Better models in optimization

John Duchi (based on joint work with Feng Ruan and Hilal Asi) Stanford University

August 2018

Outline

[Motivating experiments](#page-2-0)

[Models in optimization](#page-10-0)

[Stochastic optimization](#page-25-0)

[Stability is better](#page-27-0) [Nothing gets worse](#page-37-0) [Adaptivity in easy problems](#page-40-0)

[Revisiting experimental results](#page-51-0)

[Phase retrieval and composite optimization \(if time\)](#page-68-0)

Outline

[Motivating experiments](#page-2-0)

[Models in optimization](#page-10-0)

[Stochastic optimization](#page-25-0)

[Stability is better](#page-27-0) [Nothing gets worse](#page-37-0) [Adaptivity in easy problems](#page-40-0)

[Revisiting experimental results](#page-51-0)

[Phase retrieval and composite optimization \(if time\)](#page-68-0)

Stochastic gradient methods

The problem in this talk:

$$
\underset{x}{\text{minimize}} \ F(x) := \mathbb{E}[f(x;S)] = \int f(x;s)dP(s)
$$

subject to $x \in X$

 \sim

Stochastic gradient methods

The problem in this talk:

$$
\underset{x}{\text{minimize}} \ F(x) := \mathbb{E}[f(x;S)] = \int f(x; s) dP(s)
$$

subject to $x \in X$

Stochastic gradient method:

$$
x_{k+1} = x_k - \alpha_k g_k, \quad g_k \in \partial f(x_k; S_k)
$$

Stochastic gradient methods

The problem in this talk:

$$
\underset{x}{\text{minimize}} \ F(x) := \mathbb{E}[f(x;S)] = \int f(x; s) dP(s)
$$

subject to $x \in X$

Stochastic gradient method:

$$
x_{k+1} = x_k - \alpha_k g_k, \quad g_k \in \partial f(x_k; S_k)
$$

Why we use this?

- \blacktriangleright Easy to analyze?
- \triangleright Default in software packages and simple to implement?
- \blacktriangleright It works?

Linear regression

$$
F(x) = \frac{1}{2m} \sum_{i=1}^{m} (a_i^T x - b_i)^2
$$

Linear regression

$$
F(x) = \frac{1}{2m} \sum_{i=1}^{m} (a_i^T x - b_i)^2
$$

Linear regression

$$
F(x) = \frac{1}{2m} \sum_{i=1}^{m} (a_i^T x - b_i)^2
$$

Absolute loss regression

$$
F(x) = \frac{1}{m} \sum_{i=1}^{m} |a_i^T x - b_i|
$$

Outline

[Motivating experiments](#page-2-0)

[Models in optimization](#page-10-0)

[Stochastic optimization](#page-25-0)

[Stability is better](#page-27-0) [Nothing gets worse](#page-37-0) [Adaptivity in easy problems](#page-40-0)

[Revisiting experimental results](#page-51-0)

[Phase retrieval and composite optimization \(if time\)](#page-68-0)

Optimization methods

How do we solve optimization problems?

- 1. Build a "good" but simple local model of f
- 2. Minimize the model (perhaps regularizing)

Optimization methods

How do we solve optimization problems?

- 1. Build a "good" but simple local model of f
- 2. Minimize the model (perhaps regularizing) Gradient descent: Taylor (first-order) model

$$
f(y) \approx f_x(y) := f(x) + \nabla f(x)^T (y - x)
$$

Optimization methods

How do we solve optimization problems?

- 1. Build a "good" but simple local model of f
- 2. Minimize the model (perhaps regularizing) Newton's method: Taylor (second-order) model

$$
f(y) \approx f_x(y) := f(x) + \nabla f(x)^T (y - x) + (1/2)(y - x)^T \nabla^2 f(x) (y - x)
$$

Generic(ish) optimization methods

Iterate

$$
x_{k+1} = \underset{x \in X}{\text{argmin}} \left\{ f_{x_k}(x) + \frac{1}{2\alpha_k} ||x - x_k||^2 \right\}
$$

Generic(ish) optimization methods

Iterate

$$
x_{k+1} = \underset{x \in X}{\text{argmin}} \left\{ f_{x_k}(x) + \frac{1}{2\alpha_k} ||x - x_k||^2 \right\}
$$

