Robust Estimation and Generative Adversarial Nets

Chao Gao University of Chicago

@Simons Institute, October 2018

Huber's Model

 $X_1, \dots, X_n \sim (1 - \epsilon) P_{\theta} + \epsilon Q$

Huber's Model

$X_1, ..., X_n \sim (1 - \epsilon) P_{\theta} + \epsilon Q$ parameter of interest

Huber's Model

 $X_1, ..., X_n \sim (1 - \epsilon) P_{\theta} + \epsilon Q$ contamination proportion

parameter of interest

Huber's Model $X_1, \dots, X_n \sim (1 - \epsilon) P_\theta + \epsilon Q$ contamination proportion contamination parameter of interest

$X_1, ..., X_n \sim (1 - \epsilon) N(\theta, I_p) + \epsilon Q.$

 $X_1, \dots, X_n \sim (1 - \epsilon) N(\theta, I_p) + \epsilon Q.$ how to estimate?

1. Coordinatewise median

$$\hat{\theta} = (\hat{\theta}_j)$$
, where $\hat{\theta}_j = \text{Median}(\{X_{ij}\}_{i=1}^n);$

1. Coordinatewise median

$$\hat{\theta} = (\hat{\theta}_j)$$
, where $\hat{\theta}_j = \text{Median}(\{X_{ij}\}_{i=1}^n);$

2. Tukey's median

$$\hat{\theta} = \arg\max_{\eta \in \mathbb{R}^p} \min_{||u||=1} \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i > u^T \eta\}.$$

	coordinatewise median	Tukey's median
breakdown point		

	coordinatewise median	Tukey's median
breakdown point	$\frac{1}{2}$	$\frac{1}{3}$

	coordinatewise median	Tukey's median
breakdown point	$\frac{1}{2}$	$\frac{1}{3}$
convergence rate (no contamination)	$rac{p}{n}$	$rac{p}{n}$

	coordinatewise median	Tukey's median
breakdown point	$\frac{1}{2}$	$\frac{1}{3}$
convergence rate (no contamination)	$\frac{p}{n}$	$rac{p}{n}$
convergence rate (with contamination)	$\frac{p}{n} + p\epsilon^2$	$\frac{p}{n} + \epsilon^2$

	coordinatewise median	Tukey's median
breakdown point	$\frac{1}{2}$	$\frac{1}{3}$
convergence rate (no contamination)	$rac{p}{n}$	$rac{p}{n}$
convergence rate (with contamination)	$\frac{p}{n} + p\epsilon^2$	$\frac{p}{n} + \epsilon^2 \min \max$

[CGR15]

 $\left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{ u^{T} X_{i} > u^{T} \eta \right\} \land \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{ u^{T} X_{i} \le u^{T} \eta \right\} \right\}$

$$\min_{\|u\|=1} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{u^{T} X_{i} > u^{T} \eta\} \land \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{u^{T} X_{i} \le u^{T} \eta\} \right\}$$

$$\hat{\theta} = \arg\max_{\eta \in \mathbb{R}^p} \min_{\|u\|=1} \left\{ \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i > u^T \eta\} \land \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i \le u^T \eta\} \right\}$$

$$\hat{\theta} = \arg\max_{\eta \in \mathbb{R}^p} \min_{\|u\|=1} \left\{ \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i > u^T \eta\} \land \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i \le u^T \eta\} \right\}$$

$$= \arg \max_{\eta \in \mathbb{R}^{p}} \min_{||u||=1} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{u^{T} X_{i} > u^{T} \eta\}.$$

