) and non-commutative ABP. (Natural lower

bounds were known for these models.)

Natural lower bound to reconstruction?

 Can we hope to get such natural lower bound to

reconstruction translations for arithmetic circuits?

 There are a few challenges:

Exact learning. Two polynomials differ at many points.

If the output is an arithmetic circuit then it has to

compute 𝑓 exactly.

Natural lower bound to reconstruction?

 Can we hope to get such natural lower bound to

reconstruction translations for arithmetic circuits?

 There are a few challenges:

Exact learning. Two polynomials differ at many points.

If the output is an arithmetic circuit then it has to

compute 𝑓 exactly.

Depth reduction. Constant depth arithmetic circuits

are too powerful.

Homogenization. Makes reconstruction challenging

even for classes with exponential lower bounds.

Homogeneous depth-3 circuits

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Each term 𝑇𝑖 is a product of 𝑑 linear forms in 𝑛
variables.

Homogeneous depth-3 circuits

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Each term 𝑇𝑖 is a product of 𝑑 linear forms in 𝑛
variables.

A (𝑛, 𝑑, 𝑠) homogeneous

depth-3 circuit

Homogeneous depth-3 circuits

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Each term 𝑇𝑖 is a product of 𝑑 linear forms in 𝑛
variables.

 Nisan & Wigderson (1997): Showed a (𝑛/𝑑)Ω(𝑑) lower

bound on 𝑠 for 𝑑 ≤ 𝑛.

 Kayal, S., Tavenas (2016): Showed a 2Ω(𝑛) lower bound

on 𝑠 for 𝑑 ≥ 𝑛.

Homogeneous depth-3 circuits

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Each term 𝑇𝑖 is a product of 𝑑 linear forms in 𝑛
variables.

 Nisan & Wigderson (1997): Showed a (𝑛/𝑑)Ω(𝑑) lower

bound on 𝑠 for 𝑑 ≤ 𝑛.

 Kayal, S., Tavenas (2016): Showed a 2Ω(𝑛) lower bound

on 𝑠 for 𝑑 ≥ 𝑛.

 Both the lower bound proofs are natural.

Homogeneous depth-3 circuits

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Each term 𝑇𝑖 is a product of 𝑑 linear forms in 𝑛
variables.

 Klivans & Shpilka (2003): Can we reconstruct

homogeneous depth-3 circuits efficiently ?

Our result

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Theorem. Let 𝑛 ≥ (3𝑑)2 and 𝑠 ≤ (𝑛/3𝑑)𝑑/3. There is a

randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time algorithm to reconstruct

non-degenerate (𝑛, 𝑑, 𝑠) homogeneous depth-3 circuits.

Our result

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Theorem. Let 𝑛 ≥ (3𝑑)2 and 𝑠 ≤ (𝑛/3𝑑)𝑑/3. There is a

randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time algorithm to reconstruct

non-degenerate (𝑛, 𝑑, 𝑠) homogeneous depth-3 circuits.

 Proper learning. The output is a (𝑛, 𝑑, 𝑠) homogeneous

depth-3 circuit.

Our result

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Theorem. Let 𝑛 ≥ (3𝑑)2 and 𝑠 ≤ (𝑛/3𝑑)𝑑/3. There is a

randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time algorithm to reconstruct

non-degenerate (𝑛, 𝑑, 𝑠) homogeneous depth-3 circuits.

 The algorithm works under two restrictions:

 Degree restriction: 𝑛 ≥ (3𝑑)2

 Non-degeneracy: Next slide…

Our result

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Theorem. Let 𝑛 ≥ (3𝑑)2 and 𝑠 ≤ (𝑛/3𝑑)𝑑/3. There is a

randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time algorithm to reconstruct

non-degenerate (𝑛, 𝑑, 𝑠) homogeneous depth-3 circuits.

 The algorithm works under two restrictions:

 Degree restriction: 𝑛 ≥ (3𝑑)2 Let’s ignore it!

 Non-degeneracy: Next slide…

Non-degeneracy condition

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Let 𝑘 = log 𝑠
log(𝑛/𝑒𝑑)

 , 𝑈 ≔ 𝜕𝑘𝑓 and 𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 .

 Clearly, 𝑈 ⊆ 𝑈1 + 𝑈2 +⋯+ 𝑈𝑠 .

 Non-degeneracy*: 𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠

Non-degeneracy condition

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Let 𝑘 = log 𝑠
log(𝑛/𝑒𝑑)

 , 𝑈 ≔ 𝜕𝑘𝑓 and 𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 .

 Clearly, 𝑈 ⊆ 𝑈1 + 𝑈2 +⋯+ 𝑈𝑠 .

 Non-degeneracy*: 𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠

direct sum equality

Non-degeneracy condition

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Let 𝑘 = log 𝑠
log(𝑛/𝑒𝑑)

 , 𝑈 ≔ 𝜕𝑘𝑓 and 𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 .

 Clearly, 𝑈 ⊆ 𝑈1 + 𝑈2 +⋯+ 𝑈𝑠 .

 Non-degeneracy*: 𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠

direct sum equality

𝑘 = 𝑂(1) if 𝑠 = 𝑝𝑜𝑙𝑦(𝑛)

Non-degeneracy condition

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Let 𝑘 = log 𝑠
log(𝑛/𝑒𝑑)

 , 𝑈 ≔ 𝜕𝑘𝑓 and 𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 .