- **Proximal point method** $(f_x = f)$ **[Rockafellar 76]**
- \triangleright Gradient descent $(f_x(y) = f(x) + \langle \nabla f(x), y x \rangle)$
- ► Newton $(f_x(y) = f(x) + \langle \nabla f(x), y x \rangle + \frac{1}{2}$ $\frac{1}{2}(x-y)^T \nabla^2 f(x)(x-y)$
- Prox-linear $(f_x(y) = h(c(x) + \nabla c(x)^T(y x)))$

The aProx family for stochastic optimization

Iterate:

- ► Sample $S_k \stackrel{\text{iid}}{\sim} P$
- \blacktriangleright Update by minimizing model

$$
x_{k+1} = \underset{x \in X}{\text{argmin}} \left\{ f_{x_k}(x; S_k) + \frac{1}{2\alpha_k} ||x - x_k||^2 \right\}
$$

The aProx family for stochastic optimization

Iterate:

- ► Sample $S_k \stackrel{\text{iid}}{\sim} P$
- \blacktriangleright Update by minimizing model

$$
x_{k+1} = \underset{x \in X}{\text{argmin}} \left\{ f_{x_k}(x; S_k) + \frac{1}{2\alpha_k} ||x - x_k||^2 \right\}
$$

Examples:

- \triangleright Stochastic gradient method
- \blacktriangleright Stochastic proximal-point (implicit gradient) method, $f_{x_k}(x) = f(x)$ [Rockafellar 76; Kulis & Bartlett 10; Karampatziakis & Langford 11; Bertsekas 11; Toulis & Airoldi 17; Ryu & Boyd 16]
- ▶ Stochastic prox-linear methods [D. & Ruan 18; Asi & D. 18]

Models in stochastic optimization

Stochastic gradient method

$$
f_x(y; s) = f(x; s) + \langle f'(x; s), y - x \rangle \text{ for some } f'(x; s) \in \partial f(x; s)
$$

Models in stochastic optimization

Stochastic gradient method

$$
f_x(y; s) = f(x; s) + \langle f'(x; s), y - x \rangle \text{ for some } f'(x; s) \in \partial f(x; s)
$$

Conditions on our models (convex case)

i. Convex model:

$$
y\mapsto f_x(y;s)\quad\text{is convex}
$$

ii. Lower bound:

$$
f_x(y;s) \le f(y;s)
$$

iii. Local correctness:

$$
f_x(x; s) = f(x; s)
$$
 and $\partial f_x(x; s) \subset \partial f(x; s)$

[D. & Ruan 17; Davis & Drusvyatskiy 18]

Modeling conditions

Modeling conditions

Model $f_x(y)$ of f near x

Modeling conditions

Model $f_x(y)$ of f near x

Models in stochastic optimization

- i. (Sub)gradient: $f_x(y) = f(x) + \langle f'(x), y x \rangle$
- ii. Truncated: $f_x(y) = (f(x) + \langle f'(x), y x \rangle) \vee \inf_x f(x)$

iii. Bundle/multi-line: $f_x(y) = \max\{f(x_i) + \langle f'(x_i), x - x_i \rangle\}$

The aProx family

Iterate:

- ► Sample $S_k \stackrel{\text{iid}}{\sim} P$
- \blacktriangleright Update by minimizing model

$$
x_{k+1} = \underset{x \in X}{\text{argmin}} \left\{ f_{x_k}(x; S_k) + \frac{1}{2\alpha_k} ||x - x_k||^2 \right\}
$$

Outline

[Motivating experiments](#page-2-0)

[Models in optimization](#page-10-0)

[Stochastic optimization](#page-25-0)

[Stability is better](#page-27-0) [Nothing gets worse](#page-37-0) [Adaptivity in easy problems](#page-40-0)

[Revisiting experimental results](#page-51-0)

[Phase retrieval and composite optimization \(if time\)](#page-68-0)

The aProx family

Iterate:

- ► Sample $S_k \stackrel{\text{iid}}{\sim} P$
- \blacktriangleright Update by minimizing model

$$
x_{k+1} = \underset{x \in X}{\text{argmin}} \left\{ f_{x_k}(x; S_k) + \frac{1}{2\alpha_k} ||x - x_k||^2 \right\}
$$

Example

Let

$$
b_i = a_i^T x^\star
$$

for $i = 1, 2, ..., m$.

► Iterate stochastic gradient method on $\frac{1}{2m}\sum_{i=1}^{m}(a_i^Tx-b_i)^2$

Example

Let

$$
b_i = a_i^T x^\star
$$

for $i = 1, 2, ..., m$.

