Better models in optimization

John Duchi (based on joint work with Feng Ruan and Hilal Asi) Stanford University

August 2018

Outline

Motivating experiments

Models in optimization

Stochastic optimization

Stability is better

Nothing gets worse

Adaptivity in easy problems

Revisiting experimental results

Phase retrieval and composite optimization (if time)

Outline

Motivating experiments

Models in optimization

Stochastic optimization
Stability is better
Nothing gets worse

Adaptivity in easy problem

Revisiting experimental results

Phase retrieval and composite optimization (if time

Stochastic gradient methods

The problem in this talk:

$$\label{eq:minimize} \min_x F(x) := \mathbb{E}[f(x;S)] = \int f(x;s) dP(s)$$
 subject to $x \in X$

Stochastic gradient methods

The problem in this talk:

$$\label{eq:minimize} \underset{x}{\text{minimize}} \ F(x) := \mathbb{E}[f(x;S)] = \int f(x;s) dP(s)$$
 subject to $x \in X$

Stochastic gradient method:

$$x_{k+1} = x_k - \alpha_k g_k, \quad g_k \in \partial f(x_k; S_k)$$

Stochastic gradient methods

The problem in this talk:

$$\label{eq:minimize} \underset{x}{\text{minimize}} \ F(x) := \mathbb{E}[f(x;S)] = \int f(x;s) dP(s)$$
 subject to $x \in X$

Stochastic gradient method:

$$x_{k+1} = x_k - \alpha_k g_k, \quad g_k \in \partial f(x_k; S_k)$$

Why we use this?

- ► Easy to analyze?
- Default in software packages and simple to implement?
- ▶ It works?

Linear regression

$$F(x) = \frac{1}{2m} \sum_{i=1}^{m} (a_i^T x - b_i)^2$$

Linear regression

$$F(x) = \frac{1}{2m} \sum_{i=1}^{m} (a_i^T x - b_i)^2$$

Linear regression

$$F(x) = \frac{1}{2m} \sum_{i=1}^{m} (a_i^T x - b_i)^2$$

Absolute loss regression

$$F(x) = \frac{1}{m} \sum_{i=1}^{m} |a_i^T x - b_i|$$

Outline

Motivating experiments

Models in optimization

Stochastic optimization
Stability is better
Nothing gets worse
Adaptivity in easy problems

Revisiting experimental results

Phase retrieval and composite optimization (if time)

Optimization methods

How do we solve optimization problems?

- 1. Build a "good" but simple local model of f
- 2. Minimize the model (perhaps regularizing)

Optimization methods

How do we solve optimization problems?

- 1. Build a "good" but simple local model of f
- 2. Minimize the model (perhaps regularizing)

Gradient descent: Taylor (first-order) model

$$f(y) \approx f_x(y) := f(x) + \nabla f(x)^T (y - x)$$

Optimization methods

How do we solve optimization problems?

- 1. Build a "good" but simple local model of f
- 2. Minimize the model (perhaps regularizing)

Newton's method: Taylor (second-order) model

$$f(y) \approx f_x(y) := f(x) + \nabla f(x)^T (y - x) + (1/2)(y - x)^T \nabla^2 f(x)(y - x)$$

Generic(ish) optimization methods

Iterate

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f_{x_k}(x) + \frac{1}{2\alpha_k} \|x - x_k\|^2 \right\}$$

Generic(ish) optimization methods

Iterate

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f_{x_k}(x) + \frac{1}{2\alpha_k} \|x - x_k\|^2 \right\}$$

- Proximal point method $(f_x = f)$ [Rockafellar 76]
- ▶ Gradient descent $(f_x(y) = f(x) + \langle \nabla f(x), y x \rangle)$
- Newton $(f_x(y) = f(x) + \langle \nabla f(x), y x \rangle + \frac{1}{2}(x y)^T \nabla^2 f(x)(x y))$
- ▶ Prox-linear $(f_x(y) = h(c(x) + \nabla c(x)^T(y x)))$

The aProx family for stochastic optimization

Iterate:

- ▶ Sample $S_k \stackrel{\text{iid}}{\sim} P$
- ▶ Update by minimizing model

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f_{x_k}(x; S_k) + \frac{1}{2\alpha_k} \|x - x_k\|^2 \right\}$$

The aProx family for stochastic optimization

Iterate:

- ▶ Sample $S_k \stackrel{\text{iid}}{\sim} P$
- ▶ Update by minimizing model

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f_{x_k}(x; S_k) + \frac{1}{2\alpha_k} \|x - x_k\|^2 \right\}$$

Examples:

- Stochastic gradient method
- ▶ Stochastic proximal-point (implicit gradient) method, $f_{x_k}(x) = f(x)$ [Rockafellar 76; Kulis & Bartlett 10; Karampatziakis & Langford 11; Bertsekas 11; Toulis & Airoldi 17; Ryu & Boyd 16]
- ► Stochastic prox-linear methods [D. & Ruan 18; Asi & D. 18]

Models in stochastic optimization

Stochastic gradient method

$$f_x(y;s) = f(x;s) + \langle f'(x;s), y - x \rangle$$
 for some $f'(x;s) \in \partial f(x;s)$

Models in stochastic optimization

Stochastic gradient method

$$f_x(y;s) = f(x;s) + \langle f'(x;s), y - x \rangle$$
 for some $f'(x;s) \in \partial f(x;s)$

Conditions on our models (convex case)

i. Convex model:

$$y \mapsto f_x(y;s)$$
 is convex

ii. Lower bound:

$$f_x(y;s) \le f(y;s)$$

iii. Local correctness:

$$f_x(x;s) = f(x;s)$$
 and $\partial f_x(x;s) \subset \partial f(x;s)$

[D. & Ruan 17; Davis & Drusvyatskiy 18]

Modeling conditions

Model $f_x(y)$ of f near x

Modeling conditions

Model $f_x(y)$ of f near x

Modeling conditions

Model $f_x(y)$ of f near x

Models in stochastic optimization

- i. (Sub)gradient: $f_x(y) = f(x) + \langle f'(x), y x \rangle$
- ii. Truncated: $f_x(y) = (f(x) + \langle f'(x), y x \rangle) \vee \inf_x f(x)$
- iii. Bundle/multi-line: $f_x(y) = \max\{f(x_i) + \langle f'(x_i), x x_i \rangle\}$

The aProx family

Iterate:

- ▶ Sample $S_k \stackrel{\text{iid}}{\sim} P$
- ▶ Update by minimizing model

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f_{x_k}(x; S_k) + \frac{1}{2\alpha_k} \|x - x_k\|^2 \right\}$$

Outline

Motivating experiments

Models in optimization

Stochastic optimization
Stability is better
Nothing gets worse
Adaptivity in easy problems

Revisiting experimental results

Phase retrieval and composite optimization (if time)

The aProx family

Iterate:

- ▶ Sample $S_k \stackrel{\text{iid}}{\sim} P$
- ▶ Update by minimizing model

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f_{x_k}(x; S_k) + \frac{1}{2\alpha_k} \|x - x_k\|^2 \right\}$$

Example

Let

$$b_i = a_i^T x^*$$

for i = 1, 2, ..., m.

▶ Iterate stochastic gradient method on $\frac{1}{2m} \sum_{i=1}^m (a_i^T x - b_i)^2$

Example

Let

$$b_i = a_i^T x^*$$

for i = 1, 2, ..., m.

- ▶ Iterate stochastic gradient method on $\frac{1}{2m}\sum_{i=1}^{m}(a_i^Tx-b_i)^2$
- ▶ for all iterations

$$(x_{k+1} - x^*) = (I - \alpha_k a_i a_i^T)(x_k - x^*)$$

Example

Let

$$b_i = a_i^T x^*$$

for i = 1, 2, ..., m.