[Tukey, 1975]

model $y|X \sim N(X^T\beta, \sigma^2)$

model $y|X \sim N(X^T\beta, \sigma^2)$

embedding

 $Xy|X \sim N(XX^T\beta, \sigma^2 XX^T)$

model $y|X \sim N(X^T\beta, \sigma^2)$

embedding

 $Xy|X \sim N(XX^T\beta, \sigma^2 XX^T)$

projection

 $u^T X y | X \sim N(u^T X X^T \beta, \sigma^2 u^T X X^T u)$

model
$$y|X \sim N(X^T\beta, \sigma^2)$$

embedding $Xy|X \sim N(XX^T\beta, \sigma^2 XX^T)$

projection $u^T X y | X \sim N(u^T X X^T \beta, \sigma^2 u^T X X^T u)$

$$\left\{\frac{1}{n}\sum_{i=1}^{n}\mathbb{I}\{u^{T}X_{i}(y_{i}-X_{i}^{T}\eta)>0\}\wedge\frac{1}{n}\sum_{i=1}^{n}\mathbb{I}\{u^{T}X_{i}(y_{i}-X_{i}^{T}\eta)\leq0\}\right\}$$

model
$$y|X \sim N(X^T\beta, \sigma^2)$$

embedding $Xy|X \sim N(XX^T\beta, \sigma^2 XX^T)$

projection
$$u^T X y | X \sim N(u^T X X^T \beta, \sigma^2 u^T X X^T u)$$

$$\min_{u \in \mathbb{R}^p} \left\{ \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i(y_i - X_i^T \eta) > 0\} \land \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i(y_i - X_i^T \eta) \le 0\} \right\}$$

model
$$y|X \sim N(X^T\beta, \sigma^2)$$

embedding $Xy|X \sim N(XX^T\beta, \sigma^2 XX^T)$

projection $u^T X y | X \sim N(u^T X X^T \beta, \sigma^2 u^T X X^T u)$

$$\hat{\beta} = \operatorname*{argmax}_{\eta \in \mathbb{R}^p} \min_{u \in \mathbb{R}^p} \left\{ \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i(y_i - X_i^T \eta) > 0\} \land \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i(y_i - X_i^T \eta) \le 0\} \right\}$$

model
$$y|X \sim N(X^T\beta, \sigma^2)$$

embedding $Xy|X \sim N(XX^T\beta, \sigma^2 XX^T)$

projection $u^T X y | X \sim N(u^T X X^T \beta, \sigma^2 u^T X X^T u)$

$$\hat{\beta} = \operatorname*{argmax}_{\eta \in \mathbb{R}^p} \min_{u \in \mathbb{R}^p} \left\{ \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i(y_i - X_i^T \eta) > 0\} \land \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i(y_i - X_i^T \eta) \le 0\} \right\}$$

[Rousseeuw & Hubert, 1999]

Tukey's depth is not a special case of regression depth.

