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Polynomial Systems over Finite Fields

Let 𝒌 ∈ ℤ+ and 𝒑 be prime. 

This talk: think of 𝒑 and 𝒌 as small (constant), 𝒏 as large, 𝒑 ≪ 𝒌

D𝟏S𝒑 ∈ P (Gaussian elimination)

D𝒌S𝒑 ∈ P for 𝑚 = 1 (Finding a root of one degree-𝒌 polynomial)

D𝟐S𝟐 is NP-hard (Reduction from NAE-3-SAT)

For small 𝑛 and 𝑘, several algorithms are known 

(e.g. [Kayal’14] runs in 𝒑𝒐𝒍𝒚(𝒎, 𝒌𝒆𝒙𝒑(𝒏), 𝒍𝒐𝒈(𝒑)) time)

For our case: best algorithm for D𝑘S𝑝 (up until ~2 years ago) ≈ 𝒑𝒏

Thm [LPTWY’17] D𝒌S𝒑 can be solved in 𝒑𝒏−𝒏/𝑶(𝒌) time 

(for 𝒑 ≤ 𝟐𝑶 𝒌 )

Degree-𝒌 𝑭𝒑 System Solvability (D𝒌S𝒑)

Given: Set 𝑆 of polys 𝑞1, … , 𝑞𝑚 ∈ 𝐹𝑝 𝑥1, … , 𝑥𝑛 , 𝑑𝑒𝑔 𝑞𝑖 ≤ 𝑘

Decide: Is 𝑍 𝑆 = 𝑎 ∈ 𝐹𝑝
𝑛 ∀𝑖, 𝑞𝑖 𝑎 = 0} empty?



Thm [LPTWY’17] D𝒌S𝒑 can be solved in 𝒑𝒏−𝒏/𝑶(𝒌) time (for 𝒑 ≤ 𝟐𝑶 𝒌 )

Degree-𝒌 𝑭𝒑 System Solvability (D𝒌S𝒑)

Given: Set 𝑆 of polys 𝑞1, … , 𝑞𝑚 ∈ 𝐹𝑝 𝑥1, … , 𝑥𝑛 , 𝑑𝑒𝑔 𝑞𝑖 ≤ 𝑘

Decide: Is 𝑍 𝑆 = 𝑎 ∈ 𝐹𝑝
𝑛 ∀𝑖, 𝑞𝑖 𝑎 = 0} empty?

General Idea: Approach the problem in a “circuit complexity way”

Given: Set 𝑺 = {𝒒𝒊(𝒚, 𝒙)} with 𝜹𝒏 𝒚-vars and 𝒏 − 𝜹𝒏 𝒙-vars (𝜹 ∈ (𝟎, 𝟏))

Define an 𝒏 − 𝜹𝒏 -input circuit:

𝑪𝑺 𝒙 ≔ ሧ

𝒂∈𝑭𝒑
𝜹𝒏

ሥ

𝒊=𝟏

𝒎

𝒒𝒊 𝒂, 𝒙 = 𝟎Obs: ∃ 𝒃 ∈ 𝑭𝒑
𝒏−𝜹𝒏 [𝑪𝑺(𝒃) = 𝟏]

 (∃ (𝒂, 𝒃))[ 𝒂, 𝒃 ∈ 𝒁 𝑺 ]

Lemma [Adapting Razborov-Smolensky 87/88]: Can randomly reduce 𝑪𝑺 to an 

𝑭𝒑-poly 𝑸𝑺 of degree ≈ 𝒑𝜹𝒏𝒌 such that  for all 𝒃 ∈ 𝑭𝒑
𝒏−𝜹𝒏,

𝑪𝑺 𝒃 = 𝟏 ⇒ 𝑷𝒓 𝑸𝑺 𝒃 ≠ 𝟎 >
𝟐

𝟑

𝑪𝑺 𝒃 = 𝟎 ⇒ 𝑷𝒓 𝑸𝑺 𝒃 = 𝟎 <
𝟏

𝟑

Algorithm. Set 𝛿 = 1/(100𝑘).
Given 𝑆, try for 10 𝑛 log(𝑝) times:

(1) Construct random 𝑄𝑆.

(2) Eval 𝑄𝑆 𝑏 on all 𝑏 ∈ 𝐹𝑝
𝑛−𝛿𝑛

Return “solution”

 ∃𝑏 𝑄𝑆 𝑏 ≠ 0 for > ½ trials 

(1) doesn’t take too long for “small” 𝒑
(𝑸 has degree ≈ 𝒑𝒏/100)

(2) can be done in ≈ 𝒑𝒏−𝜹𝒏 time by a 
divide-and-conquer approach

Derandomized Algorithm:

Use 𝜖-biased generators to choose the polys,

use mod-amplifying polys over ℤ to compose



Counting Solutions to Poly Systems
Let 𝒌 ∈ ℤ+ and 𝒑 be prime. 

