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The basic set up

I K : An algebraically closed field of characteristic zero.
I VP: The class of families of polynomials that can be

computed by algebraic circuits over K of polynomial degree
and size.

I VPws : The class of families of polynomials that can be
computed by symbolic determinants over K of polynomial
size.

I VNP: The class of families of p-definable polynomials (e.g.
the permanent).

I VP: The class of families of polynomials that can be
approximated infinitesimally closely by algebraic circuits over
K of polynomial degree and size.

I VPws: The class of families of polynomials that can be
approximated infinitesimally closely by symbolic determinants
over K of polynomial size.
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The battleground of GCT: The VP vs. VP problem

Conjecture (Valiant: 1979): VP 6= VNP.

The hardness hypothesis of GCT (GCT1:MS2001): VNP 6⊆ VP.
Any realistic approach to the VP vs. VNP problem can be
expected to prove this stronger form of Valiant’s conjecture.
Question [GCT1,B,BLMW]: Is VP = VP?

I Related to foundational issues in algebraic geometry and
representation theory [GCT6]. [Not covered in this lecture].

I The cause of a deep difficulty at the interface of algebraic
geometry, representation theory and complexity theory, called
the GCT chasm, which arises in the context of the VP vs.
VNP problem, regardless of whether the answer to this
question is affirmative or negative [GCT5] [This lecture].

I This difficulty has to be overcome by any approach to the VP
vs. VNP problem that seeks to separate VNP from VP. We
call any such approach a GCT approach in a broad sense.
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Reformulation of the VPws vs. VNP problem

I Let Y be an m ×m variable matrix, X an n × n submatrix of
Y , n < m, and z any entry of Y outside X .

I V = K [Y ]m: The space of homogeneous forms of degree m in
the entries of Y .

I P(V ): The projective space associated with V .
I Σ[det,m] ⊆ P(V ): The set of all points in P(V )

corresponding to non-zero homogeneous polynomials in the
entries of Y , which can be expressed as determinants of
symbolic m ×m matrices, whose entries are homogeneous
linear functions of the entries of Y (a constructible set).

I ∆[det,m] = Σ[det,m] ⊆ P(V ): The Zariski closure of
Σ[det,m] in P(V ) (a variety).

I ∆[det,m] also equals the GLm2(K )-orbit-closure of
det(Y ) ∈ P(V ) under the natural action of GLm2(K ) on P(V ).
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Reformulation of the VPws vs. VNP problem (continued)

I The VNP 6⊆ VPws conjecture [Valiant] is equivalent to saying
that zm−nperm(X ) 6∈ Σ[det,m].

I The VNP 6⊆ VPws conjecture [GCT1] is equivalent to saying
that zm−nperm(X ) 6∈ ∆[det,m].

(A variety)

Σ[det, m]

∆[det, m]

(A constructible set)

I The geometry of Σ[det,m] is controlled by the singularities of
∆[det,m]. Hence their structure is important in the context
of the VPws vs. VPws and VPws vs. VNP problems.

I Unfortunately, the singularities of ∆[det,m] are not even
normal [Kumar]. This is the beginning of difficulties [Next].
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Noether’s Normalization Lemma (NNL)

Hilbert: There exists a homogeneous linear map ψ : V → K k , for
any k > dim(∆[det,m]), such that ψ does not vanish on any
non-zero point in the affine cone ∆̂[det,m] ⊆ V of
∆[det,m] ⊆ P(V ).

This means the rational map ψ̂ : P(V ) 99K P(K k) is regular
(well-defined) on ∆[det,m] ⊆ P(V ).

We call such a homogeneous, linear map ψ : V → K k a
normalizing map for ∆[det,m].

The Problem NNL:
Given ∆[det,m], with a succinct specification, construct a
normalizing map ψ : V → K k , with k = poly(m), with a succinct
specification.