- ▶ Iterate stochastic gradient method on $\frac{1}{2m}\sum_{i=1}^{m}(a_i^Tx-b_i)^2$
- ▶ for all iterations

$$(x_{k+1} - x^*) = (I - \alpha_k a_i a_i^T)(x_k - x^*)$$

▶ If $\alpha_1, \alpha_2, \ldots$ too large, may diverge exponentially at first: if $\Sigma = m^{-1} \sum_{i=1}^m a_i a_i^T$,

$$\mathbb{E}[x_{k+1} - x^*] = \prod^k (\alpha_i \Sigma - I) x^*$$

Example

Let

$$b_i = a_i^T x^*$$

for i = 1, 2, ..., m.

- ▶ Iterate stochastic gradient method on $\frac{1}{2m}\sum_{i=1}^{m}(a_i^Tx-b_i)^2$
- for all iterations

$$(x_{k+1} - x^*) = (I - \alpha_k a_i a_i^T)(x_k - x^*)$$

▶ If $\alpha_1, \alpha_2, \ldots$ too large, may diverge exponentially at first: if $\Sigma = m^{-1} \sum_{i=1}^m a_i a_i^T$,

$$\mathbb{E}[x_{k+1} - x^*] = \underbrace{\prod_{i=1}^{k} (\alpha_i \Sigma - I) x^*}_{\text{exponential?}}$$

Stability guarantees

Use full stochastic-proximal method,

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f(x; S_k) + \frac{1}{2\alpha_k} \|x - x_k\|^2 \right\}.$$

Theorem (Asi & D. 18)

Assume $\mathcal{X}^* = \operatorname{argmin}_{x \in \mathcal{X}} F(x)$ is non-empty and $\mathbb{E}[\|f'(x^*; S)\|^2] \leq \sigma^2$. Then

$$\mathbb{E}[\operatorname{dist}(x_k, \mathcal{X}^*)^2] \le \operatorname{dist}(x_0, \mathcal{X}^*)^2 + \sigma^2 \sum_{i=1}^k \alpha_i^2$$

Stability guarantees

Use full stochastic-proximal method,

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f(x; S_k) + \frac{1}{2\alpha_k} \|x - x_k\|^2 \right\}.$$

Theorem (Asi & D. 18)

Assume $\mathcal{X}^{\star} = \operatorname{argmin}_{x \in \mathcal{X}} F(x)$ is non-empty and $\mathbb{E}[\|f'(x^{\star}; S)\|^2] \leq \sigma^2$. Then

$$\mathbb{E}[\operatorname{dist}(x_k, \mathcal{X}^{\star})^2] \leq \operatorname{dist}(x_0, \mathcal{X}^{\star})^2 + \sigma^2 \sum_{i=1}^k \alpha_i^2$$

Theorem (Asi & D. 18)

Under the same assumptions,

$$\sup_{k} \operatorname{dist}(x_k, \mathcal{X}^*) < \infty \quad \textit{and} \quad \operatorname{dist}(x_k, \mathcal{X}^*) \overset{a.s.}{\to} 0.$$

Stability guarantees under growth

Assume that local strong convexity

$$f(y;s) \ge f(x;s) + \langle f'(x;s), y - x \rangle + \frac{1}{2}(x-y)^T \Sigma(s)(x-y)$$

holds with $\mathbb{E}[\Sigma(S)] = \overline{\Sigma} \succ 0$

Theorem (Asi & D. 18)

The stochastic proximal-point method satisfies

$$\mathbb{E}[\|x_{k+1} - x^*\|_2^2 \mid x_k] \le (1 - c\alpha_k) \|x_k - x^*\|_2^2 + \sigma^2 \alpha_k^2.$$

and

$$\mathbb{E}[\|x_k - x^\star\|_2^2] \lesssim \sigma^2 k \alpha_k^2.$$

Stability guarantees under growth

Assume that local strong convexity

$$f(y;s) \ge f(x;s) + \langle f'(x;s), y - x \rangle + \frac{1}{2}(x-y)^T \Sigma(s)(x-y)$$

holds with $\mathbb{E}[\Sigma(S)] = \overline{\Sigma} \succ 0$

Theorem (Asi & D. 18)