 $(X,Y) \in \mathbb{R}^p \times \mathbb{R}^m \sim \mathbb{P}$

 $(X,Y) \in \mathbb{R}^p \times \mathbb{R}^m \sim \mathbb{P}$

 $B \in \mathbb{R}^{p \times m}$

 $(X,Y) \in \mathbb{R}^p \times \mathbb{R}^m \sim \mathbb{P}$

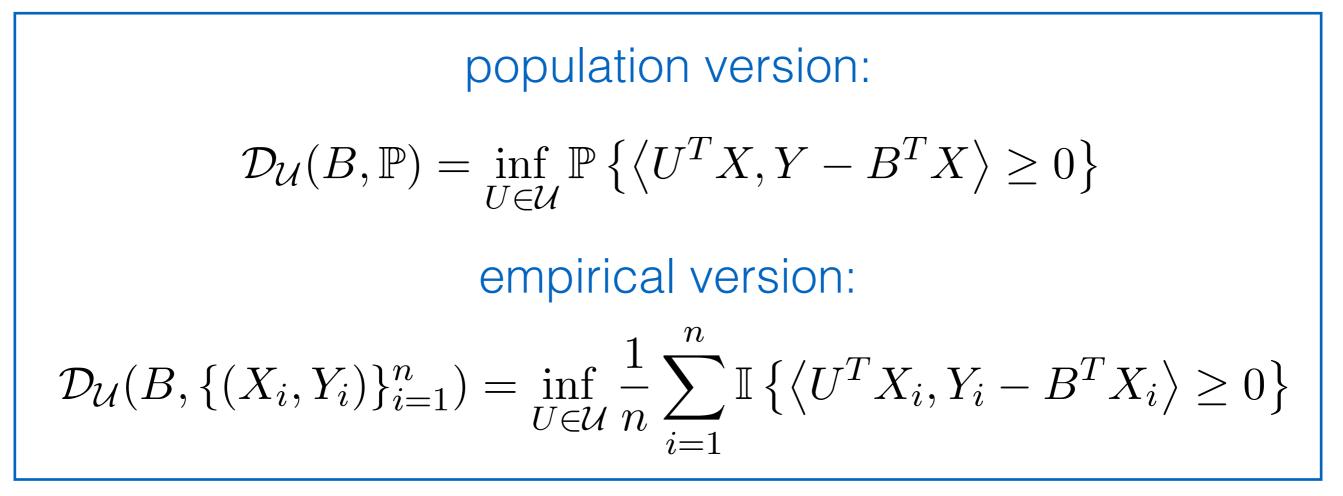
 $B \in \mathbb{R}^{p \times m}$

population version:

$$\mathcal{D}_{\mathcal{U}}(B,\mathbb{P}) = \inf_{U \in \mathcal{U}} \mathbb{P}\left\{ \left\langle U^T X, Y - B^T X \right\rangle \ge 0 \right\}$$

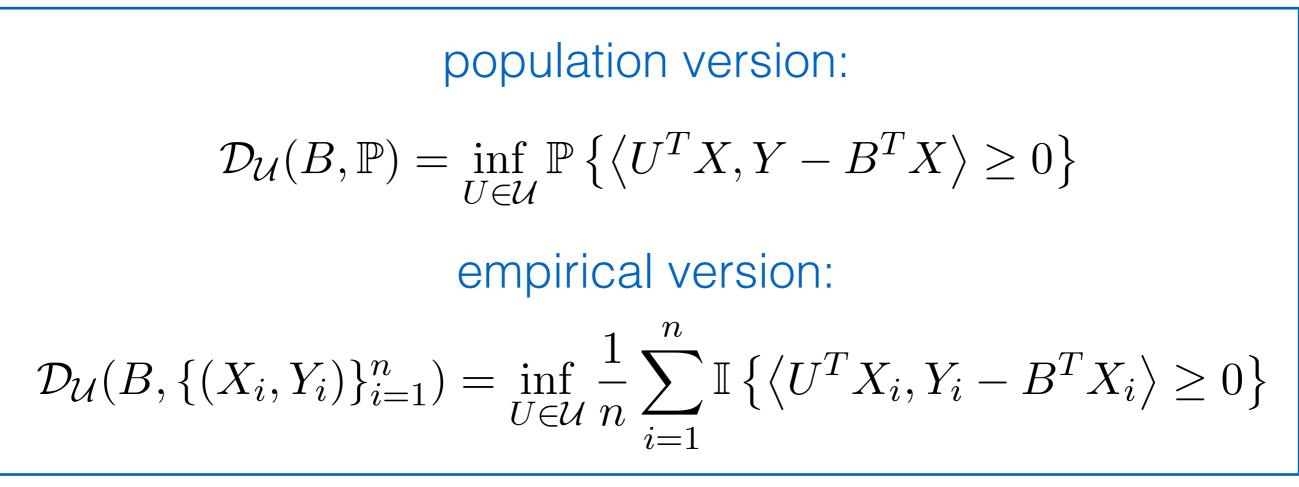
 $(X,Y) \in \mathbb{R}^p \times \mathbb{R}^m \sim \mathbb{P}$

 $B \in \mathbb{R}^{p \times m}$



 $(X,Y) \in \mathbb{R}^p \times \mathbb{R}^m \sim \mathbb{P}$

 $B \in \mathbb{R}^{p \times m}$



[Mizera, 2002]