Succinct means of poly(m) size. The usual specifications of
∆[det,m] ⊆ P(V ) by its equations or of ψ by its matrix are not
succinct, since dim(V ) = 2poly(m).
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The current complexity status of the problem NNL

I The problem NNL for ∆[det,m] is equivalent to the problem
of constructing a hitting set for VPws.

I This, in conjunction with Gröbner basis theory, implies that
NNL is in EXPSPACE [GCT5].

I Recent development [Forbes and Shpilka; Guo, Saxena,
Sinhababu]: NNL is in PSPACE.

I This is how far we can go without knowing the relationship
between VPws and VPws.

I If VPws = VPws, then NNL is in PH, assuming generalized
Riemann hypothesis.

I Where is NNL?
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NNL vs. the Hardness Hypothesis of GCT

Theorem (GCT5)
NNL is P (ignoring a quasi prefix) iff a variant of the hardness
hypothesis of GCT holds.

I The variant: Some exponential-time computable multilinear
polynomial cannot be approximated infinitesimally closely by
sub-exponential-size algebraic circuits.

I The proof: Classical algebraic geometry [Hilbert, ...] +
algebraic complexity theory [Kaltofen and Trager (the crux of
the proof), Heintz and Schnorr, Kabanets and Impagliazzo,
Nisan and Wigderson].

I Analogous result holds, in general, for any explicit variety in
place of ∆[det,m].

I By an explicit variety, we mean any variety whose coordinate
ring has a set of generators that can be encoded succinctly
and uniformly by algebraic circuits of size polynomial in the
dimension of the variety.
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Nisan and Wigderson].

I Analogous result holds, in general, for any explicit variety in
place of ∆[det,m].

I By an explicit variety,

we mean any variety whose coordinate
ring has a set of generators that can be encoded succinctly
and uniformly by algebraic circuits of size polynomial in the
dimension of the variety.
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An Algorithmic Challenge

An Intermediate Problem:
Show that NNL is in PH (assuming only GRH).

I This is a challenge regardless of whether VPws = VPws or not.
I If VPws = VP, the challenge is to show this equality.
I If not, the task gets even harder.
I Hence bringing down NNL from PSPACE to PH would need

overcoming the VP vs. VP problem [the battleground of
GCT], one way or the other.

I [GCT6]: The VPws vs. VPws problem is related to
foundational issues in algebraic geometry and representation
theory.

I Hence bringing NNL to PH may need a deep synthesis and
extension of the existing techniques of algebraic geometry,
representation theory, and complexity theory.
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The GCT chasm

We call the existing PSPACE vs. P gap in the complexity of NNL
the GCT chasm (revising the earlier definition in GCT5, thanks to
[FS,GSS]).

battleground of GCT

PSPACE

NNL 

P

PH

NP

The entry to the 

The GCT Chasm (the VP vs. VP problem)

I This GCT chasm will have to be crossed by any approach to
the VP vs. VNP which also separates VNP from VP in the
process. Recall: By definition, any such approach is a GCT
approach in a broad sense.

I GCT5,GCT6, and GCT7 provide a concrete GCT program to
cross the GCT chasm.
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The first step of the GCT program to cross the GCT
chasm (The Orbit Closure Intersection Problem)

Let V be a finite-dimensional representation of a reductive group
G (such as SLm(K )).

Problem (The orbit closure intersection problem)
Given (V ,G), and rational points v ,w ∈ V , decide if the
G-orbit-closures of v and w intersect.

This the first step of the GCT program [GCT5,GCT6,GCT7] to
cross the GCT chasm.
A null-cone membership problem for V is a special case of this
problem, which results when w is the origin.

Theorem (GCT5)
The orbit-closure intersection problem is in P, for any
finite-dimensional representation V of a reductive group G, if (1)
the categorical quotient V //G = spec(K [V ]G) is explicit, and (2)
the white-box PIT is in P.



The first step of the GCT program to cross the GCT
chasm (The Orbit Closure Intersection Problem)

Let V be a finite-dimensional representation of a reductive group
G (such as SLm(K )).