The stochastic proximal-point method satisfies

$$\mathbb{E}[\|x_{k+1} - x^*\|_2^2 \mid x_k] \le (1 - c\alpha_k) \|x_k - x^*\|_2^2 + \sigma^2 \alpha_k^2.$$

and

$$\mathbb{E}[\|x_k - x^\star\|_2^2] \lesssim \sigma^2 k \alpha_k^2.$$

(Always converging toward optimum)

Example behaviors

On least-squares objective $F(x) = \frac{1}{2m} \sum_{i=1}^{m} (a_i^T x - b_i)^2$

A few additional stability guarantees

- Do not need full proximal method, just accurate enough approximations
- Do not need convexity; some forms of weak convexity sufficient for stability

Classical asymptotic analysis

Theorem (Polyak & Juditsky 92)

Let F be convex and strongly convex in a neighborhood of x^* , and assume that f(x;S) are globally smooth. For x_k generated by stochastic gradient method,

$$\frac{1}{\sqrt{k}} \sum_{i=1}^{k} (x_i - x^*) \stackrel{d}{\leadsto} \mathsf{N}\left(0, \nabla^2 F(x^*)^{-1} \operatorname{Cov}(\nabla f(x^*; S)) \nabla^2 F(x^*)^{-1}\right).$$

New asymptotic analysis

Theorem (Asi & D. 18)

Let F be convex and strongly convex in a neighborhood of x^* , and assume that f(x;S) are smooth near x^* . Then if x_k remain bounded and the models $f_{x_k}(\cdot;S_k)$ satisfy our conditions,

$$\frac{1}{\sqrt{k}} \sum_{i=1}^{k} (x_i - x^*) \stackrel{d}{\leadsto} \mathsf{N}\left(0, \nabla^2 F(x^*)^{-1} \operatorname{Cov}(\nabla f(x^*; S)) \nabla^2 F(x^*)^{-1}\right).$$

New asymptotic analysis

Theorem (Asi & D. 18)

Let F be convex and strongly convex in a neighborhood of x^* , and assume that f(x;S) are smooth near x^* . Then if x_k remain bounded and the models $f_{x_k}(\cdot;S_k)$ satisfy our conditions,

$$\frac{1}{\sqrt{k}} \sum_{i=1}^{\kappa} (x_i - x^*) \stackrel{d}{\leadsto} \mathsf{N} \left(0, \nabla^2 F(x^*)^{-1} \operatorname{Cov}(\nabla f(x^*; S)) \nabla^2 F(x^*)^{-1} \right).$$

- Optimal by local minimax theorem [Hájek 72; Le Cam 73;
 D. & Ruan 18]
- ▶ Key insight: subgradients of $f_{x_k}(\cdot; S_k)$ close to $\nabla f(x_k; S_k)$

- Interpolation problems [Belkin, Hsu, Mitra 18; Ma, Bassily, Belkin 18]
- Overparameterized linear systems (Kaczmarz algorithms) [Strohmer & Vershynin 09; Needell, Srebro, Ward 14; Needell & Tropp 14]
- ► Random projections for linear constraints [Leventhal & Lewis 10]

$$\underset{x}{\operatorname{minimize}} \ F(x) := \mathbb{E}[f(x;S)] = \int f(x;s) dP(s)$$

$$\underset{x}{\operatorname{minimize}} \ F(x) := \mathbb{E}[f(x;S)] = \int f(x;s) dP(s)$$

Definition: Problem is *easy* if there exists x^* such that $f(x^*;S) = \inf_x f(x;S)$ with probability 1. [Schmidt & Le Roux 13; Ma, Bassily, Belkin 18; Belkin, Rakhlin, Tsybakov 18]

$$\underset{x}{\operatorname{minimize}} \ F(x) := \mathbb{E}[f(x;S)] = \int f(x;s) dP(s)$$

Definition: Problem is *easy* if there exists x^* such that $f(x^*;S) = \inf_x f(x;S)$ with probability 1. [Schmidt & Le Roux 13; Ma, Bassily, Belkin 18; Belkin, Rakhlin, Tsybakov 18]