 Clearly, 𝑈 ⊆ 𝑈1 + 𝑈2 +⋯+ 𝑈𝑠 .

 Non-degeneracy*: 𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠

 A random homogeneous depth-3 circuit is almost surely

non-degenerate.

Non-degeneracy condition

 Can we get rid of non-degeneracy condition entirely?

If yes, then…

Non-degeneracy condition

 Can we get rid of non-degeneracy condition entirely?

If yes, then…

 Lower bound for depth-3 circuits: (homogenization)

If 𝑓(𝒙) is computed by a (𝑛, 𝑑, 𝑠) depth-3 circuit then

𝑧𝑑𝑓(𝒙/𝑧) is computed by (𝑛 + 1, 𝑑, 𝑠) homogeneous

depth-3 circuit. Thus, we get efficient reconstruction

for depth-3 circuits, and [FK09] implies a lower bound

for the same class!

Non-degeneracy condition

 Can we get rid of non-degeneracy condition entirely?

If yes, then…

 Reconstruction for general circuits: (depth reduction)

We get 𝑛𝑂(𝑑) time reconstruction for circuits of size

𝑝𝑜𝑙𝑦(𝑛) via the depth reduction to depth-3 result.

[Gupta, Kamath, Kayal, Saptharishi (2013); Tavenas

(2013); Koiran (2012); Agrawal & Vinay (2008)]

Non-degeneracy condition

 Thus, getting an unconditional translation from natural

lower bound proofs to efficient reconstruction seems

extremely challenging even for homogeneous depth-3

circuits.

Non-degeneracy condition

 Thus, getting an unconditional translation from natural

lower bound proofs to efficient reconstruction seems

extremely challenging even for homogeneous depth-3

circuits.

 However, it may be possible to use the natural lower

bound framework of a model to do efficient

reconstruction for the same model under some non-

degeneracy condition that originates from the lower

bound proof.

Non-degeneracy condition

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Let 𝑘 = log 𝑠
log(𝑛/𝑒𝑑)

 , 𝑈 ≔ 𝜕𝑘𝑓 and 𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 .

 Non-degeneracy*: 𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠

 Fact: A crucial aspect of the [NW95] lower bound

proof is that each 𝑈𝑖 is ‘‘simple’’ in the sense that it is a

low-dimensional space.

Non-degeneracy condition

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Let 𝑘 = log 𝑠
log(𝑛/𝑒𝑑)

 , 𝑈 ≔ 𝜕𝑘𝑓 and 𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 .

 Non-degeneracy*: 𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠

 The non-degeneracy condition exploits this fact and

reduces the reconstruction problem to decomposing

the space 𝑈 into a direct sum of ‘‘simple’’ spaces.

Non-degeneracy condition

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Let 𝑘 = log 𝑠
log(𝑛/𝑒𝑑)

 , 𝑈 ≔ 𝜕𝑘𝑓 and 𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 .

 Non-degeneracy*: 𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠

 The non-degeneracy condition exploits this fact and

reduces the reconstruction problem to decomposing

the space 𝑈 into a direct sum of ‘‘simple’’ spaces.

A priori, it is not clear if this

decomposition can be done efficiently.

Conceptual contribution

 A paradigm for handling large fan-in sum gates.

 𝑆𝑡𝑒𝑝 1: Reduce the problem of finding children of a

sum gate to decomposition of a suitable space 𝑈 into

‘‘simpler’’ spaces (using the lower bound framework).

 𝑆𝑡𝑒𝑝 2: Define an appropriate space 𝓢 of linear

operators on 𝑈. The structure of 𝓢 (in our case, the

irreducible invariant subspaces of 𝑈 induced by 𝓢) helps

retrieve the ‘‘simpler’’ spaces efficiently.

Conceptual contribution

 A paradigm for handling large fan-in sum gates.

 We feel that this paradigm has the potential to give

efficient reconstruction for other circuit models for

which natural lower bounds are known.

Conceptual contribution

 A paradigm for handling large fan-in sum gates.

 We feel that this paradigm has the potential to give

efficient reconstruction for other circuit models for

which natural lower bounds are known.

 Prior work on efficient reconstruction (barring those on

ROABP / non-commutative ABP / read-once formula)

could only handle very low fan-in sum gates.

Related results

Restricted depth-3 circuits

 Beimel, Bergadano, Bshouty, Kushilevitz & Varricchio

(2000): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑑, 𝑠) time reconstruction

for depth-3 powering circuits and set-multilinear depth-

3 circuits.

 Klivans & Shpilka (2003): Randomized 𝑝𝑜𝑙𝑦(𝑛, 2𝑑 , 𝑠)
time reconstruction for general depth-3 circuits.

 The output hypothesis is an ROABP.

Restricted depth-3 circuits

 Shpilka (2007): Randomized 𝑞𝑝𝑜𝑙𝑦(𝑛, 𝑑, |𝔽|) time

reconstruction for depth-3 circuits with top fan-in two.

 Karnin & Shpilka (2009): Deterministic reconstruction

for depth-3 circuits in 𝑝𝑜𝑙𝑦 𝑛 . |𝔽|(log 𝑑)
𝑂(𝑠3)

 time.

