Fine-Grained Complexity of Solving
Systems of Polynomial Equations
(over small finite fields)

Ryan Williams MIT

Polynomial Systems over Finite Fields

Let k € Z* and p be prime.

Degree-k F,, System Solvability (DkSp)
Given: Set S of polys qq, ..., @i € Fy[xy, ..., xp], deg(q;) < k
Decide: Is Z(S) = {a € F' | Vi,q;(a) = 0} empty?

This talk: think of p and k as small (constant), n as large, p < k
D1Sp € P (Gaussian elimination)

DkSp € P for m = 1 (Finding a root of one degree-k polynomial)
D2S2 is NP-hard (Reduction from NAE-3-SAT)
For small n and k, several algorithms are known

(e.g. [Kayal’14] runs in poly(m, k¢**™ log(p)) time)
For our case: best algorithm for DkSp (up until ~2 years ago) = p"

Thm [LPTWY’17] DkSp can be solved in p™*~/%®) time
(for p < 20(0))

Given: Set S of polys g, .., @i € Fplxy, ..., X,§ Use e-biased generators to choose the polys,
Decide: Is Z(S) = {a € El | Vi, g;(a) = 0} ef USE mod-amplifying polys over Z to compose

Thm [LPTWY’17] DkSp can be solved in p™ ™2 time (for p < 20(K))
General Idea: Approach the problem in a “circuit complexity way”

Given: Set S = {q;(y, X)} with én y-vars and n — én x-vars (6 € (0, 1))

Define an (n — én)-input circuit: m
Obs: (3 b € F-0n)[cs(b) = 1] Cs(¥) = \/ (_/\[qi(a,f) = 0])
& (3 (a,b))[(a b) € Z(S)] achy" M1

Lemma [Adapting Razborov-Smolensky 87/88]: Can randomly reduce Cg to an
F,-poly Qs of degree ~ pénk such that forall b € Fj;~°",

2
Cs(b) =1= Pr(Qs(b) # 0] > 3 Algorithm. Set § = 1/(100k).
1 Given §, try for 10 n log(p) times:
Cs(b) = 0 = Pr[Qs(b) = 0] < =
s(b)=0= PriQs(h) =0l <3 (1) Construct random Q.

(1) doesn’t take too long for “small” p (2) Eval Qs(b) on all b € [n—oén
S p
(Q has degree ~ pn/100) Return “solution”

(2) can be done in = p™* %" time by a i
divide-and-conquer approach < 3b Qs5(b) # 0 for > % trials

Counting Solutions to Poly Systems

Let k € Z* and p be prime.

#DkSp (Counting Solutions to Degree-k Systems over F,,)
Given: Set S of polys qy, ..., @y € Fy[xq, ..., x,], deg(q;) < k

Output: cardinality of Z(S) = {a € F' | Vi,q;(a) = 0}

#D1Sp € P (Gaussian elimination)
#D2Sp € P for m = 1 [Carlitz69,Wo00ds98,...]
[LPTWY’17] p™* ™% () _time det. algorithm for #DkSp
#D2S2 is #P-hard (reduction from NAE-3-SAT)
#D3S2 remains #P-hard even for m = 1 ([EK’90])
... but the reduction (from 3SAT) blows up # of variables
How hard is it to count zeroes of an O(1)-degree F,-polynomial?
Might we expect a 1. 99" time algorithm?
Recall: finding a zero of one polynomial is relatively easy!

Strong Hardness of Counting

Thm [with Brynmor Chapman]
Foralle > 0, ¢ > 1, there’s a deterministic p"-time reduction
from #DkSp with n vars and cn polynomials

to counting zeroes of ONE degree-0(ck/€) poly with n vars

Corollary Counting solutions to a system of degree-k polynomials
is fine-grained equivalent to
counting solutions to one degree-O(k) polynomiall!

YAARS (Yet Another Approach to Refuting SETH?)

To solve k-SAT in 1. 999" time, it suffices to count the

zeroes of a given 0, (1)-degree polynomial in n variables
over F5, in 0(1.99") time.

Thm For all € > 0, there’s a det. p“"*-time reduction
from #DkSp with n vars and cn polynomials

to counting zeroes of ONE degree-O(ck/€) poly with n vars

First, assume the number of polynomials in our system is m = en

Reduction: |Inputqy, ..., q¢,
Let {v,, ...,Upen} = "
Z:=0,N:=0
Foralli=1,..,p",
set P;(x) := Zj viljl-qj(x) € degreek
Z = 7 + (#zeroes of P;(x)) & oracle call
N = N + (#zeroesof 1 — P;(x)) € oraclecall
Output (Z — N)/p"

Analysis: Let A = {a | Vi, q;(a) = 0} be the set of solutions to the system
Every a € A is a zero of P;, and not of 1 — P;, for all i Every a € A contributes 1

Every a & A is a zero of P; for exactly 1/p of the i, Every a ¢ A contributes 0
and is a zero of 1 — P; for exactly 1/p of the i

So under our assumption, the output is the correct count!