- ► Iterate stochastic gradient method on $\frac{1}{2m}\sum_{i=1}^{m}(a_i^Tx-b_i)^2$
- \blacktriangleright for all iterations

$$
(x_{k+1} - x^*) = (I - \alpha_k a_i a_i^T)(x_k - x^*)
$$

Example

Let

$$
b_i = a_i^T x^\star
$$

for $i = 1, 2, ..., m$.

- ► Iterate stochastic gradient method on $\frac{1}{2m}\sum_{i=1}^{m}(a_i^Tx-b_i)^2$
- \blacktriangleright for all iterations

$$
(x_{k+1} - x^*) = (I - \alpha_k a_i a_i^T)(x_k - x^*)
$$

If $\alpha_1, \alpha_2, \ldots$ too large, may diverge exponentially at first: if $\Sigma = m^{-1} \sum_{i=1}^{m} a_i a_i^T$,

$$
\mathbb{E}[x_{k+1} - x^{\star}] = \prod_{i=1}^{k} (\alpha_i \Sigma - I) x^{\star}
$$

Example

Let

$$
b_i = a_i^T x^\star
$$

for $i = 1, 2, ..., m$.

- ► Iterate stochastic gradient method on $\frac{1}{2m}\sum_{i=1}^{m}(a_i^Tx-b_i)^2$
- \blacktriangleright for all iterations

$$
(x_{k+1} - x^*) = (I - \alpha_k a_i a_i^T)(x_k - x^*)
$$

If $\alpha_1, \alpha_2, \ldots$ too large, may diverge exponentially at first: if $\Sigma = m^{-1} \sum_{i=1}^{m} a_i a_i^T$,

$$
\mathbb{E}[x_{k+1} - x^{\star}] = \underbrace{\prod_{i=1}^{k} (\alpha_i \Sigma - I) x^{\star}}_{\text{exponential?}}
$$

Stability guarantees

Use full stochastic-proximal method,

$$
x_{k+1} = \underset{x \in X}{\text{argmin}} \left\{ f(x; S_k) + \frac{1}{2\alpha_k} ||x - x_k||^2 \right\}.
$$

Theorem (Asi & D. 18) Assume $\mathcal{X}^{\star} = \operatorname{argmin}_{x \in \mathcal{X}} F(x)$ is non-empty and $\mathbb{E}[\|f'(x^{\star};S)\|^2] \leq \sigma^2$. Then \mathbf{L}

$$
\mathbb{E}[\text{dist}(x_k, \mathcal{X}^{\star})^2] \leq \text{dist}(x_0, \mathcal{X}^{\star})^2 + \sigma^2 \sum_{i=1}^{n} \alpha_i^2
$$

Stability guarantees

Use full stochastic-proximal method,

$$
x_{k+1} = \underset{x \in X}{\text{argmin}} \left\{ f(x; S_k) + \frac{1}{2\alpha_k} ||x - x_k||^2 \right\}.
$$

Theorem (Asi & D. 18) Assume $\mathcal{X}^{\star} = \operatorname{argmin}_{x \in \mathcal{X}} F(x)$ is non-empty and $\mathbb{E}[\|f'(x^{\star};S)\|^2] \leq \sigma^2$. Then \mathbf{L}

$$
\mathbb{E}[\text{dist}(x_k, \mathcal{X}^{\star})^2] \le \text{dist}(x_0, \mathcal{X}^{\star})^2 + \sigma^2 \sum_{i=1}^n \alpha_i^2
$$

Theorem (Asi & D. 18)

Under the same assumptions,

$$
\sup_{k} \text{dist}(x_k, \mathcal{X}^{\star}) < \infty \quad \text{and} \quad \text{dist}(x_k, \mathcal{X}^{\star}) \stackrel{a.s.}{\to} 0.
$$

Stability guarantees under growth

Assume that local strong convexity

$$
f(y; s) \ge f(x; s) + \langle f'(x; s), y - x \rangle + \frac{1}{2}(x - y)^{T} \Sigma(s) (x - y)
$$

holds with $\mathbb{E}[\Sigma(S)] = \overline{\Sigma} \succ 0$

Theorem (Asi & D. 18)