 Sinha (2016): Randomized reconstruction for depth-3

circuits with top fan-in two over ℝ in 𝑝𝑜𝑙𝑦(𝑛, 𝑑) time.

Restricted depth-3 circuits

 Shpilka (2007): Randomized 𝑞𝑝𝑜𝑙𝑦(𝑛, 𝑑, |𝔽|) time

reconstruction for depth-3 circuits with top fan-in two.

 Karnin & Shpilka (2009): Deterministic reconstruction

for depth-3 circuits in 𝑝𝑜𝑙𝑦 𝑛 . |𝔽|(log 𝑑)
𝑂(𝑠3)

 time.

 Sinha (2016): Randomized reconstruction for depth-3

circuits with top fan-in two over ℝ in 𝑝𝑜𝑙𝑦(𝑛, 𝑑) time.

 These learning algorithms are proper*.

Restricted depth-4 circuits

 Gupta, Kayal & Lokam (2012): Randomized 𝑝𝑜𝑙𝑦(𝑠) time

reconstruction for size 𝑠 multilinear depth-4 circuits

with top fan-in two.

 This learning is also proper.

Reconstruction under non-degeneracy

 Kayal (2012): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠log𝑑 𝑠) time

reconstruction for depth-3 powering circuits.

 García-Marco, Koiran & Pecatte (2018): Randomized

𝑝𝑜𝑙𝑦(𝑛, 𝑠) time reconstruction for depth-3 powering

circuits for 𝑠 ≤ 𝑛+1
2

 and 𝑑 ≥ 5.

Reconstruction under non-degeneracy

 Kayal (2012): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠log𝑑 𝑠) time

reconstruction for depth-3 powering circuits.

 García-Marco, Koiran & Pecatte (2018): Randomized

𝑝𝑜𝑙𝑦(𝑛, 𝑠) time reconstruction for depth-3 powering

circuits for 𝑠 ≤ 𝑛+1
2

 and 𝑑 ≥ 5.

 Gupta, Kayal & Qiao (2013): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠)
time reconstruction for fan-in two regular formulas.

 Kayal, Nair & S. (2018): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑑) time

reconstruction for constant width homogeneous ABP.

Reconstruction under non-degeneracy

 Kayal (2012): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠log𝑑 𝑠) time

reconstruction for depth-3 powering circuits.

 García-Marco, Koiran & Pecatte (2018): Randomized

𝑝𝑜𝑙𝑦(𝑛, 𝑠) time reconstruction for depth-3 powering

circuits for 𝑠 ≤ 𝑛+1
2

 and 𝑑 ≥ 5.

 Gupta, Kayal & Qiao (2013): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠)
time reconstruction for fan-in two regular formulas.

 Kayal, Nair & S. (2018): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑑) time

reconstruction for constant width homogeneous ABP.

Kayal, S., Saptharishi (2014): Super-poly lower bound known

Reconstruction under non-degeneracy

 Kayal (2012): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠log𝑑 𝑠) time

reconstruction for depth-3 powering circuits.

 García-Marco, Koiran & Pecatte (2018): Randomized

𝑝𝑜𝑙𝑦(𝑛, 𝑠) time reconstruction for depth-3 powering

circuits for 𝑠 ≤ 𝑛+1
2

 and 𝑑 ≥ 5.

 Gupta, Kayal & Qiao (2013): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠)
time reconstruction for fan-in two regular formulas.

 Kayal, Nair & S. (2018): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑑) time

reconstruction for constant width homogeneous ABP.

Kumar (2017): Linear width lower bound known

Back to homogeneous

depth-3 circuits

The algorithm

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Let 𝑘 = log 𝑠
log(𝑛/𝑒𝑑)

 , 𝑈 ≔ 𝜕𝑘𝑓 and 𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 .

 𝑆𝑡𝑒𝑝 1: Compute a basis of 𝑈.

 𝑆𝑡𝑒𝑝 2: Decompose 𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠 .

 𝑆𝑡𝑒𝑝 3: Compute 𝑇𝑖 from a basis of 𝑈𝑖.

The algorithm

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Let 𝑘 = log 𝑠
log(𝑛/𝑒𝑑)

 , 𝑈 ≔ 𝜕𝑘𝑓 and 𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 .

 𝑆𝑡𝑒𝑝 1: Compute a basis of 𝑈.

 𝑆𝑡𝑒𝑝 2: Decompose 𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠 .

 𝑆𝑡𝑒𝑝 3: Compute 𝑇𝑖 from a basis of 𝑈𝑖.

Main step

𝑆𝑡𝑒𝑝 1: Computing a basis of U

 𝐹𝑎𝑐𝑡 1: From black-box access to 𝑓, we can compute

black-box access to
𝜕𝑓

𝜕𝑥
 in 𝑝𝑜𝑙𝑦(𝑛, 𝑑) time.

 𝐹𝑎𝑐𝑡 2: From black-box access to 𝑓1, 𝑓2, … , 𝑓𝑚, we can

compute black-box access to elements of a basis of

𝑓1, 𝑓2, … , 𝑓𝑚 in randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑑,𝑚) time.

𝑆𝑡𝑒𝑝 1: Computing a basis of U

 𝐹𝑎𝑐𝑡 1: From black-box access to 𝑓, we can compute

black-box access to
𝜕𝑓

𝜕𝑥
 in 𝑝𝑜𝑙𝑦(𝑛, 𝑑) time.