 $\mathcal{D}_{\mathcal{U}}(B,\mathbb{P}) = \inf_{U \in \mathcal{U}} \mathbb{P}\left\{ \left\langle U^T X, Y - B^T X \right\rangle \ge 0 \right\}$

$$\mathcal{D}_{\mathcal{U}}(B,\mathbb{P}) = \inf_{U \in \mathcal{U}} \mathbb{P}\left\{ \left\langle U^T X, Y - B^T X \right\rangle \ge 0 \right\}$$

 $p = 1, X = 1 \in \mathbb{R},$ $\mathcal{D}_{\mathcal{U}}(b, \mathbb{P}) = \inf_{u \in \mathcal{U}} \mathbb{P}\left\{ u^T (Y - b) \ge 0 \right\}$

$$\mathcal{D}_{\mathcal{U}}(B,\mathbb{P}) = \inf_{U \in \mathcal{U}} \mathbb{P}\left\{ \left\langle U^T X, Y - B^T X \right\rangle \ge 0 \right\}$$

$$p = 1, X = 1 \in \mathbb{R},$$
$$\mathcal{D}_{\mathcal{U}}(b, \mathbb{P}) = \inf_{u \in \mathcal{U}} \mathbb{P} \left\{ u^T (Y - b) \ge 0 \right\}$$
$$m = 1,$$

$$\mathcal{D}_{\mathcal{U}}(\beta, \mathbb{P}) = \inf_{U \in \mathcal{U}} \mathbb{P}\left\{ u^T X (y - \beta^T X) \ge 0 \right\}$$

Proposition. For any $\delta > 0$, $\sup_{B \in \mathbb{R}^{p \times m}} |\mathcal{D}(B, \mathbb{P}_n) - \mathcal{D}(B, \mathbb{P})| \le C\sqrt{\frac{pm}{n}} + \sqrt{\frac{\log(1/\delta)}{2n}},$ with probability at least $1 - 2\delta$.

Proposition. For any $\delta > 0$, $\sup_{B \in \mathbb{R}^{p \times m}} |\mathcal{D}(B, \mathbb{P}_n) - \mathcal{D}(B, \mathbb{P})| \le C\sqrt{\frac{pm}{n}} + \sqrt{\frac{\log(1/\delta)}{2n}},$ with probability at least $1 - 2\delta$.

Proposition. $\sup_{B,Q} |\mathcal{D}(B, (1 - \epsilon P_{B^*}) + \epsilon Q) - \mathcal{D}(B, P_{B^*})| \le \epsilon$

 $(X,Y) \sim P_B$

 $(X, Y) \sim P_B : X \sim N(0, \Sigma), \quad Y | X \sim N(B^T X, \sigma^2 I_m)$

 $(X, Y) \sim P_B : X \sim N(0, \Sigma), \quad Y | X \sim N(B^T X, \sigma^2 I_m)$

 $(X_1, Y_1), ..., (X_n, Y_n) \sim (1 - \epsilon)P_B + \epsilon Q$

 $(X, Y) \sim P_B : X \sim N(0, \Sigma), \quad Y | X \sim N(B^T X, \sigma^2 I_m)$

 $(X_1, Y_1), ..., (X_n, Y_n) \sim (1 - \epsilon)P_B + \epsilon Q$

Theorem [G17]. For some C > 0, $\operatorname{Tr}((\widehat{B} - B)^T \Sigma(\widehat{B} - B)) \leq C\sigma^2 \left(\frac{pm}{n} \vee \epsilon^2\right),$

$$\|\widehat{B} - B\|_{\mathrm{F}}^2 \le C \frac{\sigma^2}{\kappa^2} \left(\frac{pm}{n} \lor \epsilon^2\right),$$

with high probability uniformly over B, Q.

