k-means and k-medians under dimension reduction

Yury Makarychev, TTIC

Konstantin Makarychev, Northwestern Ilya Razenshteyn, Microsoft Research

Simons Institute, November 2, 2018

Euclidean k-means and k-medians

Given a set of points X in \mathbb{R}^m

Partition X into k clusters C_1, \ldots, C_k and find a "center" c_i for each C_i so as to minimize the cost

$$\sum_{i=1}^{k} \sum_{u \in C_{i}} d(u, c_{i}) \quad (k\text{-median})$$

$$\sum_{i=1}^{k} \sum_{u \in C_{i}} d(u, c_{i})^{2} \quad (k\text{-means})$$

Dimension Reduction

Dimension reduction $\varphi \colon \mathbb{R}^m \to \mathbb{R}^d$ is a random map that preserves distances within a factor of $(1 + \varepsilon)$ with probability at least $1 - \delta$:

$$\frac{1}{1+\varepsilon} \|u-v\| \le \|\varphi(u)-\varphi(v)\| \le (1+\varepsilon)\|u-v\|$$

[Johnson-Lindenstrauss '84] There exists a random linear dimension reduction with $d = O\left(\frac{\log 1/\delta}{\varepsilon^2}\right)$.

[Larsen, Nelson '17] The dependence of d on ε and δ is optimal.

Dimension Reduction

JL preserves all distances between points in X whp when $d = \Omega(\log |X|/\epsilon^2)$.

Numerous applications in computer science.

Dimension Reduction Constructions:

- [JL '84] Project on a random d-dimensional subspace
- [Indyk, Motwani '98] Apply a random Gaussian matrix
- [Achlioptas '03] Apply a random matrix with ± 1 entries
- [Ailon, Chazelle '06] Fast JL-transform

k-means under dimension reduction

[Boutsidis, Zouzias, Drineas '10] Apply a dimension reduction φ to our dataset X

dimension reduction

Cluster $\varphi(X)$ in dimension d.

k-means under dimension reduction

want

Optimal clusterings of X and $\varphi(X)$ have approximately the same cost.

even better

The cost of every clustering is approximately preserved.

For what dimension d can we get this?

k-means under dimension reduction

	d	distortion
Folklore	$\sim \log n / \varepsilon^2$	$1 + \varepsilon$
Boutsidis, Zouzias, Drineas '10	$\sim k/\varepsilon^2$	2 + <i>ε</i>
Cohen, Elder,	$\sim k/\varepsilon^2$	$1 + \varepsilon$
Musco, Musco, Persu '15	$\sim \log k / \varepsilon^2$	9 + <i>ε</i>
MMR '18	$\sim \log(k/\varepsilon)/\varepsilon^2$	$1 + \varepsilon$
Lower bound	$\sim \log k / \varepsilon^2$	$1 + \varepsilon$

k-medians under dimension reduction

	d	distortion
Prior work		
Kirszsbraun Thm \Rightarrow	$\sim \log n / \varepsilon^2$	$1 + \varepsilon$
MMR '18	$\sim \log(k/\varepsilon)/\varepsilon^2$	$1 + \varepsilon$
Lower bound	$\sim \log k / \varepsilon^2$	$1 + \varepsilon$

Plan

k-means

- Challenges
- Warm up: $d \sim \log n / \varepsilon^2$
- Special case: "distortions" are everywhere sparse
- Remove outliers: the general case \rightarrow the special case
- Outliers

k-medians

• Overview of our approach

Out result for k-means

Let $X \subset \mathbb{R}^m$

 $\varphi \colon \mathbb{R}^m \to \mathbb{R}^d$ be a random dimension reduction.

$$d \ge c \log \frac{k}{\varepsilon \delta} / \varepsilon^2$$

With probability at least $1 - \delta$:

 $(1 - \varepsilon) \cot \mathcal{C} \le \cot \varphi(\mathcal{C}) \le (1 + \varepsilon) \cot \mathcal{C}$

for every clustering $C = (C_1, ..., C_k)$ of X

Challenges

Let \mathcal{C}^* be the optimal k-means clustering. Easy: $\operatorname{cost} \mathcal{C}^* \approx \operatorname{cost} \varphi(\mathcal{C}^*)$

with probability $1-\delta$

Hard: Prove that there is no other clustering C' s.t. $\cos t \varphi(C') < (1 - \varepsilon) \cot C^*$

since there are exponentially many clusterings \mathcal{C}' (can't use the union bound)

Warm-up

Consider a clustering $C = (C_1, ..., C_k)$.