 𝐹𝑎𝑐𝑡 2: From black-box access to 𝑓1, 𝑓2, … , 𝑓𝑚, we can

compute black-box access to elements of a basis of

𝑓1, 𝑓2, … , 𝑓𝑚 in randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑑,𝑚) time.

 Compute black-box access to elements of 𝜕𝑘𝑓 in

𝑝𝑜𝑙𝑦(𝑛, 𝑠) time using 𝐹𝑎𝑐𝑡 1.

 Compute black-box access to elements of a basis

Γ = (𝑔1, … , 𝑔𝑚) of 𝑈 using 𝐹𝑎𝑐𝑡 2.

𝑆𝑡𝑒𝑝 1: Computing a basis of U

 𝐹𝑎𝑐𝑡 1: From black-box access to 𝑓, we can compute

black-box access to
𝜕𝑓

𝜕𝑥
 in 𝑝𝑜𝑙𝑦(𝑛, 𝑑) time.

 𝐹𝑎𝑐𝑡 2: From black-box access to 𝑓1, 𝑓2, … , 𝑓𝑚, we can

compute black-box access to elements of a basis of

𝑓1, 𝑓2, … , 𝑓𝑚 in randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑑,𝑚) time.

 Compute black-box access to elements of 𝜕𝑘𝑓 in

𝑝𝑜𝑙𝑦(𝑛, 𝑠) time using 𝐹𝑎𝑐𝑡 1.

 Compute black-box access to elements of a basis

Γ = (𝑔1, … , 𝑔𝑚) of 𝑈 using 𝐹𝑎𝑐𝑡 2.

𝜕𝑘𝑓 = 𝑛+𝑘−1
𝑘
= 𝑝𝑜𝑙𝑦(𝑛, 𝑠)

𝑆𝑡𝑒𝑝 3: Computing 𝑇𝑖 from 𝑈𝑖

 From 𝑆𝑡𝑒𝑝 2, we have black-box access to elements of a

basis (𝑔𝑖,1, … , 𝑔𝑖,𝑚𝑖) of 𝑈𝑖.

 Let 𝐷𝑒𝑔(𝑘) be the set of all degree-𝑘 monomials in the

𝒙-variables. 𝐷𝑒𝑔 𝑘 = 𝑛+𝑘−1
𝑘
= 𝑝𝑜𝑙𝑦(𝑛, 𝑠).

𝑆𝑡𝑒𝑝 3: Computing 𝑇𝑖 from 𝑈𝑖

 From 𝑆𝑡𝑒𝑝 2, we have black-box access to elements of a

basis (𝑔𝑖,1, … , 𝑔𝑖,𝑚𝑖) of 𝑈𝑖.

 Let 𝐷𝑒𝑔(𝑘) be the set of all degree-𝑘 monomials in the

𝒙-variables.

 For 𝛼 ∈ 𝐷𝑒𝑔(𝑘), solve for 𝑐𝛼,𝑖,𝑗 ∈ 𝔽 such that

 𝑐𝛼,𝑖,1∙ 𝑔𝑖,1 +⋯+ 𝑐𝛼,𝑖,𝑚𝑖 ∙ 𝑔𝑖,𝑚𝑖𝑖∈ 𝑠 =
𝜕𝑘𝑓

𝜕𝛼

𝑆𝑡𝑒𝑝 3: Computing 𝑇𝑖 from 𝑈𝑖

 From 𝑆𝑡𝑒𝑝 2, we have black-box access to elements of a

basis (𝑔𝑖,1, … , 𝑔𝑖,𝑚𝑖) of 𝑈𝑖.

 Let 𝐷𝑒𝑔(𝑘) be the set of all degree-𝑘 monomials in the

𝒙-variables.

 For 𝛼 ∈ 𝐷𝑒𝑔(𝑘), solve for 𝑐𝛼,𝑖,𝑗 ∈ 𝔽 such that

 𝑐𝛼,𝑖,1∙ 𝑔𝑖,1 +⋯+ 𝑐𝛼,𝑖,𝑚𝑖 ∙ 𝑔𝑖,𝑚𝑖𝑖∈ 𝑠 =
𝜕𝑘𝑓

𝜕𝛼

We have black-box access

𝑆𝑡𝑒𝑝 3: Computing 𝑇𝑖 from 𝑈𝑖

 From 𝑆𝑡𝑒𝑝 2, we have black-box access to elements of a

basis (𝑔𝑖,1, … , 𝑔𝑖,𝑚𝑖) of 𝑈𝑖.

 Let 𝐷𝑒𝑔(𝑘) be the set of all degree-𝑘 monomials in the

𝒙-variables.

 For 𝛼 ∈ 𝐷𝑒𝑔(𝑘), solve for 𝑐𝛼,𝑖,𝑗 ∈ 𝔽 such that

 𝑐𝛼,𝑖,1∙ 𝑔𝑖,1 +⋯+ 𝑐𝛼,𝑖,𝑚𝑖 ∙ 𝑔𝑖,𝑚𝑖𝑖∈ 𝑠 =
𝜕𝑘𝑓

𝜕𝛼

 =
𝜕𝑘𝑇1

𝜕𝛼
+⋯+

𝜕𝑘𝑇𝑠

𝜕𝛼

 Such a solution satisfies

 𝑐𝛼,𝑖,1∙ 𝑔𝑖,1 +⋯+ 𝑐𝛼,𝑖,𝑚𝑖 ∙ 𝑔𝑖,𝑚𝑖 =
𝜕𝑘𝑇𝑖
𝜕𝛼

𝑆𝑡𝑒𝑝 3: Computing 𝑇𝑖 from 𝑈𝑖

 From 𝑆𝑡𝑒𝑝 2, we have black-box access to elements of a

basis (𝑔𝑖,1, … , 𝑔𝑖,𝑚𝑖) of 𝑈𝑖.