The stochastic proximal-point method satisfies

$$
\mathbb{E}[\|x_{k+1} - x^{\star}\|_{2}^{2} \mid x_{k}] \le (1 - c\alpha_{k}) \|x_{k} - x^{\star}\|_{2}^{2} + \sigma^{2} \alpha_{k}^{2}.
$$

and

$$
\mathbb{E}[\|x_k - x^\star\|_2^2] \lesssim \sigma^2 k \alpha_k^2.
$$

Stability guarantees under growth

Assume that local strong convexity

$$
f(y; s) \ge f(x; s) + \langle f'(x; s), y - x \rangle + \frac{1}{2}(x - y)^{T} \Sigma(s) (x - y)
$$

holds with $\mathbb{E}[\Sigma(S)] = \overline{\Sigma} \succ 0$

Theorem (Asi & D. 18)

The stochastic proximal-point method satisfies

$$
\mathbb{E}[\|x_{k+1} - x^{\star}\|_2^2 \mid x_k] \le (1 - c\alpha_k) \|x_k - x^{\star}\|_2^2 + \sigma^2 \alpha_k^2.
$$

and

$$
\mathbb{E}[\|x_k - x^\star\|_2^2] \lesssim \sigma^2 k \alpha_k^2.
$$

(Always converging toward optimum)

Example behaviors

On least-squares objective $F(x) = \frac{1}{2m} \sum_{i=1}^{m} (a_i^T x - b_i)^2$

A few additional stability guarantees

- \triangleright Do not need full proximal method, just accurate enough approximations
- \triangleright Do not need convexity; some forms of weak convexity sufficient for stability

Classical asymptotic analysis

Theorem (Polyak & Juditsky 92)

Let F be convex and strongly convex in a neighborhood of x^* , and assume that $f(x; S)$ are globally smooth. For x_k generated by stochastic gradient method,

$$
\frac{1}{\sqrt{k}}\sum_{i=1}^k (x_i - x^*) \stackrel{d}{\leadsto} \mathsf{N}\left(0, \nabla^2 F(x^*)^{-1} \operatorname{Cov}(\nabla f(x^*; S)) \nabla^2 F(x^*)^{-1}\right).
$$

New asymptotic analysis

Theorem (Asi & D. 18)

Let F be convex and strongly convex in a neighborhood of x^* , and assume that $f(x;S)$ are smooth near x^\star . Then if x_k remain bounded and the models $f_{x_k}(\cdot;S_k)$ satisfy our conditions,

$$
\frac{1}{\sqrt{k}}\sum_{i=1}^k (x_i - x^\star) \stackrel{d}{\leadsto} \mathsf{N}\left(0, \nabla^2 F(x^\star)^{-1} \operatorname{Cov}(\nabla f(x^\star; S)) \nabla^2 F(x^\star)^{-1}\right).
$$

New asymptotic analysis

Theorem (Asi & D. 18)

Let F be convex and strongly convex in a neighborhood of x^* , and assume that $f(x;S)$ are smooth near x^\star . Then if x_k remain bounded and the models $f_{x_k}(\cdot;S_k)$ satisfy our conditions,

$$
\frac{1}{\sqrt{k}}\sum_{i=1}^k (x_i - x^{\star}) \stackrel{d}{\leadsto} \mathsf{N}\left(0, \nabla^2 F(x^{\star})^{-1} \operatorname{Cov}(\nabla f(x^{\star}; S)) \nabla^2 F(x^{\star})^{-1}\right).
$$

- \triangleright Optimal by local minimax theorem [Hájek 72; Le Cam 73; D. & Ruan 18]
- \triangleright Key insight: subgradients of $f_{x_k}(\cdot;S_k)$ close to $\nabla f(x_k;S_k)$

- Interpolation problems [Belkin, Hsu, Mitra 18; Ma, Bassily, Belkin 18]
- ▶ Overparameterized linear systems (Kaczmarz algorithms) [Strohmer & Vershynin 09; Needell, Srebro, Ward 14; Needell & Tropp 14]
- \triangleright Random projections for linear constraints [Leventhal & Lewis 10]

$$
\underset{x}{\text{minimize}} \ F(x) := \mathbb{E}[f(x;S)] = \int f(x;s)dP(s)
$$

$$
\underset{x}{\text{minimize}} \ F(x) := \mathbb{E}[f(x;S)] = \int f(x;s)dP(s)
$$

Definition: Problem is easy if there exists x^* such that $f(x^{\star};S)=\inf_x f(x;S)$ with probability 1. [Schmidt & Le Roux 13; Ma, Bassily, Belkin 18; Belkin, Rakhlin, Tsybakov 18]

$$
\underset{x}{\text{minimize}} \ F(x) := \mathbb{E}[f(x;S)] = \int f(x;s)dP(s)
$$