Write the cost in terms of pair-wise distances:

$$\cot C = \sum_{i=1}^{k} \frac{1}{2|C_i|} \sum_{u,v \in C_i} ||u - v||^2$$

all distances ||u - v|| are preserved within $1 + \varepsilon$

 $\cot C$ is preserved within $1 + \varepsilon$

Sufficient to have $d \sim \log n / \varepsilon^2$

Problem & Notation

Assume that $\mathcal{C} = (C_1, \dots, C_k)$ is a random clustering that depends on φ .

Want to prove: $\cot C \approx \cot \varphi(C)$ whp.

The distance between u and v is $(1 + \varepsilon)$ -preserved or distorted depending on whether

$$\|\varphi(u) - \varphi(v)\| \approx_{1+\varepsilon} \|u - v\|$$

Think $\delta = \text{poly}(1/k, \varepsilon)$ is sufficiently small.

Distortion graph

Connect u and v with an edge if the distance between them is distorted.

- + Every edge is present with probability at most δ .
- Edges are not independent.
- \mathcal{C} depends on the set of edges.
- May have high-degree vertices.
- All distances in a cluster may be distorted.

Cost of a cluster

The cost of
$$C_i$$
 is

$$\frac{1}{2|C_i|} \sum_{u,v \in C_i} ||u - v||^2$$

+ Terms for non-edges (u, v) are $(1 + \varepsilon)$ preserved. $||u - v|| \approx ||\varphi(u) - \varphi(v)||$

Need to prove that

$$\sum_{\substack{u,v\in C_i\\(u,v)\in E}} \|u-v\|^2 = \sum_{\substack{u,v\in C_i\\(u,v)\in E}} \|\varphi(u)-\varphi(v)\|^2 \pm \varepsilon' \text{cost } \mathcal{C}$$

Assume every $u \in C_i$ is connected to at most a θ fraction of all v in C_i (where $\theta \ll \varepsilon$).

+ Terms for non-edges (u, v) are $(1 + \varepsilon)$ preserved.

+ The contribution of terms for edges is small: for an edge (u, v) and any $w \in C_i$

$$\|u - v\| \le \|u - w\| + \|w - v\|$$
$$\|u - v\|^2 \le 2(\|u - w\|^2 + \|w - v\|^2)$$

$$||u - v||^2 \le 2(||u - w||^2 + ||w - v||^2)$$

- Replace the term for every edge with two terms $||u w||^2$, $||w v||^2$ for random $w \in C_i$.
- Each term is used at most 2θ times, in expectation.

$$\sum_{\substack{(u,v)\in E\\ u,v\in C_i}} \|u-v\|^2 \le 4\theta \sum_{\substack{u,v\in C_i}} \|u-v\|^2$$

$$\sum_{u,v\in C_i} \|u-v\|^2 \approx \sum_{(u,v)\notin E} \|u-v\|^2$$

\approx

$$\sum_{(u,v)\notin E} \|\varphi(u)-\varphi(v)\|^2 \approx \sum_{u,v\in C_i} \|\varphi(u)-\varphi(v)\|^2$$

$$\sum_{u,v\in C_i} ||u-v||^2 \approx \sum_{(u,v)\notin E} ||u-v||^2$$
$$\approx \sum_{(u,v)\notin E} ||\varphi(u)-\varphi(v)||^2 \approx \sum_{u,v\in C_i} ||\varphi(u)-\varphi(v)||^2$$

Edges are not necessarily everywhere sparse!

Want: remove "outliers" so that in the remaining set X' edges are everywhere sparse in every cluster.