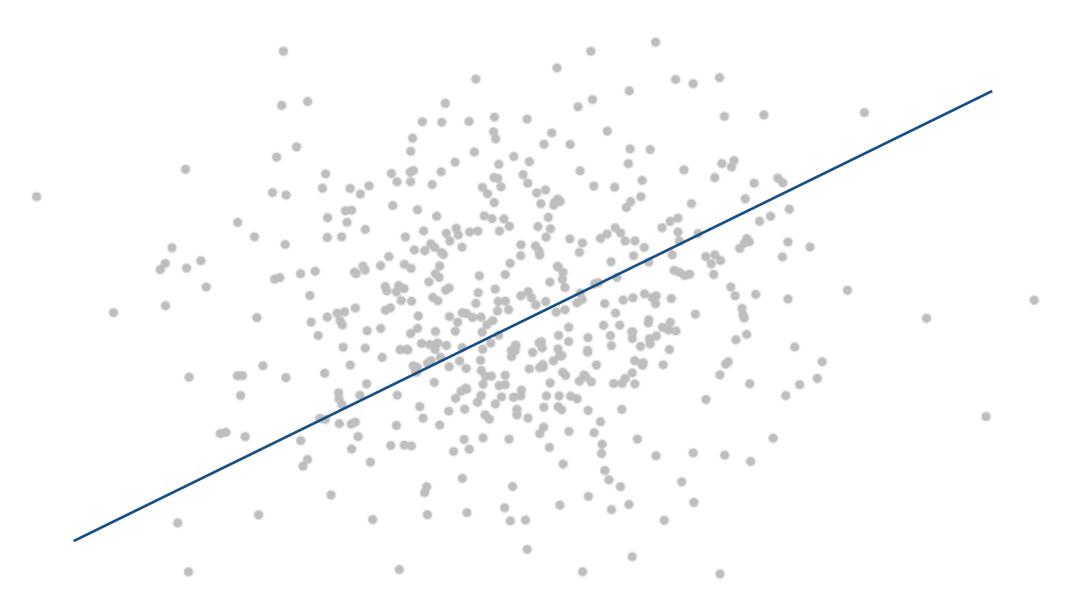
 $X_1, \dots, X_n \sim (1 - \epsilon) N(0, \Sigma) + \epsilon Q.$

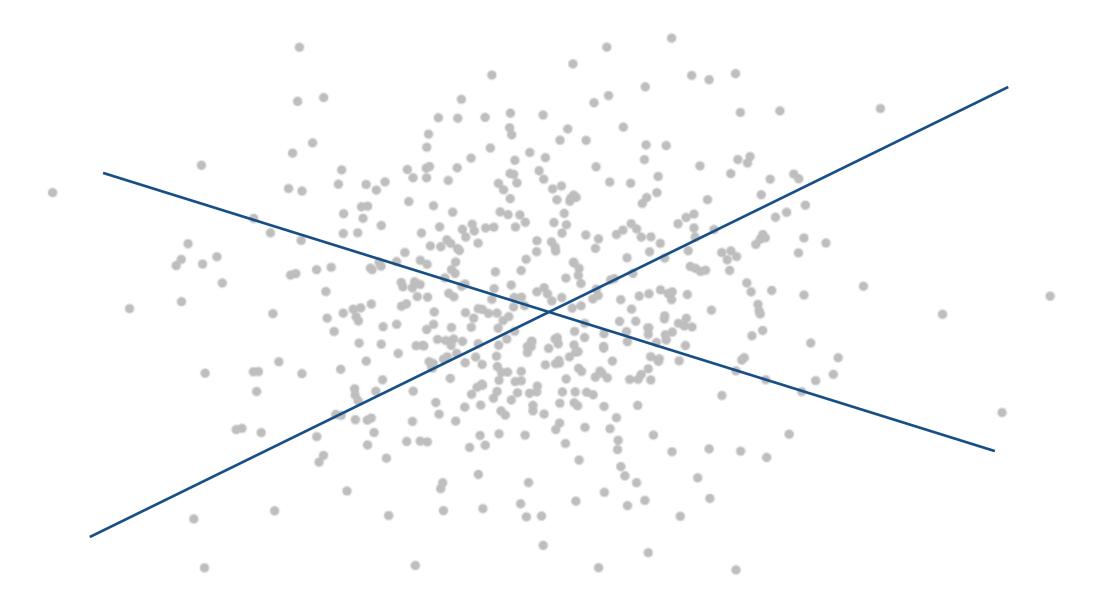
 $X_1, \dots, X_n \sim (1 - \epsilon) N(0, \Sigma) + \epsilon Q.$ how to estimate ?