Definition: Problem is easy if there exists x^* such that $f(x^{\star};S)=\inf_x f(x;S)$ with probability 1. [Schmidt & Le Roux 13; Ma, Bassily, Belkin 18; Belkin, Rakhlin, Tsybakov 18]

One additional condition

iv. The models f_x satisfy

$$
f_x(y; s) \ge \inf_{x^* \in X} f(x^*; s)
$$

Easy strongly convex problems

Theorem (Asi & D. 18)

Let the function F satisfy the growth condition

$$
F(x) \ge F(x^*) + \frac{\lambda}{2} \operatorname{dist}(x, X^*)^2
$$

where $X^* = \operatorname{argmin}_x F(x)$, and be easy. Then

$$
\mathbb{E}[\text{dist}(x_k, X^{\star})^2] \leq \max \left\{ \exp \left(-c \sum_{i=1}^k \alpha_i \right), \exp(-ck) \right\} \text{dist}(x_1, X^{\star})^2.
$$

Easy strongly convex problems

Theorem (Asi & D. 18)

Let the function F satisfy the growth condition

$$
F(x) \ge F(x^*) + \frac{\lambda}{2} \operatorname{dist}(x, X^*)^2
$$

where $X^* = \operatorname{argmin}_x F(x)$, and be easy. Then

$$
\mathbb{E}[\text{dist}(x_k, X^{\star})^2] \leq \max \left\{ \exp \left(-c \sum_{i=1}^k \alpha_i \right), \exp(-ck) \right\} \text{dist}(x_1, X^{\star})^2.
$$

- \blacktriangleright Adaptive no matter the stepsizes
- ▶ Most other results (e.g. for SGM [Schmidt & Le Roux 13; Ma, Bassily, Belkin 18]) require careful stepsize choices

Definition: An objective F is sharp if

$$
F(x) \ge F(x^*) + \lambda \operatorname{dist}(x, X^*)
$$

for $X^* = \operatorname{argmin} F(x)$. [Ferris 88; Burke & Ferris 95]

 \blacktriangleright Piecewise linear objectives

► Hinge loss $F(x) = \frac{1}{m} \sum_{i=1}^{m} \left[1 - a_i^T x\right]_+$

Definition: An objective F is sharp if

$$
F(x) \ge F(x^*) + \lambda \operatorname{dist}(x, X^*)
$$

for $X^* = \operatorname{argmin} F(x)$. [Ferris 88; Burke & Ferris 95]

 \blacktriangleright Piecewise linear objectives

► Hinge loss $F(x) = \frac{1}{m} \sum_{i=1}^{m} \left[1 - a_i^T x\right]_+$

Definition: An objective F is sharp if

$$
F(x) \ge F(x^*) + \lambda \operatorname{dist}(x, X^*)
$$

for $X^* = \operatorname{argmin} F(x)$. [Ferris 88; Burke & Ferris 95]

 \blacktriangleright Piecewise linear objectives

► Hinge loss $F(x) = \frac{1}{m} \sum_{i=1}^{m} \left[1 - a_i^T x\right]_+$

Definition: An objective F is sharp if

$$
F(x) \ge F(x^*) + \lambda \operatorname{dist}(x, X^*)
$$

for $X^* = \operatorname{argmin} F(x)$. [Ferris 88; Burke & Ferris 95]

- \blacktriangleright Piecewise linear objectives
- ► Hinge loss $F(x) = \frac{1}{m} \sum_{i=1}^{m} \left[1 a_i^T x\right]_+$
- ► Projection onto intersections: $F(x) = \frac{1}{m} \sum_{i=1}^{m} \text{dist}(x, C_i)$

Definition: An objective F is sharp if

$$
F(x) \ge F(x^*) + \lambda \operatorname{dist}(x, X^*)
$$

for $X^* = \operatorname{argmin} F(x)$. [Ferris 88; Burke & Ferris 95]

- \blacktriangleright Piecewise linear objectives
- ► Hinge loss $F(x) = \frac{1}{m} \sum_{i=1}^{m} \left[1 a_i^T x\right]_+$
- ► Projection onto intersections: $F(x) = \frac{1}{m} \sum_{i=1}^{m} \text{dist}(x, C_i)$

Theorem (Asi & D. 18)