One additional condition iv. The models f_x satisfy

$$f_x(y;s) \ge \inf_{x^* \in X} f(x^*;s)$$

Easy strongly convex problems

Theorem (Asi & D. 18)

Let the function F satisfy the growth condition

$$F(x) \ge F(x^*) + \frac{\lambda}{2} \operatorname{dist}(x, X^*)^2$$

where $X^* = \operatorname{argmin}_x F(x)$, and be easy. Then

$$\mathbb{E}[\operatorname{dist}(x_k, X^{\star})^2] \le \max \left\{ \exp\left(-c\sum_{i=1}^k \alpha_i\right), \exp\left(-ck\right) \right\} \operatorname{dist}(x_1, X^{\star})^2.$$

Easy strongly convex problems

Theorem (Asi & D. 18)

Let the function F satisfy the growth condition

$$F(x) \ge F(x^*) + \frac{\lambda}{2} \operatorname{dist}(x, X^*)^2$$

where $X^* = \operatorname{argmin}_x F(x)$, and be easy. Then

$$\mathbb{E}[\operatorname{dist}(x_k, X^{\star})^2] \le \max \left\{ \exp\left(-c\sum_{i=1}^k \alpha_i\right), \exp\left(-ck\right) \right\} \operatorname{dist}(x_1, X^{\star})^2.$$

- Adaptive no matter the stepsizes
- ▶ Most other results (e.g. for SGM [Schmidt & Le Roux 13; Ma, Bassily, Belkin 18]) require careful stepsize choices

Definition: An objective F is sharp if

$$F(x) \ge F(x^*) + \lambda \operatorname{dist}(x, X^*)$$

- Piecewise linear objectives
- ▶ Hinge loss $F(x) = \frac{1}{m} \sum_{i=1}^{m} \left[1 a_i^T x\right]_+$

Definition: An objective F is *sharp* if

$$F(x) \ge F(x^*) + \lambda \operatorname{dist}(x, X^*)$$

- Piecewise linear objectives
- ► Hinge loss $F(x) = \frac{1}{m} \sum_{i=1}^{m} \left[1 a_i^T x\right]_+$

Definition: An objective F is sharp if

$$F(x) \ge F(x^*) + \lambda \operatorname{dist}(x, X^*)$$

- Piecewise linear objectives
- ▶ Hinge loss $F(x) = \frac{1}{m} \sum_{i=1}^{m} \left[1 a_i^T x\right]_+$

Definition: An objective F is *sharp* if

$$F(x) \ge F(x^*) + \lambda \operatorname{dist}(x, X^*)$$

- Piecewise linear objectives
- ► Hinge loss $F(x) = \frac{1}{m} \sum_{i=1}^{m} \left[1 a_i^T x\right]_+$
- ▶ Projection onto intersections: $F(x) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{dist}(x, C_i)$

Definition: An objective F is *sharp* if

$$F(x) \ge F(x^*) + \lambda \operatorname{dist}(x, X^*)$$

for $X^* = \operatorname{argmin} F(x)$. [Ferris 88; Burke & Ferris 95]

- Piecewise linear objectives
- ► Hinge loss $F(x) = \frac{1}{m} \sum_{i=1}^{m} \left[1 a_i^T x\right]_+$
- ▶ Projection onto intersections: $F(x) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{dist}(x, C_i)$

Theorem (Asi & D. 18)

Let F have sharp growth and be easy. Then

$$\mathbb{E}[\operatorname{dist}(x_{k+1}, X^{\star})^{2}] \leq \max \left\{ \exp(-ck), \exp\left(-c\sum_{i=1}^{k} \alpha_{i}\right) \right\} \operatorname{dist}(x_{1}, X^{\star})^{2}.$$

Outline

Motivating experiments

Models in optimization

Stochastic optimization
Stability is better
Nothing gets worse
Adaptivity in easy problems

Revisiting experimental results

Phase retrieval and composite optimization (if time)

Methods

Iterate

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \left\{ f_{x_k}(x; S_k) + \frac{1}{2\alpha_k} \|x - x_k\|_2^2 \right\}$$

