Fine-Grained Complexity of Solving Systems of Polynomial Equations (over small finite fields)

Ryan Williams MIT

Polynomial Systems over Finite Fields

Let $k \in \mathbb{Z}^+$ and p be prime.

Degree- $k F_p$ **System Solvability (D**k**S**p) **Given:** Set S of polys $q_1, ..., q_m \in F_p[x_1, ..., x_n], deg(q_i) \le k$ **Decide:** Is $Z(S) = \{a \in F_p^n \mid \forall i, q_i(a) = 0\}$ empty?

This talk: think of p and k as small (constant), n as large, $p \ll k$ D1S $p \in P$ (Gaussian elimination) D $kSp \in P$ for m = 1 (Finding a root of one degree-k polynomial) D2S2 is NP-hard (Reduction from NAE-3-SAT) For small n and k, several algorithms are known (e.g. [Kayal'14] runs in $poly(m, k^{exp(n)}, log(p))$ time) For our case: best algorithm for DkSp (up until ~2 years ago) $\approx p^n$

Thm [LPTWY'17] DkSp can be solved in $p^{n-n/O(k)}$ time (for $p \leq 2^{O(k)}$)

Degree-*k* F_p **System Solvability (D***k***S***p*) **Given:** Set *S* of polys $q_1, ..., q_m \in F_p[x_1, ..., x_r]$ **Decide:** Is $Z(S) = \{a \in F_p^n \mid \forall i, q_i(a) = 0\}$ er **Decide:** Is $Z(S) = \{a \in F_p^n \mid \forall i, q_i(a) = 0\}$ er

Thm [LPTWY'17] DkSp can be solved in $p^{n-n/O(k)}$ time (for $p \leq 2^{O(k)}$)

General Idea: Approach the problem in a "circuit complexity way"

Given: Set $S = \{q_i(\vec{y}, \vec{x})\}$ with $\delta n y$ -vars and $n - \delta n x$ -vars ($\delta \in (0, 1)$) Define an $(n - \delta n)$ -input circuit:

Obs:
$$(\exists b \in F_p^{n-\delta n})[C_S(b) = 1]$$

 $\Leftrightarrow (\exists (a, b))[(a, b) \in Z(S)]$

$$C_S(\vec{x}) \coloneqq \bigvee_{a \in F_p^{\delta n}} \left(\bigwedge_{i=1}^m [q_i(a, \vec{x}) = \mathbf{0}] \right)$$

Lemma [Adapting Razborov-Smolensky 87/88]: Can *randomly* reduce C_S to an F_p -poly Q_S of degree $\approx p\delta nk$ such that for all $b \in F_p^{n-\delta n}$,

$$C_{S}(b) = 1 \Rightarrow Pr[Q_{S}(b) \neq 0] > \frac{2}{3}$$
$$C_{S}(b) = 0 \Rightarrow Pr[Q_{S}(b) = 0] < \frac{1}{3}$$

(1) doesn't take too long for "small" p(Q has degree $\approx pn/100$) (2) can be done in $\approx p^{n-\delta n}$ time by a divide-and-conquer approach Algorithm. Set $\delta = 1/(100k)$. Given *S*, try for 10 $n \log(p)$ times: (1) Construct random Q_S . (2) Eval $Q_S(b)$ on all $b \in F_p^{n-\delta n}$ Return "solution" $\Leftrightarrow \exists b \ Q_S(b) \neq 0$ for > ½ trials

Counting Solutions to Poly Systems

Let $k \in \mathbb{Z}^+$ and p be prime.

#DkSp (Counting Solutions to Degree-*k* Systems over F_p) Given: Set *S* of polys $q_1, ..., q_m \in F_p[x_1, ..., x_n], deg(q_i) \le k$ Output: cardinality of $Z(S) = \{a \in F_p^n \mid \forall i, q_i(a) = 0\}$

 $\#D1Sp \in P$ (Gaussian elimination) $\#D2Sp \in P$ for m = 1 [Carlitz69, Woods98,...] [LPTWY'17] $p^{n-n/O_p(k)}$ -time det. algorithm for #DkSp **#D2S2** is **#P-hard** (reduction from NAE-3-SAT) **#D3S2** remains **#P-hard even for** m = 1 ([EK'90]) ... but the reduction (from 3SAT) blows up # of variables How hard is it to count zeroes of an O(1)-degree F_2 -polynomial? Might we expect a 1.99^n time algorithm? Recall: *finding* a zero of one polynomial is relatively easy!