Problem (The orbit closure intersection problem)
Given (V ,G), and rational points v ,w ∈ V , decide if the
G-orbit-closures of v and w intersect.

This the first step of the GCT program [GCT5,GCT6,GCT7] to
cross the GCT chasm.
A null-cone membership problem for V is a special case of this
problem, which results when w is the origin.

Theorem (GCT5)
The orbit-closure intersection problem is in P, for any
finite-dimensional representation V of a reductive group G, if (1)
the categorical quotient V //G = spec(K [V ]G) is explicit, and (2)
the white-box PIT is in P.



The first step of the GCT program to cross the GCT
chasm (The Orbit Closure Intersection Problem)

Let V be a finite-dimensional representation of a reductive group
G (such as SLm(K )).

Problem (The orbit closure intersection problem)
Given (V ,G), and rational points v ,w ∈ V , decide if the
G-orbit-closures of v and w intersect.

This the first step of the GCT program [GCT5,GCT6,GCT7] to
cross the GCT chasm.
A null-cone membership problem for V is a special case of this
problem, which results when w is the origin.

Theorem (GCT5)
The orbit-closure intersection problem is in P, for any
finite-dimensional representation V of a reductive group G, if (1)
the categorical quotient V //G = spec(K [V ]G) is explicit, and (2)
the white-box PIT is in P.



The first step of the GCT program to cross the GCT
chasm (The Orbit Closure Intersection Problem)

Let V be a finite-dimensional representation of a reductive group
G (such as SLm(K )).

Problem (The orbit closure intersection problem)
Given (V ,G), and rational points v ,w ∈ V , decide if the
G-orbit-closures of v and w intersect.

This the first step of the GCT program [GCT5,GCT6,GCT7] to
cross the GCT chasm.

A null-cone membership problem for V is a special case of this
problem, which results when w is the origin.

Theorem (GCT5)
The orbit-closure intersection problem is in P, for any
finite-dimensional representation V of a reductive group G, if (1)
the categorical quotient V //G = spec(K [V ]G) is explicit, and (2)
the white-box PIT is in P.



The first step of the GCT program to cross the GCT
chasm (The Orbit Closure Intersection Problem)

Let V be a finite-dimensional representation of a reductive group
G (such as SLm(K )).

Problem (The orbit closure intersection problem)
Given (V ,G), and rational points v ,w ∈ V , decide if the
G-orbit-closures of v and w intersect.

This the first step of the GCT program [GCT5,GCT6,GCT7] to
cross the GCT chasm.
A null-cone membership problem for V is a special case of this
problem, which results when w is the origin.

Theorem (GCT5)
The orbit-closure intersection problem is in P, for any
finite-dimensional representation V of a reductive group G, if (1)
the categorical quotient V //G = spec(K [V ]G) is explicit, and (2)
the white-box PIT is in P.



The first step of the GCT program to cross the GCT
chasm (The Orbit Closure Intersection Problem)

Let V be a finite-dimensional representation of a reductive group
G (such as SLm(K )).

Problem (The orbit closure intersection problem)
Given (V ,G), and rational points v ,w ∈ V , decide if the
G-orbit-closures of v and w intersect.

This the first step of the GCT program [GCT5,GCT6,GCT7] to
cross the GCT chasm.
A null-cone membership problem for V is a special case of this
problem, which results when w is the origin.

Theorem (GCT5)
The orbit-closure intersection problem is in P, for any
finite-dimensional representation V of a reductive group G, if

(1)
the categorical quotient V //G = spec(K [V ]G) is explicit, and (2)
the white-box PIT is in P.



The first step of the GCT program to cross the GCT
chasm (The Orbit Closure Intersection Problem)

Let V be a finite-dimensional representation of a reductive group
G (such as SLm(K )).

Problem (The orbit closure intersection problem)
Given (V ,G), and rational points v ,w ∈ V , decide if the
G-orbit-closures of v and w intersect.