Methods

Iterate

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \left\{ f_{x_k}(x; S_k) + \frac{1}{2\alpha_k} \|x - x_k\|_2^2 \right\}$$

► Stochastic gradient

$$f_{x_k}(x; S_k) = f(x_k; S_k) + \langle f'(x_k; S_k), x - x_k \rangle$$

▶ Truncated gradient $(f \ge 0)$:

$$f_{x_k}(x; S_k) = \left[f(x_k; S_k) + \langle f'(x_k; S_k), x - x_k \rangle \right]_+$$

(Stochastic) proximal point

$$f_{x_k}(x; S_k) = f(x; S_k)$$

Linear regression with low noise

$$F(x) = \frac{1}{2m} \sum_{i=1}^{m} (a_i^T x - b_i)^2$$

Linear regression with no noise

$$F(x) = \frac{1}{2m} \sum_{i=1}^{m} (a_i^T x - b_i)^2$$

Linear regression with "poor" conditioning

Linear regression with "poor" conditioning

Poor conditioning? $\kappa(A) = 15$

Absolute loss regression with no noise

$$F(x) = \frac{1}{m} \sum_{i=1}^{m} |a_i^T x - b_i|$$

Absolute loss regression with noise

$$F(x) = \frac{1}{m} \sum_{i=1}^{m} |a_i^T x - b_i|$$

Multiclass hinge loss: no noise

$$f(x; (a, l)) = \max_{i \neq l} \left[1 + \langle a, x_i - x_l \rangle \right]_+$$

Multiclass hinge loss: small label flipping

$$f(x; (a, l)) = \max_{i \neq l} \left[1 + \langle a, x_i - x_l \rangle \right]_+$$

Multiclass hinge loss: substantial label flipping

$$f(x; (a, l)) = \max_{i \neq l} \left[1 + \langle a, x_i - x_l \rangle \right]_+$$

(Robust) Phase retrieval

[Candès, Li, Soltanolkotabi 15]

(Robust) Phase retrieval

[Candès, Li, Soltanolkotabi 15]

Observations (usually)

$$b_i = \langle a_i, x^* \rangle^2$$

yield objective

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} |\langle a_i, x \rangle^2 - b_i|$$

Phase retrieval without noise

$$F(x) = \frac{1}{m} \sum_{i=1}^{m} |\langle a_i, x \rangle^2 - b_i|$$

Matrix completion without noise

$$F(x,y) = \sum_{i,j \in \Omega} |\langle x_i, y_j \rangle - M_{ij}|$$

Obligatory CIFAR Experiment

Outline

Motivating experiments

Models in optimization

Stochastic optimization
Stability is better
Nothing gets worse
Adaptivity in easy problems

Revisiting experimental results

Phase retrieval and composite optimization (if time)

(Robust) Phase retrieval

[Candès, Li, Soltanolkotabi 15]

(Robust) Phase retrieval

[Candès, Li, Soltanolkotabi 15]

Observations (usually)

$$b_i = \langle a_i, x^* \rangle^2$$

yield objective

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} |\langle a_i, x \rangle^2 - b_i|$$

Robust phase retrieval problems

Data model: true signal $x^* \in \mathbb{R}^n$, noise $\xi_i = 0$ most of the time

$$b_i = \langle a_i, x^* \rangle^2 + \xi_i$$

Robust phase retrieval problems

Data model: true signal $x^* \in \mathbb{R}^n$, noise $\xi_i = 0$ most of the time

$$b_i = \langle a_i, x^* \rangle^2 + \xi_i$$

Goal: solve

$$\underset{x}{\text{minimize}} \ f(x) = \frac{1}{m} \sum_{i=1}^{m} |\langle a_i, x \rangle^2 - b_i|$$

Robust phase retrieval problems

Data model: true signal $x^* \in \mathbb{R}^n$, noise $\xi_i = 0$ most of the time

$$b_i = \langle a_i, x^* \rangle^2 + \xi_i$$

Goal: solve

$$\underset{x}{\text{minimize}} f(x) = \frac{1}{m} \sum_{i=1}^{m} |\langle a_i, x \rangle^2 - b_i|$$