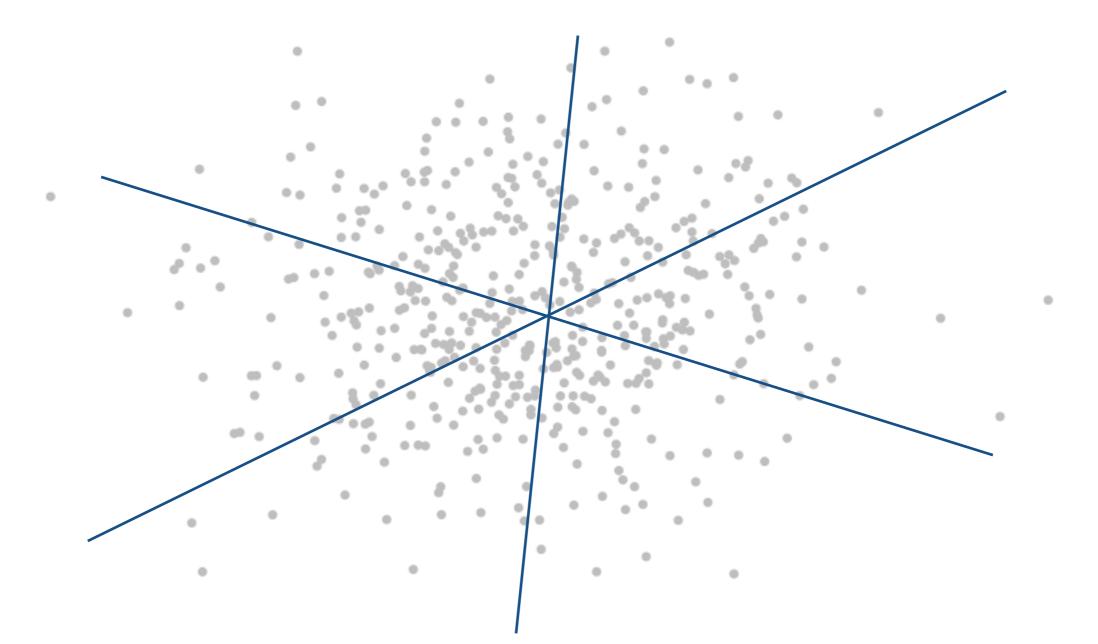
0

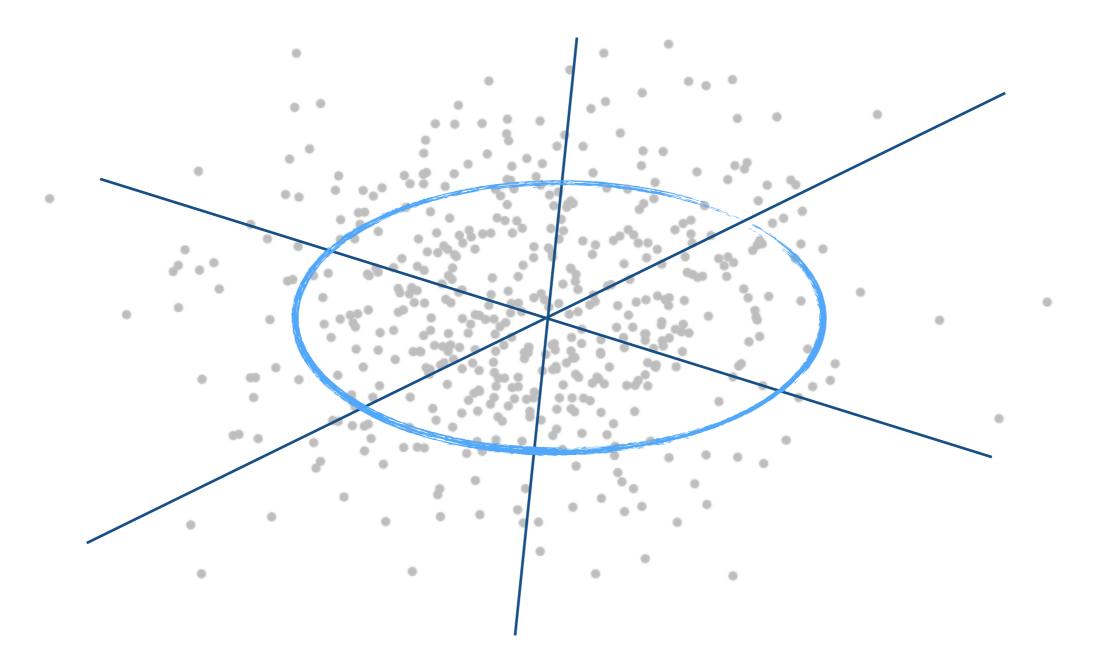
0

• • • •









$$\mathcal{D}(\Gamma, \{X_i\}_{i=1}^n) = \min_{\|u\|=1} \min\left\{\frac{1}{n} \sum_{i=1}^n \mathbb{I}\{|u^T X_i|^2 \ge u^T \Gamma u\}, \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{|u^T X_i|^2 < u^T \Gamma u\}\right\}$$

$$\mathcal{D}(\Gamma, \{X_i\}_{i=1}^n) = \min_{\|u\|=1} \min\left\{\frac{1}{n} \sum_{i=1}^n \mathbb{I}\{|u^T X_i|^2 \ge u^T \Gamma u\}, \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{|u^T X_i|^2 < u^T \Gamma u\}\right\}$$

 $\hat{\Gamma} = \arg \max_{\Gamma \succeq 0} \mathcal{D}(\Gamma, \{X_i\}_{i=1}^n) \qquad \hat{\Sigma} = \hat{\Gamma}/\beta$

$$\mathcal{D}(\Gamma, \{X_i\}_{i=1}^n) = \min_{\|u\|=1} \min\left\{\frac{1}{n} \sum_{i=1}^n \mathbb{I}\{|u^T X_i|^2 \ge u^T \Gamma u\}, \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{|u^T X_i|^2 < u^T \Gamma u\}\right\}$$