#D𝒌S𝒑 (Counting Solutions to Degree-𝒌 Systems over 𝑭𝒑)

Given: Set 𝑆 of polys 𝑞1, … , 𝑞𝑚 ∈ 𝐹𝑝 𝑥1, … , 𝑥𝑛 , 𝑑𝑒𝑔 𝑞𝑖 ≤ 𝑘

Output: cardinality of 𝑍 𝑆 = 𝑎 ∈ 𝐹𝑝
𝑛 ∀𝑖, 𝑞𝑖 𝑎 = 0}

#D𝟏S𝒑 ∈ P (Gaussian elimination)

#D2S𝒑 ∈ P for 𝒎 = 𝟏 [Carlitz69,Woods98,…] 

[LPTWY’17] 𝒑𝒏−𝒏/𝑶𝒑(𝒌)-time det. algorithm for #DkSp

#D𝟐S𝟐 is #P-hard (reduction from NAE-3-SAT)

#D𝟑S𝟐 remains #P-hard even for 𝒎 = 𝟏 ([EK’90])

… but the reduction (from 3SAT) blows up # of variables

How hard is it to count zeroes of an 𝑶(𝟏)-degree 𝑭𝟐-polynomial?

Might we expect a 𝟏. 𝟗𝟗𝒏 time algorithm?

Recall: finding a zero of one polynomial is relatively easy! 



Strong Hardness of Counting

Thm [with Brynmor Chapman]
For all 𝜖 > 0, 𝑐 > 1, there’s a deterministic 𝑝𝜖𝑛-time reduction
from #D𝒌S𝒑 with 𝑛 vars and 𝑐𝑛 polynomials 

to counting zeroes of ONE degree-𝑶 𝒄𝒌/𝝐 poly with 𝑛 vars

YAARS (Yet Another Approach to Refuting SETH?)

To solve 𝒌-SAT in 𝟏. 𝟗𝟗𝟗𝒏 time, it suffices to count the 
zeroes of a given 𝑶𝒌 𝟏 -degree polynomial in 𝒏 variables 

over 𝑭𝟐, in 𝑶 𝟏. 𝟗𝟗𝒏 time. 

Corollary Counting solutions to a system of degree-𝑘 polynomials
is fine-grained equivalent to

counting solutions to one degree-O(𝑘) polynomial!



Thm For all 𝜖 > 0, there’s a det. 𝑝𝜖𝑛-time reduction
from #D𝒌S𝒑 with 𝑛 vars and 𝑐𝑛 polynomials 

to counting zeroes of ONE degree-𝑂 𝑐𝑘/𝜖 poly with 𝑛 vars

Input 𝒒𝟏, … , 𝒒𝝐𝒏

Let 𝑣1, … , 𝑣𝑝𝜖𝑛 = 𝐹𝑝
𝜖𝑛

𝑍 ∶= 0, 𝑁 ∶= 0

For all 𝑖 = 1,… , 𝑝𝜖𝑛, 
set 𝑃𝑖 𝑥 ∶= σ𝑗 𝑣𝑖 𝑗 ⋅ 𝑞𝑗 𝑥

𝑍 = 𝑍 + (#zeroes of 𝑃𝑖(𝑥))

𝑁 = 𝑁 + (#zeroes of 1 − 𝑃𝑖(𝑥))

Output (𝑍 − 𝑁)/𝑝𝜖𝑛

 degree 𝒌

Analysis: Let 𝐴 = 𝑎 ∀𝑖, 𝑞𝑖 𝑎 = 0} be the set of solutions to the system

Reduction: 

Every 𝑎 ∈ 𝐴 is a zero of 𝑃𝑖, and not of 1 − 𝑃𝑖, for all 𝒊

Every 𝑎 ∉ 𝐴 is a zero of 𝑃𝑖 for exactly 1/𝑝 of the 𝑖, 
and is a zero of 1 − 𝑃𝑖 for exactly 1/𝑝 of the 𝑖

Every 𝒂 ∉ 𝑨 contributes 0

Every 𝒂 ∈ 𝑨 contributes 1

First, assume the number of polynomials in our system is 𝒎 = 𝝐𝒏

So under our assumption, the output is the correct count!