Let F have sharp growth and be easy. Then

$$
\mathbb{E}[\text{dist}(x_{k+1}, X^{\star})^2] \leq \max \left\{ \exp(-ck), \exp\left(-c \sum_{i=1}^k \alpha_i\right) \right\} \text{dist}(x_1, X^{\star})^2.
$$

Outline

[Motivating experiments](#page-2-0)

[Models in optimization](#page-10-0)

[Stochastic optimization](#page-25-0)

[Stability is better](#page-27-0) [Nothing gets worse](#page-37-0) [Adaptivity in easy problems](#page-40-0)

[Revisiting experimental results](#page-51-0)

[Phase retrieval and composite optimization \(if time\)](#page-68-0)

Methods

Iterate

$$
x_{k+1} = \underset{x}{\text{argmin}} \left\{ f_{x_k}(x; S_k) + \frac{1}{2\alpha_k} ||x - x_k||_2^2 \right\}
$$

Methods

Iterate

$$
x_{k+1} = \operatorname*{argmin}_{x} \left\{ f_{x_k}(x; S_k) + \frac{1}{2\alpha_k} ||x - x_k||_2^2 \right\}
$$

 \blacktriangleright Stochastic gradient

$$
f_{x_k}(x; S_k) = f(x_k; S_k) + \langle f'(x_k; S_k), x - x_k \rangle
$$

 \blacktriangleright Truncated gradient $(f \geq 0)$:

$$
f_{x_k}(x; S_k) = \big[f(x_k; S_k) + \langle f'(x_k; S_k), x - x_k \rangle \big]_+
$$

 \triangleright (Stochastic) proximal point

$$
f_{x_k}(x; S_k) = f(x; S_k)
$$

Linear regression with low noise

$$
F(x) = \frac{1}{2m} \sum_{i=1}^{m} (a_i^T x - b_i)^2
$$

Linear regression with no noise

$$
F(x) = \frac{1}{2m} \sum_{i=1}^{m} (a_i^T x - b_i)^2
$$

Linear regression with "poor" conditioning

Linear regression with "poor" conditioning

Poor conditioning? $\kappa(A) = 15$

Absolute loss regression with no noise

$$
F(x) = \frac{1}{m} \sum_{i=1}^{m} |a_i^T x - b_i|
$$

Absolute loss regression with noise

$$
F(x) = \frac{1}{m} \sum_{i=1}^{m} |a_i^T x - b_i|
$$

Multiclass hinge loss: no noise

$$
f(x; (a, l)) = \max_{i \neq l} [1 + \langle a, x_i - x_l \rangle]_+
$$

Multiclass hinge loss: small label flipping

$$
f(x; (a, l)) = \max_{i \neq l} [1 + \langle a, x_i - x_l \rangle]_+
$$

Multiclass hinge loss: substantial label flipping

$$
f(x; (a, l)) = \max_{i \neq l} [1 + \langle a, x_i - x_l \rangle]_+
$$

(Robust) Phase retrieval

[Candès, Li, Soltanolkotabi 15]

(Robust) Phase retrieval

[Candès, Li, Soltanolkotabi 15]

Observations (usually)

$$
b_i = \langle a_i, x^\star \rangle^2
$$

yield objective

$$
f(x) = \frac{1}{m} \sum_{i=1}^{m} |\langle a_i, x \rangle^2 - b_i|
$$

Phase retrieval without noise

$$
F(x) = \frac{1}{m} \sum_{i=1}^{m} | \langle a_i, x \rangle^2 - b_i |
$$

Matrix completion without noise

$$
F(x,y) = \sum_{i,j \in \Omega} |\langle x_i, y_j \rangle - M_{ij}|
$$

Obligatory CIFAR Experiment

Outline

[Motivating experiments](#page-2-0)

[Models in optimization](#page-10-0)

[Stochastic optimization](#page-25-0)

[Stability is better](#page-27-0) [Nothing gets worse](#page-37-0) [Adaptivity in easy problems](#page-40-0)

[Revisiting experimental results](#page-51-0)

[Phase retrieval and composite optimization \(if time\)](#page-68-0)

(Robust) Phase retrieval

[Candès, Li, Soltanolkotabi 15]

(Robust) Phase retrieval

[Candès, Li, Soltanolkotabi 15]