 $\hat{\Gamma} = \arg \max_{\Gamma \succeq 0} \mathcal{D}(\Gamma, \{X_i\}_{i=1}^n) \qquad \hat{\Sigma} = \hat{\Gamma}/\beta$

Theorem [CGR15]. For some C > 0,

$$\|\hat{\Sigma} - \Sigma\|_{\text{op}}^2 \le C\left(\frac{p}{n} \lor \epsilon^2\right)$$

with high probability uniformly over Σ, Q .

Summary

mean	$\ \cdot\ ^2$	$\frac{p}{n}\vee\epsilon^2$
reduced rank regression	$\ \cdot\ _{\mathrm{F}}^2$	$\frac{\sigma^2}{\kappa^2} \frac{r(p+m)}{n} \vee \frac{\sigma^2}{\kappa^2} \epsilon^2$
Gaussian graphical model	$\ \cdot\ _{\ell_1}^2$	$\frac{s^2\log(ep/s)}{n}\vee s\epsilon^2$
covariance matrix	$\ \cdot\ _{\mathrm{op}}^2$	$\frac{p}{n}\vee\epsilon^2$
sparse PCA	$\left\ \cdot\right\ _{\mathrm{F}}^{2}$	$\frac{s\log(ep/s)}{n\lambda^2}\vee\frac{\epsilon^2}{\lambda^2}$