 oracle call

 oracle call



Input 𝑞1, … , 𝑞𝑐𝑛, each of deg. 𝒌

⋯
Output 𝑷𝟏, … , 𝑷𝝐𝒏, each of deg. 𝑂 𝑐𝑘/𝜖

Goal: Number of sols to 𝑞1 = 0,… , 𝑞𝑐𝑛 = 0

= Number of sols to 𝑷𝟏 = 𝟎,… , 𝑷𝝐𝒏 = 𝟎

Reduction: 

Now we reduce to the case where the number of polys = 𝝐𝒏 …

Thm For all 𝜖 > 0, there’s a det. 𝑝𝜖𝑛-time reduction
from #D𝒌S𝒑 with 𝑛 vars and 𝑐𝑛 polynomials 

to counting zeroes of ONE degree-𝑂 𝑐𝑘/𝜖 poly with 𝑛 vars



Input 𝑞1, … , 𝑞𝑐𝑛, each of deg. 𝒌

Partition the set of polys into groups 𝐺1, … , 𝐺𝜖𝑛,

where each 𝐺𝑖 has 𝑶 𝒄/𝝐 polys.

For all 𝒊 = 𝟏,… , 𝝐𝒏

𝑷𝒊 𝒙 ≔ 𝟏 −ς𝒒𝒋∈𝑮𝒊
𝟏 − 𝒒𝒋 𝒙

𝒑−𝟏

Output 𝑷𝟏, … , 𝑷𝝐𝒏, each of deg. 𝑂 𝑐𝑘𝒑/𝜖

Goal: Number of sols to 𝑞1 = 0,… , 𝑞𝑐𝑛 = 0

= Number of sols to 𝑷𝟏 = 𝟎,… , 𝑷𝝐𝒏 = 𝟎

Analysis: For all 𝑎 ∈ 𝐹𝑝
𝑛, and all 𝑖,    𝑷𝒊 𝒂 = 𝟎 for all 𝑞𝑗 ∈ 𝐺𝑖,  𝑞𝑗 𝑎 = 0

Reduction: 

So 𝒂 is a solution to the original system  𝒂 is a solution to the new system!

Thm For all 𝜖 > 0, there’s a det. 𝑝𝜖𝑛-time reduction
from #D𝒌S𝒑 with 𝑛 vars and 𝑐𝑛 polynomials 

to counting zeroes of ONE degree-𝑂 𝑐𝑘/𝜖 poly with 𝑛 vars

 Simple version with 
degree 𝑶(𝒄𝒌𝒑/𝝐)

Now we reduce to the case where the number of polys = 𝝐𝒏 …

Final Reduction: Run the above reduction to get 𝜖𝑛 polys, 
then run the reduction from the previous slide

First try:



Input 𝑞1, … , 𝑞𝑐𝑛, each of deg. 𝒌

Partition the set of polys into groups 𝐺1, … , 𝐺𝜖𝑛,

where each 𝐺𝑖 has 𝑶 𝒄/𝝐 polys.

For all 𝒊 = 𝟏,… , 𝝐𝒏

𝑷𝒊 𝒙 ≔ 𝟏 −ς𝒑𝒋∈𝑮𝒊
𝟏 − 𝒒𝒋 𝒙

𝒑−𝟏

Output 𝑷𝟏, … , 𝑷𝝐𝒏, each of deg. 𝑂 𝑐𝑘𝒑/𝜖

Goal: Number of sols to 𝑞1 = 0,… , 𝑞𝑐𝑛 = 0

= Number of sols to 𝑷𝟏 = 𝟎,… , 𝑷𝝐𝒏 = 𝟎

To improve the degree of the reduction to 𝑶(𝒄𝒌/𝝐): 

Reduction: 

Brynmor’s Lemma: Given 𝟐𝒕 polynomials {𝑞𝑖} of degree 𝒅 over any prime field 𝐹𝑝, 

we can construct a polynomial 𝑷 of degree 𝟐𝒕𝒅 so that for all 𝑎 ∈ 𝐹𝑝
𝑛,

𝑷 𝒂 = 𝟎 for all 𝑗,  𝑞𝑗 𝑎 = 0

Thm For all 𝜖 > 0, there’s a det. 𝑝𝜖𝑛-time reduction
from #D𝒌S𝒑 with 𝑛 vars and 𝑐𝑛 polynomials 

to counting zeroes of ONE degree-𝑂 𝑐𝑘/𝜖 poly with 𝑛 vars

Now we reduce to the case where the number of polys = 𝝐𝒏 …

No dependence on 𝒑. Degree upper bound is tight!