 Let 𝐷𝑒𝑔(𝑘) be the set of all degree-𝑘 monomials in the

𝒙-variables.

 Well known identity for homogeneous polynomials

𝑇𝑖 =
𝑑 − 2𝑘 !

𝑑 − 𝑘 !
∙

𝑘

𝛼
𝛼 ∈ 𝐷𝑒𝑔(𝑘)

∙ 𝛼 ∙
𝜕𝑘𝑇𝑖
𝜕𝛼

Identifying 𝛼 with its

exponent vector

𝑆𝑡𝑒𝑝 3: Computing 𝑇𝑖 from 𝑈𝑖

 From 𝑆𝑡𝑒𝑝 2, we have black-box access to elements of a

basis (𝑔𝑖,1, … , 𝑔𝑖,𝑚𝑖) of 𝑈𝑖.

 Let 𝐷𝑒𝑔(𝑘) be the set of all degree-𝑘 monomials in the

𝒙-variables.

 Well known identity for homogeneous polynomials

𝑇𝑖 =
𝑑 − 2𝑘 !

𝑑 − 𝑘 !
∙

𝑘

𝛼
𝛼 ∈ 𝐷𝑒𝑔(𝑘)

∙ 𝛼 ∙
𝜕𝑘𝑇𝑖
𝜕𝛼

Thanks to Gaurav Sinha for showing

us this argument for executing Step 3 !

A few definitions

 Let 𝑈 be a space and 𝓢 a space of linear operators on 𝑈.

 Definition. A space 𝑉 ⊆ 𝑈 is an invariant subspace of 𝑈

(induced by 𝓢) if 𝓢𝑉 ⊆ 𝑉.

A few definitions

 Let 𝑈 be a space and 𝓢 a space of linear operators on 𝑈.

 Definition. A space 𝑉 ⊆ 𝑈 is an invariant subspace of 𝑈

(induced by 𝓢) if 𝓢𝑉 ⊆ 𝑉. Moreover, 𝑉 is irreducible if

there’s no invariant subspace properly contained in 𝑉.

A few definitions

 Let 𝑈 be a space and 𝓢 a space of linear operators on 𝑈.

 Definition. A space 𝑉 ⊆ 𝑈 is an invariant subspace of 𝑈

(induced by 𝓢) if 𝓢𝑉 ⊆ 𝑉. Moreover, 𝑉 is irreducible if

there’s no invariant subspace properly contained in 𝑉.

 Definition. The closure of vector 𝑣 ∈ 𝑈 with respect to

𝓢 is the smallest invariant subspace of 𝑈 containing 𝑣.

A few definitions

 Let 𝑈 be a space and 𝓢 a space of linear operators on 𝑈.

 Definition. A space 𝑉 ⊆ 𝑈 is an invariant subspace of 𝑈

(induced by 𝓢) if 𝓢𝑉 ⊆ 𝑉. Moreover, 𝑉 is irreducible if

there’s no invariant subspace properly contained in 𝑉.

 Definition. The closure of vector 𝑣 ∈ 𝑈 with respect to

𝓢 is the smallest invariant subspace of 𝑈 containing 𝑣.

 𝐹𝑎𝑐𝑡 3: Given 𝑣 ∈ 𝔽𝑚 and a set of matrices *𝑀1, … ,𝑀𝑡+
in 𝔽𝑚×𝑚, the closure of 𝑣 with respect to 𝑀1, … ,𝑀𝑡

can be computed in deterministic 𝑝𝑜𝑙𝑦(𝑚) time.

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 The idea:

 Define a suitable space 𝓢 of linear operators on 𝑈

such that 𝑈1, … , 𝑈𝑠 are irreducible invariant subspaces

of 𝑈 induced by 𝓢.

 Pick vectors in 𝑈 carefully such that the closures of

these vectors with respect to 𝓢 give 𝑈1, … , 𝑈𝑠.

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 The idea:

 Define a suitable space 𝓢 of linear operators on 𝑈

such that 𝑈1, … , 𝑈𝑠 are irreducible invariant subspaces

of 𝑈 induced by 𝓢.

 Pick vectors in 𝑈 carefully such that the closures of

these vectors with respect to 𝓢 give 𝑈1, … , 𝑈𝑠.

Simultaneous block diagonalization of a basis of 𝓢.

Space of linear operators on 𝑈

 The shifted differential operator space:

 𝓢𝓓𝑘 ≔ 𝛽 ∙
𝜕𝑘

𝜕𝛼
 ∶ 𝛼, 𝛽 ∈ 𝐷𝑒𝑔(𝑘) .

 𝓢 = 𝓢𝓓𝑘,𝑈 ≔ 𝜓 ∈ 𝓢𝓓𝑘 ∶ 𝜓 𝑈 ⊆ 𝑈 .