Observations (usually)

$$
b_i = \langle a_i, x^\star \rangle^2
$$

yield objective

$$
f(x) = \frac{1}{m} \sum_{i=1}^{m} |\langle a_i, x \rangle^2 - b_i|
$$

Robust phase retrieval problems

Data model: true signal $x^* \in \mathbb{R}^n$, noise $\xi_i = 0$ most of the time

$$
b_i = \langle a_i, x^{\star} \rangle^2 + \xi_i
$$
Robust phase retrieval problems

Data model: true signal $x^* \in \mathbb{R}^n$, noise $\xi_i = 0$ most of the time

$$
b_i = \langle a_i, x^{\star} \rangle^2 + \xi_i
$$

Goal: solve

$$
\underset{x}{\text{minimize}} \ f(x) = \frac{1}{m} \sum_{i=1}^{m} |\langle a_i, x \rangle^2 - b_i|
$$

Robust phase retrieval problems

Data model: true signal $x^* \in \mathbb{R}^n$, noise $\xi_i = 0$ most of the time

$$
b_i = \langle a_i, x^{\star} \rangle^2 + \xi_i
$$

Goal: solve

$$
\underset{x}{\text{minimize}} \ f(x) = \frac{1}{m} \sum_{i=1}^{m} |\langle a_i, x \rangle^2 - b_i|
$$

Composite problem: $f(x) = \frac{1}{m} ||\phi(Ax) - b||_1 = h(c(x))$ where $\phi(\cdot)$ is elementwise square,

$$
h(z) = \frac{1}{m} ||z||_1, \quad c(x) = \phi(Ax) - b
$$

Composite optimization problems (other model-able structures)

The problem:

$$
\underset{x}{\text{minimize}}\ f(x) := h(c(x))
$$

where

 $h:\mathbb{R}^m\rightarrow\mathbb{R}$ is convex and $c:\mathbb{R}^n\rightarrow\mathbb{R}^m$ is smooth

[Fletcher & Watson 80; Fletcher 82; Burke 85; Wright 87; Lewis & Wright 15; Drusvyatskiy & Lewis 16]

$$
f(x) = h(c(x))
$$

$$
f(x) = h\left(\begin{array}{c} c(x) \\ c(x) \end{array}\right)
$$

linearize

$$
f(y) \approx h(c(x) + \nabla c(x)^{T}(y - x))
$$

$$
f(y) \approx h(\underbrace{c(x) + \nabla c(x)^{T}(y - x)}_{=c(y) + O(||x - y||^{2})})
$$

$$
f_x(y) := h\left(c(x) + \nabla c(x)^T (y - x)\right)
$$

Now we make a convex model

$$
f_x(y) := h\left(c(x) + \nabla c(x)^T (y - x)\right)
$$

[Burke 85; Drusvyatskiy, Ioffe, Lewis 16]

$$
f_x(y) := h (c(x) + \nabla c(x)^T (y - x))
$$

Example: $f(x) = |x^2 - 1|, h(z) = |z|$ and $c(x) = x^2 - 1$

$$
f_x(y) := h(c(x) + \nabla c(x)^T (y - x))
$$

Example: $f(x) = |x^2 - 1|$, $h(z) = |z|$ and $c(x) = x^2 - 1$

$$
f_x(y) := h(c(x) + \nabla c(x)^T (y - x))
$$

Example: $f(x) = |x^2 - 1|$, $h(z) = |z|$ and $c(x) = x^2 - 1$

Definition: A function F is ρ -weakly convex if for all x_0 ,

$$
F(x) + \frac{\rho}{2} ||x - x_0||^2
$$
 is convex

Definition: A function F is ρ -weakly convex if for all x_0 .

$$
F(x) + \frac{\rho}{2} ||x - x_0||^2
$$
 is convex

Examples:

- ► F has $\nabla^2 F(x) \succeq -\lambda I$, then F is λ -weakly convex
- \blacktriangleright $f(x) = h(c(x))$ for h convex, M-Lipschitz and c smooth with ∇c L-Lipschitz is $L \cdot M$ -weakly convex

Definition: A function F is ρ -weakly convex if for all x_0 ,

$$
F(x) + \frac{\rho}{2} ||x - x_0||^2
$$
 is convex

Typical convergence guarantee: iterates x_k close to stationary points

$$
X_{\epsilon}^{\star} := \{ x \mid \text{dist}(0, \partial f(x)) \le \epsilon \}
$$

Definition: A function F is ρ -weakly convex if for all x_0 ,

$$
F(x) + \frac{\rho}{2} ||x - x_0||^2
$$
 is convex

Theorem (Davis & Drusvyatskiy 18, paraphrased)