Strong Hardness of Counting

Thm [with Brynmor Chapman]

For all $\epsilon > 0$, c > 1, there's a deterministic $p^{\epsilon n}$ -time reduction from #DkSp with n vars and cn polynomials

to counting zeroes of ONE degree- $O(ck/\epsilon)$ poly with n vars

Corollary Counting solutions to a system of degree-k polynomials *is fine-grained equivalent to* counting solutions to *one* degree-O(k) polynomiall

counting solutions to **one** degree-O(k) polynomial!

YAARS (Yet Another Approach to Refuting SETH?) To solve k-SAT in 1.999ⁿ time, it suffices to count the zeroes of a given $O_k(1)$ -degree polynomial in n variables over F_2 , in $O(1.99^n)$ time.

to counting zeroes of **ONE** degree- $O(ck/\epsilon)$ poly with *n* vars

First, assume the number of polynomials in our system is $m{m}=\epsilonm{n}$

Reduction:	Input $q_1, \ldots, q_{\epsilon n}$			
	Let $\{v_1, \dots, v_{p^{\epsilon n}}\} = F_p^{\epsilon n}$			
	Z := 0, N := 0			
	For all $i = 1,, p^{\epsilon n}$,			
	set $P_i(x) := \sum_j v_i[j] \cdot q_j(x)$	← d	egree k	
	$Z = Z + ($ #zeroes of $P_i(x)$)	•	- oracle	call
	$N = N + (\text{#zeroes of } 1 - P_i(x))$	÷	- oracle	call
	Output $(Z - N)/p^{\epsilon n}$			

<u>Analysis:</u> Let $A = \{a \mid \forall i, q_i(a) = 0\}$ be the set of solutions to the system **Every** $a \in A$ is a zero of P_i , and **not** of $1 - P_i$, for all i **Every** $a \in A$ contributes 1

Every $a \notin A$ is a zero of P_i for exactly 1/p of the i,Everyand is a zero of $1 - P_i$ for exactly 1/p of the i

Every $a \notin A$ contributes 0

So under our assumption, the output is the correct count!

to counting zeroes of **ONE** degree- $O(ck/\epsilon)$ poly with *n* vars

Now we reduce to the case where the number of polys = ϵn ...

to counting zeroes of **ONE** degree- $O(ck/\epsilon)$ poly with *n* vars

Now we reduce to the case where the number of polys = ϵn ...

Reduction:

First try:

Input $q_1, ..., q_{cn}$, each of deg. k Partition the set of polys into groups $G_1, ..., G_{\epsilon n}$, where each G_i has $O(c/\epsilon)$ polys. For all $i = 1, ..., \epsilon n$ $P_i(x) \coloneqq 1 - \prod_{q_j \in G_i} (1 - q_j(x)^{p-1})$ \leftarrow Simple version with degree $O(ckp/\epsilon)$ Output $P_1, ..., P_{\epsilon n}$, each of deg. $O(ckp/\epsilon)$ Goal: Number of sols to $q_1 = 0, ..., q_{cn} = 0$ = Number of sols to $P_1 = 0, ..., P_{\epsilon n} = 0$

<u>Analysis</u>: For all $a \in F_p^n$, and all i, $P_i(a) = 0 \Leftrightarrow$ for all $q_j \in G_i$, $q_j(a) = 0$

So *a* is a solution to the original system $\Leftrightarrow a$ is a solution to the new system!

Final Reduction: Run the above reduction to get ϵn polys, then run the reduction from the previous slide

to counting zeroes of **ONE** degree- $O(ck/\epsilon)$ poly with *n* vars

Now we reduce to the case where the number of polys = ϵn ...