Space of linear operators on 𝑈

 The shifted differential operator space:

 𝓢𝓓𝑘 ≔ 𝛽 ∙
𝜕𝑘

𝜕𝛼
 ∶ 𝛼, 𝛽 ∈ 𝐷𝑒𝑔(𝑘) .

 𝓢 = 𝓢𝓓𝑘,𝑈 ≔ 𝜓 ∈ 𝓢𝓓𝑘 ∶ 𝜓 𝑈 ⊆ 𝑈 .

 Observation. A basis (𝜓1, … , 𝜓𝑡) of 𝓢 can be computed

in 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time from a basis Γ = (𝑔1, … , 𝑔𝑚) of 𝑈.

Space of linear operators on 𝑈

 The shifted differential operator space:

 𝓢𝓓𝑘 ≔ 𝛽 ∙
𝜕𝑘

𝜕𝛼
 ∶ 𝛼, 𝛽 ∈ 𝐷𝑒𝑔(𝑘) .

 𝓢 = 𝓢𝓓𝑘,𝑈 ≔ 𝜓 ∈ 𝓢𝓓𝑘 ∶ 𝜓 𝑈 ⊆ 𝑈 .

 Observation. A basis (𝜓1, … , 𝜓𝑡) of 𝓢 can be computed

in 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time from a basis Γ = (𝑔1, … , 𝑔𝑚) of 𝑈.

 Proof. Solve for 𝑐𝛼,𝛽 and 𝑑𝑖,𝑗 in 𝔽 such that

 𝑐𝛼,𝛽 ∙ 𝛽 ∙
𝜕𝑘𝑔𝑖

𝜕𝛼𝛼,𝛽∈𝐷𝑒𝑔(𝑘) = 𝑑𝑖,𝑗 ∙ 𝑔𝑗𝑗∈,𝑚-

 for every 𝑖 ∈ ,𝑚-.

Space of linear operators on 𝑈

 The shifted differential operator space:

 𝓢𝓓𝑘 ≔ 𝛽 ∙
𝜕𝑘

𝜕𝛼
 ∶ 𝛼, 𝛽 ∈ 𝐷𝑒𝑔(𝑘) .

 𝓢 = 𝓢𝓓𝑘,𝑈 ≔ 𝜓 ∈ 𝓢𝓓𝑘 ∶ 𝜓 𝑈 ⊆ 𝑈 .

 Observation. A basis (𝜓1, … , 𝜓𝑡) of 𝓢 can be computed

in 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time from a basis Γ = (𝑔1, … , 𝑔𝑚) of 𝑈.

 Proof. Solve for 𝑐𝛼,𝛽 and 𝑑𝑖,𝑗 in 𝔽 such that

 𝑐𝛼,𝛽 ∙ 𝛽 ∙
𝜕𝑘𝑔𝑖

𝜕𝛼𝛼,𝛽∈𝐷𝑒𝑔(𝑘) = 𝑑𝑖,𝑗 ∙ 𝑔𝑗𝑗∈,𝑚-

 for every 𝑖 ∈ ,𝑚-.
We have black-box access to these polynomials

Nice properties of 𝓢

 𝐶𝑙𝑎𝑖𝑚 1. 𝑈1, … , 𝑈𝑠 are invariant subspaces of 𝑈 induced

by 𝓢.

Nice properties of 𝓢

 𝐶𝑙𝑎𝑖𝑚 1. 𝑈1, … , 𝑈𝑠 are invariant subspaces of 𝑈 induced

by 𝓢.

… follows from the non-degeneracy condition

Nice properties of 𝓢

 𝐶𝑙𝑎𝑖𝑚 1. 𝑈1, … , 𝑈𝑠 are invariant subspaces of 𝑈 induced

by 𝓢.

 𝐶𝑙𝑎𝑖𝑚 2. There is an operator 𝜓 ∈ 𝓢 having distinct

eigenvalues.

Nice properties of 𝓢

 𝐶𝑙𝑎𝑖𝑚 1. 𝑈1, … , 𝑈𝑠 are invariant subspaces of 𝑈 induced

by 𝓢.

 𝐶𝑙𝑎𝑖𝑚 2. There is an operator 𝜓 ∈ 𝓢 having distinct

eigenvalues.

 𝐶𝑙𝑎𝑖𝑚 3. 𝑈1, … , 𝑈𝑠 are irreducible invariant subspaces of

𝑈 induced by 𝓢.

Nice properties of 𝓢

 𝐶𝑙𝑎𝑖𝑚 1. 𝑈1, … , 𝑈𝑠 are invariant subspaces of 𝑈 induced

by 𝓢.

 𝐶𝑙𝑎𝑖𝑚 2. There is an operator 𝜓 ∈ 𝓢 having distinct

eigenvalues.

 𝐶𝑙𝑎𝑖𝑚 3. 𝑈1, … , 𝑈𝑠 are irreducible invariant subspaces of

𝑈 induced by 𝓢.

 The proofs of 𝐶𝑙𝑎𝑖𝑚 2 and 𝐶𝑙𝑎𝑖𝑚 3 are a bit technical.

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 The algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

Once a basis Γ of 𝑈 is fixed, every operator 𝜓 ∈ 𝓢
can be identified with a unique matrix 𝑀Γ(𝜓).