Composite problem: $f(x) = \frac{1}{m} \|\phi(Ax) - b\|_1 = h(c(x))$ where $\phi(\cdot)$ is elementwise square,

$$h(z) = \frac{1}{m} \|z\|_1, \quad c(x) = \phi(Ax) - b$$

Composite optimization problems (other model-able structures)

The problem:

$$\underset{x}{\operatorname{minimize}} f(x) := h(c(x))$$

where

 $h: \mathbb{R}^m \to \mathbb{R}$ is convex and $c: \mathbb{R}^n \to \mathbb{R}^m$ is smooth

[Fletcher & Watson 80; Fletcher 82; Burke 85; Wright 87; Lewis & Wright 15; Drusvyatskiy & Lewis 16]

$$f(x) = h(c(x))$$

$$f(x) = h(\underbrace{c(x)})$$
 linearize

$$f(y) \approx h(c(x) + \nabla c(x)^T (y - x))$$

$$f(y) \approx h(\underbrace{c(x) + \nabla c(x)^{T}(y - x)}_{=c(y) + O(\|x - y\|^{2})})$$

$$f_x(\mathbf{y}) := h\left(c(x) + \nabla c(x)^T(\mathbf{y} - x)\right)$$

Now we make a convex model

$$f_x(\mathbf{y}) := h\left(c(x) + \nabla c(x)^T(\mathbf{y} - x)\right)$$

[Burke 85; Drusvyatskiy, Ioffe, Lewis 16]

$$f_x(\mathbf{y}) := h\left(c(x) + \nabla c(x)^T(\mathbf{y} - x)\right)$$

Example:
$$f(x) = |x^2 - 1|$$
, $h(z) = |z|$ and $c(x) = x^2 - 1$

$$f_x(\mathbf{y}) := h\left(c(x) + \nabla c(x)^T(\mathbf{y} - x)\right)$$

Example:
$$f(x) = |x^2 - 1|$$
, $h(z) = |z|$ and $c(x) = x^2 - 1$

$$f_x(\mathbf{y}) := h\left(c(x) + \nabla c(x)^T(\mathbf{y} - x)\right)$$

Example:
$$f(x) = |x^2 - 1|$$
, $h(z) = |z|$ and $c(x) = x^2 - 1$

Definition: A function F is ρ -weakly convex if for all x_0 ,

$$F(x) + \frac{\rho}{2} \|x - x_0\|^2$$
 is convex

Definition: A function F is ρ -weakly convex if for all x_0 ,

$$F(x) + \frac{\rho}{2} \|x - x_0\|^2$$
 is convex

Examples:

- ▶ F has $\nabla^2 F(x) \succeq -\lambda I$, then F is λ -weakly convex
- f(x) = h(c(x)) for h convex, M-Lipschitz and c smooth with ∇c L-Lipschitz is $L \cdot M$ -weakly convex

Definition: A function F is ρ -weakly convex if for all x_0 ,

$$F(x) + \frac{\rho}{2} \|x - x_0\|^2$$
 is convex

Typical convergence guarantee: iterates x_k *close* to stationary points

$$X^\star_\epsilon := \{x \mid \mathrm{dist}(0,\partial f(x)) \leq \epsilon\}$$

Definition: A function F is ρ -weakly convex if for all x_0 ,

$$F(x) + \frac{\rho}{2} \|x - x_0\|^2$$
 is convex

Theorem (Davis & Drusvyatskiy 18, paraphrased)

Let random functions f be Lipschitz and ρ -weakly convex. Let x_k be generated by model-based method satisfying conditions,

$$X_{\epsilon}^{\star} = \{x \mid \operatorname{dist}(0, \partial F(x)) \leq \epsilon\},\$$

and choose index $i^* = i$ with probability $\alpha_i / \sum_{j=1}^k \alpha_j$. Then roughly

$$\mathbb{E}[\operatorname{dist}(x_{i^{\star}}, X_{\epsilon}^{\star})^{2}] \lesssim \frac{1 + \sum_{i=1}^{k} \alpha_{i}^{2}}{\sum_{i=1}^{k} \alpha_{i}}$$