Let random functions f be Lipschitz and ρ -weakly convex. Let x_k be generated by model-based method satisfying conditions,

 $X_{\epsilon}^* = \{x \mid \text{dist}(0, \partial F(x)) \leq \epsilon\},\$

and choose index $i^\star = i$ with probability $\alpha_i / \sum_{j=1}^k \alpha_j$. Then roughly

$$
\mathbb{E}[\text{dist}(x_{i^{\star}}, X_{\epsilon}^{\star})^2] \lesssim \frac{1 + \sum_{i=1}^{k} \alpha_i^2}{\sum_{i=1}^{k} \alpha_i}
$$

Generalized asymptotic analysis: weakly convex case

Theorem (Asi & D., 2018)

Let F be ρ -weakly convex, and assume that

 $\mathbb{E}[\|f'(x;S)\|^2] \leq C_1 \|F'(x)\|^2 + C_2.$

Let $X_{\epsilon}^* = \{x \mid \text{dist}(0, \partial F(x)) \leq \epsilon\}$. Choose index $i^* = i$ with probability $\alpha_i/\sum_{j=1}^k\alpha_j$. If the iterates x_k remain bounded, then with probability 1,

$$
\mathbb{E}[\text{dist}(x_{i^*}, X_{\epsilon}^*)^2 \mid x_1, x_2, \ldots] \lesssim \frac{1 + \sum_{i=1}^k \alpha_i^2}{\sum_{i=1}^k \alpha_i}.
$$

Generalized asymptotic analysis: weakly convex case

Theorem (Asi & D., 2018)

Let F be ρ -weakly convex, and assume that

 $\mathbb{E}[\|f'(x;S)\|^2] \leq C_1 \|F'(x)\|^2 + C_2.$

Let $X_{\epsilon}^* = \{x \mid \text{dist}(0, \partial F(x)) \leq \epsilon\}$. Choose index $i^* = i$ with probability $\alpha_i/\sum_{j=1}^k\alpha_j$. If the iterates x_k remain bounded, then with probability 1,

$$
\mathbb{E}[\text{dist}(x_{i^*}, X_{\epsilon}^*)^2 \mid x_1, x_2, \ldots] \lesssim \frac{1 + \sum_{i=1}^k \alpha_i^2}{\sum_{i=1}^k \alpha_i}.
$$

Iterates remain bounded with stochastic proximal-point-like algorithms

Experiment: corrupted measurements

 \blacktriangleright Data generation: dimension $n = 200$.

$$
a_i \overset{\mathrm{iid}}{\sim} \mathsf{N}(0,I_n) \quad \text{and} \quad b_i = \begin{cases} 0 & \text{w.p. } p_{\mathrm{fail}} \\ \langle a_i, x^\star \rangle^2 & \text{otherwise} \end{cases}
$$

(most confuses our initialization method)

- ▶ Compare to Zhang, Chi, Liang's Median-Truncated Wirtinger Flow (designed specially for standard Gaussian measurements)
- ► Look at success probability against m/n (note that $m \geq 2n-1$ is necessary for injectivity)

Experiment: corrupted measurements

Sharp weakly convex problems

Example: Suppose that

$$
b_i = \langle a_i, x^{\star} \rangle^2, \quad i = 1, \dots, m.
$$

Then

Sharp weakly convex problems

Definition: An weakly convex objective F is sharp if

$$
F(x) \ge F(x^*) + \lambda \operatorname{dist}(x, X^*)
$$

for $X^\star = \operatornamewithlimits{argmin} F(x)$ and x near X^\star . [Ferris 88; Burke & Ferris 95] Theorem (Asi & D. 18)

Assume that F is weakly convex, has sharp growth, and is easy. If x_k converges to $X^* = \operatorname{argmin}_x F(x)$ and models f_{x_k} satisfy all conditions, then

$$
\limsup_{k} \frac{\text{dist}(x_k, X^*)}{(1 - \lambda)^k} < \infty.
$$

Conclusions

- \triangleright Perhaps blind application of stochastic gradient methods is not the right answer
- \triangleright Care and better modeling can yield improved performance
- \triangleright Computational efficiency important in model choice

Conclusions

- \triangleright Perhaps blind application of stochastic gradient methods is not the right answer
- \triangleright Care and better modeling can yield improved performance
- \triangleright Computational efficiency important in model choice

Questions

- \blacktriangleright More satisfying adaptation results?
- \blacktriangleright Parallelism?