This the first step of the GCT program [GCT5,GCT6,GCT7] to
cross the GCT chasm.
A null-cone membership problem for V is a special case of this
problem, which results when w is the origin.

Theorem (GCT5)
The orbit-closure intersection problem is in P, for any
finite-dimensional representation V of a reductive group G, if (1)
the categorical quotient V //G = spec(K [V ]G) is explicit,

and (2)
the white-box PIT is in P.



The first step of the GCT program to cross the GCT
chasm (The Orbit Closure Intersection Problem)

Let V be a finite-dimensional representation of a reductive group
G (such as SLm(K )).

Problem (The orbit closure intersection problem)
Given (V ,G), and rational points v ,w ∈ V , decide if the
G-orbit-closures of v and w intersect.

This the first step of the GCT program [GCT5,GCT6,GCT7] to
cross the GCT chasm.
A null-cone membership problem for V is a special case of this
problem, which results when w is the origin.

Theorem (GCT5)
The orbit-closure intersection problem is in P, for any
finite-dimensional representation V of a reductive group G, if (1)
the categorical quotient V //G = spec(K [V ]G) is explicit, and (2)
the white-box PIT is in P.



The Orbit-Closure-Intersection Hypothesis

Hypothesis (GCT5: M2012; M2017)
The orbit-closure intersection problem is in P, for any finite
dimensional representation V of a reductive group G (possibly
disconnected).
Expected to be an inherent difficulty underneath white-box PIT.
The status of the hypothesis:

I Holds if G is connected and dim(G) is constant [GCT5].
I Holds if V = Mm(K )n, with the adjoint action of

G = SLm(K ) [GCT5 + Forbes and Shpilka][2012].
I Holds if V = Mm(K )n, with the left-right action of

G = SLm(K )× SLm(K ) [GGOW; DM; IQS][2016].
A concrete application of GCT: This special case of the GCT
hypothesis above implies a polynomial time algorithm for
non-commutative rational identity testing.

I Holds if V = K (n
2) with the natural action of Sn (Weighted

Graph Isomorphism): [Babai][2017].
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A special case of the hypothesis for finite groups

The Orbit Equality Problem:
Show that the problem of deciding, given any representation V of
a finite group G and two rational points v ,w ∈ V , whether v and
w lie in the same G-orbit belongs to P.

I This is a special case of the orbit-closure-intersection problem
for finite groups.

I The main obstacles: (1) Classification of all finite groups
(not just finite simple groups) is not yet known. In fact, this
is the most outstanding open problem of finite group theory.
(2) the complexity of constructing irreducible representations
of finite simple groups of Lie type (using the l-adic
cohomology as per Grothendick) is very high.

I This is why the techniques such as operator scaling and
optimization are unlikely to work for white-box PIT.
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An overview of the GCT program

I Hardest: Prove that VNP 6⊆ VP (the hardness hypothesis of
GCT), using obstructions [GCT2:MS2008]. (Occurence
obstructions do not exist [Bürgisser, Ikenmeyer, Panova]).
GCT7: a systematic program to prove existence of multiplicity
obstructions.

I Easier: Show that the problem NNL for general explicit
varieties is in P. GCT5,6,7: a systematic program for this.

I Much easier [GCT5] [Not covered in this talk] [An inherent
difficulty underneath black-box PIT]: Show that the problem
NNL for the categorical quotient V //G is in P, for any finite
dimensional representation V of any reductive group G .

I Easiest [GCT5] [Covered in this talk] [An inherent difficulty
underneath white-box PIT]: Show that the orbit-closure
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I Much easier [GCT5] [Not covered in this talk] [An inherent
difficulty underneath black-box PIT]: Show that the problem
NNL for the categorical quotient V //G is in P, for any finite
dimensional representation V of any reductive group G .

I Easiest [GCT5] [Covered in this talk] [An inherent difficulty
underneath white-box PIT]: Show that the orbit-closure
intersection problem is in P, for any finite dimensional
representation V of any reductive group G (possibly
disconnected).



Thank you.