Generalized asymptotic analysis: weakly convex case

Theorem (Asi & D., 2018)

Let F be ρ -weakly convex, and assume that

$$\mathbb{E}[\|f'(x;S)\|^2] \le C_1 \|F'(x)\|^2 + C_2.$$

Let $X_{\epsilon}^{\star} = \{x \mid \operatorname{dist}(0, \partial F(x)) \leq \epsilon\}$. Choose index $i^{\star} = i$ with probability $\alpha_i / \sum_{j=1}^k \alpha_j$. If the iterates x_k remain bounded, then with probability 1,

$$\mathbb{E}[\operatorname{dist}(x_{i^{\star}}, X_{\epsilon}^{\star})^{2} \mid x_{1}, x_{2}, \ldots] \lesssim \frac{1 + \sum_{i=1}^{k} \alpha_{i}^{2}}{\sum_{i=1}^{k} \alpha_{i}}.$$

Generalized asymptotic analysis: weakly convex case

Theorem (Asi & D., 2018)

Let F be ρ -weakly convex, and assume that

$$\mathbb{E}[\|f'(x;S)\|^2] \le C_1 \|F'(x)\|^2 + C_2.$$

Let $X_{\epsilon}^{\star} = \{x \mid \operatorname{dist}(0, \partial F(x)) \leq \epsilon\}$. Choose index $i^{\star} = i$ with probability $\alpha_i / \sum_{j=1}^k \alpha_j$. If the iterates x_k remain bounded, then with probability 1,

$$\mathbb{E}[\operatorname{dist}(x_{i^*}, X_{\epsilon}^*)^2 \mid x_1, x_2, \ldots] \lesssim \frac{1 + \sum_{i=1}^k \alpha_i^2}{\sum_{i=1}^k \alpha_i}.$$

Iterates remain bounded with stochastic proximal-point-like algorithms

Experiment: corrupted measurements

▶ Data generation: dimension n = 200,

$$a_i \overset{\text{iid}}{\sim} \mathsf{N}(0,I_n) \ \text{ and } \ b_i = \begin{cases} 0 & \text{w.p. } p_{\text{fail}} \\ \langle a_i, x^\star \rangle^2 & \text{otherwise} \end{cases}$$

(most confuses our initialization method)

- Compare to Zhang, Chi, Liang's Median-Truncated Wirtinger Flow (designed specially for standard Gaussian measurements)
- ▶ Look at success probability against m/n (note that $m \ge 2n-1$ is necessary for injectivity)

Experiment: corrupted measurements

Sharp weakly convex problems

Example: Suppose that

$$b_i = \langle a_i, x^* \rangle^2, \quad i = 1, \dots, m.$$

Then

$$F(x) := \frac{1}{m} \sum_{i=1}^{m} |\langle a_i, x \rangle^2 - b_i| \ge F(x^*) + \lambda \operatorname{dist}(x, \{-x^*, x^*\}).$$

Sharp weakly convex problems

Definition: An weakly convex objective F is *sharp* if

$$F(x) \ge F(x^*) + \lambda \operatorname{dist}(x, X^*)$$

for $X^{\star} = \operatorname{argmin} F(x)$ and x near X^{\star} . [Ferris 88; Burke & Ferris 95]

Theorem (Asi & D. 18)

Assume that F is weakly convex, has sharp growth, and is easy. If x_k converges to $X^* = \operatorname{argmin}_x F(x)$ and models f_{x_k} satisfy all conditions, then

$$\limsup_{k} \frac{\operatorname{dist}(x_k, X^*)}{(1-\lambda)^k} < \infty.$$

Conclusions

- ► Perhaps blind application of stochastic gradient methods is not the right answer
- Care and better modeling can yield improved performance
- Computational efficiency important in model choice

Conclusions

- Perhaps blind application of stochastic gradient methods is not the right answer
- Care and better modeling can yield improved performance
- Computational efficiency important in model choice

Questions

- More satisfying adaptation results?
- ► Parallelism?