$(1 - \theta)$ non-distorted core

Want: remove "outliers" so that in the remaining set X' edges are everywhere sparse in every cluster.

$(1 - \theta)$ non-distorted core

Want: remove "outliers" so that in the remaining set X' edges are everywhere sparse in every cluster.

Find a subset $X' \subset X$ (which depends on \mathcal{C}) s.t.

• Edges are sparse in the obtained clusters:

Every $u \in C_i \cap X'$ is connected to at most a θ fraction of all v in $C_i \cap X'$.

• Outliers are rare:

For every u, $\Pr(u \notin X') \le \theta$

All clusters are large

Assume all clusters are of size $\sim n/k$. Let $\theta = \delta^{1/4}$.

outliers = all vertices of degree at least $\sim \theta n/k$

Every vertex has degree at most δn in expectation. By Markov,

$$\Pr(u \text{ is an outlier}) \leq \frac{\delta k}{\theta} \leq \theta$$

Remove $\theta n \ll n/k$ vertices in total, so all clusters still have size $\sim n/k$.

Crucially use that all clusters are large!

Main Combinatorial Lemma

Idea: assign "weights" to vertices so that all clusters have a large weight.

- There is a measure μ on X and random set R s.t. $\mu(x) \ge \frac{1}{|C_i \setminus R|}$ for $x \in C_i \setminus R$ (always)
- • $\mu(X) \leq 4k^3/\theta^2$
- $\Pr(x \in R) \le \theta$

All clusters $C_i \setminus R$ are "large" w.r.t. measure μ . Can apply a variant of the previous argument.

Need to take care of edges incident on outliers.

Say, u is an outlier and v is not.

Consider a fixed optimal clustering C_1^* , ..., C_k^* for X. Let c^* be the optimal center for u.

$$\|u - v\| = \|v - c^*\| \pm \|c^* - u\|$$

$$\|\varphi(u) - \varphi(v)\| = \|\varphi(v) - \varphi(c^*)\| \pm \|\varphi(c^*) - \varphi(u)\|$$

May assume that the distances between non-outliers and the optimal centers are $(1 + \varepsilon)$ -preserved.

$$\begin{aligned} \|u - v\| &= \|v - c^*\| \pm \|c^* - u\| \\ &\gtrsim \\ |\varphi(u) - \varphi(v)\| &= \|\varphi(v) - \varphi(c^*)\| \pm \|\varphi(c^*) - \varphi(u)\| \end{aligned}$$

$$\mathbb{E}[\sum_{u \notin X'} \|c_u^* - u\|^2] \le \theta \sum_{u \in X} \|c_u^* - u\|^2 = \theta \text{ OPT}$$

$$\begin{aligned} \|u - v\| &= \|v - c^*\| \pm \|c^* - u\| \\ &\gtrsim \\ \|\varphi(u) - \varphi(v)\| &= \|\varphi(v) - \varphi(c^*)\| \pm \|\varphi(c^*) - \varphi(u)\| \end{aligned}$$

Taking care of $\|\varphi(c^*) - \varphi(u)\|$ is a bit more difficult.

k-medians under dimension reduction

k-medians

 No formula for the cost of the clustering in terms of pairwise distances.

- Not obvious when $d \sim \log n$ (then all pairwise distances are approximately preserved). [was asked by Ravi Kannan in a tutorial @ Simons]

- + Kirzsbraun Theorem \Rightarrow the $d \sim \log n$ case
- + Prove a Robust Kirzsbraun Theorem

Our methods for k-means + Robust Kirzsbraun \Rightarrow $d \sim \log k$ for k-medians

Summary

- Prove that the cost of every k-means and k-medians clustering is preserved up to $(1 + \varepsilon)$ under dimension reduction, when $d \ge c \log \frac{k}{c\delta} / \varepsilon^2$.
- The bound on d almost matches the lower bound.
- k-means: improves the bound $d \ge \frac{ck}{\epsilon^2}$ by Cohen et al.
- k-medians: no results were known.
- Applies to k-clustering with the ℓ_p -objective when $d \ge c \ p^4 \log \frac{k}{\varepsilon \delta} / \varepsilon^2$