Thm For all € > 0, there’s a det. p“"*-time reduction
from #DkSp with n vars and cn polynomials

to counting zeroes of ONE degree-O(ck/€) poly with n vars

Now we reduce to the case where the number of polys = en ...

Reduction: | Input g4, ..., g, €ach of deg. k

Output P4, ..., P_,,, each of deg. O(ck/¢)

Goal: Number of solstog; =0, ...,q., =0
= Number of solstoP; =0, ...,P.,, =0

Thm For all € > 0, there’s a det. p“"*-time reduction
from #DkSp with n vars and cn polynomials

to counting zeroes of ONE degree-O(ck/€) poly with n vars

Now we reduce to the case where the number of polys = en ...

Reduction: | Input g4, ..., g, €ach of deg. k
First try: Partition the set of polys into groups G, ..., G¢;,,

where each G; has O(c/€) polys.
Foralli=1,...,en

Pi(x) =1-— quEGi(l _ qj(x)P—l) < Simple version with
degree O(ckp/e)

Output P4, ..., P_,,, each of deg. O(ckp/¢)
Goal: Number of solstog; =0, ...,q., =0

= Number of solstoP; =0, ...,P.,, =0

Analysis: Foralla € F*,and alli, P;(a) =0 < forallq; € G;, gqj(a) =0

So a is a solution to the original system < a is a solution to the new system!

Final Reduction: Run the above reduction to get en polys,
then run the reduction from the previous slide

Thm For all € > 0, there’s a det. p“"*-time reduction
from #DkSp with n vars and cn polynomials

to counting zeroes of ONE degree-O(ck/€) poly with n vars

Now we reduce to the case where the number of polys = en ...

Reduction: | Input g4, ..., g, €ach of deg. k
Partition the set of polys into groups Gy, ..., Gep,

where each G; has O(c/€) polys.
Foralli=1,...,en
Pi(x) =1 —[lpeq(1 — q;(x)P7)
Output P4, ..., P_,,, each of deg. O(ckp/¢)
Goal: Number of solstog; =0, ...,q., =0

= Number of solstoP; =0, ...,P.,, =0

To improve the degree of the reduction to O(ck/e€):

Brynmor’s Lemma: Given 2° polynomials {g;} of degree d over any prime field E,,
we can construct a polynomial P of degree 2%d so that forall a € B

P(a) = 0 < forallj, gj(a) =0

No dependence on p. Degree upper bound is tight!

Brynmor’s Lemma: Given 2° polynomials {g;} of degree d over any prime field E,,
we can construct a polynomial P of degree 2%d so that forall a € 125

P(a) = 0 < forallj, gj(a) =0

No dependence on p. Degree upper bound is tight!

Proof: WLOG p > 2.
Induction on t. Base case (t = 0) is trivial.

By induction, there are polynomials f and g of degree 2/~ 'd
such that f(a) = g(a) = 0 < forallj, q;(a) =0
(apply f to half of the system, and g to the other half).

Let f € F, — {0} so that 8 is not a perfect square (not a QR mod p).
Take P(x) = f%(x) — fg*(x). Note P has degree 2'd.
Let a € F};. Since f8 is anot a QR mod p,
either fg*(a) =0, or Bg*(a) is a (nonzero) non-QR mod p.
On the other hand, either f?(a) is 0 or it is a (honzero) QR mod p.
It follows that P(a) = 0 iff f%(a) = fg*(a) = 0iff f(a) = g(a) = 0.
QED

(Unconditional) Lower Bounds

from Fine-Grained Counting

Yo POLYd|p]:
Real-valued linear combinations of functions f: {0,1}" — {0,1, ...,p — 1}
where for every f there is a degree-d polynomial g(x) such that

vx € {0,1}", f(x) = q(x) mod p
Case of d = 2,p = 2 is already very interesting!
Compelling Conjecture [“Degree-Two Uncertainty Principle”]:
AND (on n inputs) requires n®V-size Yo POLY?2 [2]
Known: AND requires Q(2™)-size Y,o POLY1|2]
AND has 0(2™2)-size Yo POLY2[2]
No non-trivial lower bounds were known for), « POLY2[p]

Using algorithm for #DdSp:
Thm [W’18] Vd, k, Vp prime, 3f, € NP without n*-size Yo POLYd|[p]

Recall: It is a major open problem to prove
3f € NP without n¥-size (unrestricted) circuits

Two Open Questions

n

1. Improve the p"° 9® running time for DkSp?

_n log(k)
Some heuristic reasons to believe that pn 0(k) time is possible...

If that is true, then the “Super Strong ETH” is false!

2. Is #DkSp with one polynomial = #DkSp in general?

Our 2¢"™-time reduction from #DkSp to one polynomial
blows up the degree by an O (%) factor...

Note: If the answer is “yes” fork = 2
with a sub-exptime reduction, then ETH is false

Thank you!