Brynmor’s Lemma: Given 𝟐𝒕 polynomials {𝑞𝑖} of degree 𝒅 over any prime field 𝐹𝑝, 

we can construct a polynomial 𝑷 of degree 𝟐𝒕𝒅 so that for all 𝑎 ∈ 𝐹𝑝
𝑛,

𝑷 𝒂 = 𝟎 for all 𝑗,  𝑞𝑗 𝑎 = 0

No dependence on 𝒑. Degree upper bound is tight!

Proof: WLOG 𝒑 > 𝟐.
Induction on 𝒕. Base case (𝒕 = 𝟎) is trivial. 

By induction, there are polynomials 𝒇 and 𝒈 of degree 𝟐𝒕−𝟏𝒅

such that 𝒇 𝒂 = 𝒈 𝒂 = 𝟎 for all 𝒋,  𝒒𝒋 𝒂 = 𝟎

(apply 𝒇 to half of the system, and 𝒈 to the other half).

Let 𝜷 ∈ 𝑭𝒑 − {𝟎} so that 𝜷 is not a perfect square (not a QR mod p). 

Take 𝑷(𝒙) = 𝒇𝟐(𝒙) − 𝜷𝒈𝟐(𝒙). Note 𝑷 has degree 𝟐𝒕𝒅. 

Let 𝒂 ∈ 𝑭𝒑
𝒏. Since 𝜷 is a 𝒏𝒐𝒕 a QR mod p, 

either 𝜷𝒈𝟐(𝒂) = 0,  or 𝜷𝒈𝟐(𝒂) is a (nonzero) non-QR mod p.

On the other hand, either 𝒇𝟐 𝒂 is 0 or it is a (nonzero) QR mod p.

It follows that 𝑷 𝒂 = 𝟎 iff 𝒇𝟐 𝒂 = 𝜷𝒈𝟐(𝒂) = 𝟎 iff 𝒇 𝒂 = 𝒈 𝒂 = 𝟎.

QED



Compelling Conjecture [“Degree-Two Uncertainty Principle”]: 

𝑨𝑵𝑫 (on 𝒏 inputs) requires 𝒏𝝎 𝟏 -size σ∘𝑷𝑶𝑳𝒀𝟐[𝟐]

(Unconditional) Lower Bounds 
from Fine-Grained Counting

Known: 𝑨𝑵𝑫 requires Ω(2𝑛)-size σ∘𝑷𝑶𝑳𝒀𝟏 𝟐

σ∘𝑷𝑶𝑳𝒀𝒅[𝒑]: 
Real-valued linear combinations of functions 𝑓: 0,1 𝑛 → {0,1,… , 𝑝 − 1}

where for every 𝑓 there is a degree-𝑑 polynomial 𝑞(𝑥) such that
∀𝑥 ∈ 0,1 𝑛, 𝒇 𝒙 = 𝒒 𝒙 mod 𝒑

No non-trivial lower bounds were known for σ ∘ 𝑷𝑶𝑳𝒀𝟐[𝒑]

𝑨𝑵𝑫 has O(2𝑛/2)-size σ∘𝑷𝑶𝑳𝒀𝟐[𝟐]

Case of 𝒅 = 𝟐, 𝒑 = 𝟐 is already very interesting! 

Recall: It is a major open problem to prove

∃𝒇 ∈ 𝑵𝑷 without 𝒏𝒌-size (unrestricted) circuits

Using algorithm for #D𝒅S𝒑:
Thm [W’18] ∀𝒅, 𝒌, ∀𝒑 prime, ∃𝒇𝒌 ∈ 𝑵𝑷 without 𝒏𝒌-size σ∘ 𝑷𝑶𝑳𝒀𝒅[𝒑]



Two Open Questions

1. Improve the 𝒑
𝒏−

𝒏

𝑶 𝒌 running time for D𝒌S𝒑?

2. Is #D𝒌S𝒑 with one polynomial ≡ #D𝒌S𝒑 in general?

Our 𝟐𝝐𝒏-time reduction from #DkSp to one polynomial 

blows up the degree by an 𝑶
𝟏

𝝐
factor…

Some heuristic reasons to believe that 𝒑
𝒏−

𝒏 𝒍𝒐𝒈 𝒌

𝑶 𝒌 time is possible…
If that is true, then the “Super Strong ETH” is false!

Thank you!

Note: If the answer is “yes” for 𝒌 = 𝟐
with a sub-exptime reduction, then ETH is false