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 The algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly. Let 𝑀Γ = 𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- .

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 The algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly. Let 𝑀Γ = 𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- .

3. Factor the characteristic polynomial (𝑦) of 𝑀Γ. If is not

square-free, output ‘Fail’. Else, let = 1 ∙ 2⋯𝑙 .

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 The algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly. Let 𝑀Γ = 𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- .

3. Factor the characteristic polynomial (𝑦) of 𝑀Γ. If is not

square-free, output ‘Fail’. Else, let = 1 ∙ 2⋯𝑙 .

4. Find the null spaces 𝑁1, … , 𝑁𝑙 of 1 𝑀Γ , ⋯ , 𝑙(𝑀Γ).

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 The algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly. Let 𝑀Γ = 𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- .

3. Factor the characteristic polynomial (𝑦) of 𝑀Γ. If is not

square-free, output ‘Fail’. Else, let = 1 ∙ 2⋯𝑙 .

4. Find the null spaces 𝑁1, … , 𝑁𝑙 of 1 𝑀Γ , ⋯ , 𝑙(𝑀Γ).

5. For every 𝑗 ∈ ,𝑙-, pick a 𝑣 ∈ 𝑁𝑗 and compute the closure of

𝑣 with respect to 𝑀Γ 𝜓1 , … ,𝑀Γ(𝜓𝑡) .

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 The algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly. Let 𝑀Γ = 𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- .

3. Factor the characteristic polynomial (𝑦) of 𝑀Γ. If is not

square-free, output ‘Fail’. Else, let = 1 ∙ 2⋯𝑙 .

4. Find the null spaces 𝑁1, … , 𝑁𝑙 of 1 𝑀Γ , ⋯ , 𝑙(𝑀Γ).

5. For every 𝑗 ∈ ,𝑙-, pick a 𝑣 ∈ 𝑁𝑗 and compute the closure of

𝑣 with respect to 𝑀Γ 𝜓1 , … ,𝑀Γ(𝜓𝑡) .

6. Let *𝑊1, … ,𝑊𝑝+ be the set of these closure spaces. If 𝑝 ≠ 𝑠,

return ‘Fail’. Else, return bases of Γ ∙ 𝑊1, … , Γ ∙ 𝑊𝑠 .

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 Analyzing the algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly. Let 𝑀Γ = 𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- .

A random operator in 𝓢

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 Analyzing the algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly. Let 𝑀Γ = 𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- .

3. Factor the characteristic polynomial (𝑦) of 𝑀Γ. If is not

square-free, output ‘Fail’. Else, let = 1 ∙ 2⋯𝑙 .

 is square-free w.h.p (by 𝐶𝑙𝑎𝑖𝑚 2).

𝐶𝑙𝑎𝑖𝑚 2. There is an operator 𝜓 ∈ 𝓢
having distinct eigenvalues.

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 Analyzing the algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly. Let 𝑀Γ = 𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- .

3. Factor the characteristic polynomial (𝑦) of 𝑀Γ. If is not

square-free, output ‘Fail’. Else, let = 1 ∙ 2⋯𝑙 .

 is square-free w.h.p (by 𝐶𝑙𝑎𝑖𝑚 2).

𝐶𝑙𝑎𝑖𝑚 2. A random operator in 𝓢
 has distinct eigenvalues.

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 Analyzing the algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly. Let 𝑀Γ = 𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- .

3. Factor the characteristic polynomial (𝑦) of 𝑀Γ. If is not

square-free, output ‘Fail’. Else, let = 1 ∙ 2⋯𝑙 .

4. Find the null spaces 𝑁1, … , 𝑁𝑙 of 1 𝑀Γ , ⋯ , 𝑙(𝑀Γ).

Once a basis Γ of 𝑈 is fixed, every 𝑈𝑖 can be identified with

a space 𝑈𝑖,Γ ⊆ 𝔽
𝑚.

𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ. (Proof later)

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 Analyzing the algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly. Let 𝑀Γ = 𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- .

3. Factor the characteristic polynomial (𝑦) of 𝑀Γ. If is not

square-free, output ‘Fail’. Else, let = 1 ∙ 2⋯𝑙 .

4. Find the null spaces 𝑁1, … , 𝑁𝑙 of 1 𝑀Γ , ⋯ , 𝑙(𝑀Γ).

5. For every 𝑗 ∈ ,𝑙-, pick a 𝑣 ∈ 𝑁𝑗 and compute the closure of

𝑣 with respect to 𝑀Γ 𝜓1 , … ,𝑀Γ(𝜓𝑡) .

6. Let *𝑊1, … ,𝑊𝑝+ be the set of these closure spaces. If 𝑝 ≠ 𝑠,

return ‘Fail’. Else, return bases of Γ ∙ 𝑊1, … , Γ ∙ 𝑊𝑠 .

𝑂𝑏𝑠. *𝑊1, … ,𝑊𝑠+ are the spaces *𝑈1,Γ, … , 𝑈𝑠,Γ+ (by 𝐶𝑙𝑎𝑖𝑚 3)

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑗 𝑀Γ . The statement of the claim

is independent of the choice of basis Γ. Assume that Γ is a basis

formed by taking union of bases of 𝑈1, … , 𝑈𝑠 .