Reduction:

Input $q_1, ..., q_{cn}$, each of deg. kPartition the set of polys into groups $G_1, ..., G_{\epsilon n}$, where each G_i has $O(c/\epsilon)$ polys. For all $i = 1, ..., \epsilon n$ $P_i(x) \coloneqq 1 - \prod_{p_j \in G_i} (1 - q_j(x)^{p-1})$ Output $P_1, ..., P_{\epsilon n}$, each of deg. $O(ckp/\epsilon)$ Goal: Number of sols to $q_1 = 0, ..., q_{cn} = 0$ = Number of sols to $P_1 = 0, ..., P_{\epsilon n} = 0$

To improve the degree of the reduction to $O(ck/\epsilon)$:

Brynmor's Lemma: Given 2^t polynomials $\{q_i\}$ of degree d over any prime field F_p , we can construct a polynomial P of degree $2^t d$ so that for all $a \in F_p^n$,

 $P(a) = 0 \Leftrightarrow \text{ for all } j, q_j(a) = 0$

No dependence on *p*. Degree upper bound is tight!

Brynmor's Lemma: Given 2^t polynomials $\{q_i\}$ of degree d over any prime field F_p , we can construct a polynomial P of degree $2^t d$ so that for all $a \in F_p^n$,

 $P(a) = 0 \Leftrightarrow \text{ for all } j, q_j(a) = 0$

No dependence on p. Degree upper bound is tight!

Proof: WLOG p > 2. Induction on t. Base case (t = 0) is trivial. By induction, there are polynomials f and g of degree $2^{t-1}d$ such that $f(a) = g(a) = 0 \Leftrightarrow$ for all j, $q_j(a) = 0$ (apply f to half of the system, and g to the other half).

Let $\beta \in F_p - \{0\}$ so that β is not a perfect square (not a QR mod p). Take $P(x) = f^2(x) - \beta g^2(x)$. Note P has degree $2^t d$. Let $a \in F_p^n$. Since β is a not a QR mod p, either $\beta g^2(a) = 0$, or $\beta g^2(a)$ is a (nonzero) non-QR mod p. On the other hand, either $f^2(a)$ is 0 or it is a (nonzero) QR mod p. It follows that P(a) = 0 iff $f^2(a) = \beta g^2(a) = 0$ iff f(a) = g(a) = 0.

(Unconditional) Lower Bounds from Fine-Grained Counting

 $\sum \circ POLYd[p]$:

Real-valued linear combinations of functions $f: \{0,1\}^n \rightarrow \{0,1, ..., p-1\}$ where for every f there is a degree-d polynomial q(x) such that $\forall x \in \{0,1\}^n$, $f(x) = q(x) \mod p$

Case of d = 2, p = 2 is already very interesting!

Compelling Conjecture ["Degree-Two Uncertainty Principle"]: AND (on n inputs) requires $n^{\omega(1)}$ -size $\sum \circ POLY2[2]$

> **Known:** AND requires $\Omega(2^n)$ -size $\sum \circ POLY1[2]$ AND has $\Omega(2^{n/2})$ -size $\sum \circ POLY2[2]$

No non-trivial lower bounds were known for $\sum \circ POLY2[p]$

Using algorithm for #D*d*S*p*: <u>Thm</u> [W'18] $\forall d, k, \forall p$ prime, $\exists f_k \in NP$ without n^k -size $\sum \circ POLYd[p]$

Recall: It is a *major* open problem to prove $\exists f \in NP$ without n^k -size (unrestricted) circuits

Two Open Questions

1. Improve the $p^{n-\frac{n}{O(k)}}$ running time for DkSp?

Some heuristic reasons to believe that $p^{n-\frac{n\log(k)}{O(k)}}$ time is possible... If that is true, then the "Super Strong ETH" is false!

2. Is #DkSp with *one* polynomial $\equiv \#DkSp$ in general?

Our $2^{\epsilon n}$ -time reduction from #DkSp to one polynomial blows up the degree by an $O\left(\frac{1}{\epsilon}\right)$ factor...

Note: If the answer is "yes" for k = 2with a sub-exptime reduction, then ETH is false

Thank you!