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

 Let 𝑝𝑖 be the characteristic polynomial of 𝑅𝑖. Then,

 = 𝑝1 ∙ 𝑝2⋯𝑝𝑠 = 1 ∙ 2⋯𝑙

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

 Let 𝑝𝑖 be the characteristic polynomial of 𝑅𝑖. 𝑗 divides some 𝑝𝑖.

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

 Let 𝑝𝑖 be the characteristic polynomial of 𝑅𝑖. 𝑗 divides some 𝑝𝑖.

 For 𝑣 ∈ 𝑁𝑗 ,

𝑝𝑖 𝑀Γ =
𝑝𝑖 𝑅1

⋱
𝑝𝑖 𝑅𝑠

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

 Let 𝑝𝑖 be the characteristic polynomial of 𝑅𝑖. 𝑗 divides some 𝑝𝑖.

 For 𝑣 ∈ 𝑁𝑗 ,

𝑝𝑖 𝑀Γ ∙ 𝑣 =
𝑝𝑖 𝑅1

⋱
𝑝𝑖 𝑅𝑠

∙ 𝑣 = 0

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

 Let 𝑝𝑖 be the characteristic polynomial of 𝑅𝑖. 𝑗 divides some 𝑝𝑖.

 For 𝑣 ∈ 𝑁𝑗 ,

𝑝𝑖 𝑀Γ ∙ 𝑣 =
𝑝𝑖 𝑅1

⋱
𝑝𝑖 𝑅𝑠

∙

𝑣1
⋮
𝑣𝑠
= 0

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

 Let 𝑝𝑖 be the characteristic polynomial of 𝑅𝑖. 𝑗 divides some 𝑝𝑖.

 For 𝑣 ∈ 𝑁𝑗 ,

𝑝𝑖 𝑀Γ ∙ 𝑣 =
𝑝𝑖 𝑅1

⋱
𝑝𝑖 𝑅𝑠

∙

𝑣1
⋮
𝑣𝑠
= 0

 𝑝𝑖 𝑅𝑞 ∙ 𝑣𝑞 = 0 for every 𝑞 ∈ ,𝑠-.

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

 𝑝𝑖 𝑅𝑞 ∙ 𝑣𝑞 = 0 for every 𝑞 ∈ ,𝑠-. Pick any 𝑞 ≠ 𝑖.

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

 𝑝𝑖 𝑅𝑞 ∙ 𝑣𝑞 = 0 for every 𝑞 ∈ ,𝑠-. Pick any 𝑞 ≠ 𝑖. As is square-

 free, there are polynomials 𝑒1, 𝑒2 such that

 𝑒1 ∙ 𝑝𝑖 + 𝑒2 ∙ 𝑝𝑞 = 1

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

 𝑝𝑖 𝑅𝑞 ∙ 𝑣𝑞 = 0 for every 𝑞 ∈ ,𝑠-. Pick any 𝑞 ≠ 𝑖. As is square-

 free, there are polynomials 𝑒1, 𝑒2 such that

 𝑒1 ∙ 𝑝𝑖 + 𝑒2 ∙ 𝑝𝑞 = 1

 𝑒1 𝑅𝑞 ∙ 𝑝𝑖 𝑅𝑞 = 𝐼𝑚

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

 𝑝𝑖 𝑅𝑞 ∙ 𝑣𝑞 = 0 for every 𝑞 ∈ ,𝑠-. Pick any 𝑞 ≠ 𝑖. As is square-

 free, there are polynomials 𝑒1, 𝑒2 such that

 𝑒1 ∙ 𝑝𝑖 + 𝑒2 ∙ 𝑝𝑞 = 1

 𝑒1 𝑅𝑞 ∙ 𝑝𝑖 𝑅𝑞 ∙ 𝑣𝑞 = 𝑣𝑞 = 0.

 ∴ 𝑣 ∈ 𝑈𝑖,Γ .

Summary

 We give an efficient reconstruction algorithm for non-

degenerate homogeneous depth-3 circuits where both

the algorithm and the non-degeneracy condition

originate from the [NW95] natural lower bound proof.

Summary

 We give an efficient reconstruction algorithm for non-

degenerate homogeneous depth-3 circuits where both

the algorithm and the non-degeneracy condition

originate from the [NW95] natural lower bound proof.

 In doing so, we give a paradigm for handling large fan-in

sum gates by reducing the problem to decomposition of

a suitable space 𝑈, and then solving this decomposition

problem by defining an appropriate space 𝓢 of

operators on 𝑈 and examining its structure.

Summary

 The particular operator space we work with is the

shifted differential operator space. It shows the

effectiveness of shifted derivatives in reconstruction

problems.

Summary

 The particular operator space we work with is the

shifted differential operator space. It shows the

effectiveness of shifted derivatives in solving

reconstruction problems.

 The paradigm has the potential to give efficient

reconstruction for other models for which natural lower

bounds are known. Homogeneous depth-4 circuits,

constant depth multilinear circuits, regular formulas are

instances of such models.

Summary

 The particular operator space we work with is the

shifted differential operator space. It shows the

effectiveness of shifted derivatives in solving

reconstruction problems.

 The paradigm has the potential to give efficient

reconstruction for other models for which natural lower

bounds are known. Homogeneous depth-4 circuits,

constant depth multilinear circuits, regular formulas are

instances of such models.

Thanks!