Summary

mean	$\ \cdot\ ^2$	$\frac{p}{n}\sqrt{\epsilon^2}$
reduced rank regression	$\ \cdot\ _{\mathrm{F}}^2$	$\frac{\sigma^2}{\kappa^2} \frac{r(p+m)}{n} \sqrt{\frac{\sigma^2}{\kappa^2} \epsilon^2}$
Gaussian graphical model	$\ \cdot\ _{\ell_1}^2$	$\frac{s^2 \log(ep/s)}{n} \sqrt{s\epsilon^2}$
covariance matrix	$\ \cdot\ _{\mathrm{op}}^2$	$\frac{p}{n}\sqrt{\epsilon^2}$
sparse PCA	$\left\ \cdot\right\ _{\mathrm{F}}^{2}$	$\frac{s\log(ep/s)}{n\lambda^2}\sqrt{\frac{\epsilon^2}{\lambda^2}}$

Computation

Computational Challenges

 $X_1, ..., X_n \sim (1 - \epsilon) N(\theta, I_p) + \epsilon Q.$

Computational Challenges

$X_1, ..., X_n \sim (1 - \epsilon) N(\theta, I_p) + \epsilon Q.$

Lai, Rao, Vempala Diakonikolas, Kamath, Kane, Li, Moitra, Stewart Balakrishnan, Du, Singh

A well-defined objective function

- A well-defined objective function
- Adaptive to ϵ and Σ

- A well-defined objective function
- Adaptive to ϵ and Σ
- Optimal for any elliptical distribution

A practically good algorithm?

f-divergence

$$D_f(P||Q) = \int f\left(\frac{p}{q}\right) dQ$$

f-divergence

$$D_f(P||Q) = \int f\left(\frac{p}{q}\right) dQ$$

$$f(u) = \sup_{t} (tu - f^*(t))$$

f-divergence
$$D_f(P||Q) = \int f\left(\frac{p}{q}\right) dQ$$

variational representation $= \sup_{T} \left[\mathbb{E}_{X \sim P} T(X) - \mathbb{E}_{X \sim Q} f^*(T(X)) \right]$

f-divergence
$$D_f(P||Q) = \int f\left(\frac{p}{q}\right) dQ$$

variational representation $= \sup_{T} \left[\mathbb{E}_{X \sim P} T(X) - \mathbb{E}_{X \sim Q} f^*(T(X)) \right]$

optimal T
$$T(x) = f'\left(\frac{p(x)}{q(x)}\right)$$

f-divergence
$$D_f(P||Q) = \int f\left(\frac{p}{q}\right) dQ$$

variational representation $= \sup_{T} \left[\mathbb{E}_{X \sim P} T(X) - \mathbb{E}_{X \sim Q} f^*(T(X)) \right]$

$$= \sup_{\tilde{Q}} \left\{ \mathbb{E}_{X \sim P} f'\left(\frac{d\tilde{Q}(X)}{dQ(X)}\right) - \mathbb{E}_{X \sim Q} f^*\left(f'\left(\frac{d\tilde{Q}(X)}{dQ(X)}\right)\right) \right\}$$

$$\max_{T \in \mathcal{T}} \left\{ \frac{1}{n} \sum_{i=1}^{n} T(X_i) - \int f^*(T) \, dQ \right\}$$

$$\max_{\tilde{Q}\in\tilde{\mathcal{Q}}}\left\{\frac{1}{n}\sum_{i=1}^{n}f'\left(\frac{\tilde{q}(X_i)}{q(X_i)}\right) - \int f^*\left(f'\left(\frac{\tilde{q}}{q}\right)\right)dQ\right\}$$

$$\min_{Q \in \mathcal{Q}} \max_{T \in \mathcal{T}} \left\{ \frac{1}{n} \sum_{i=1}^{n} T(X_i) - \int f^*(T) \, dQ \right\}$$

$$\min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} f'\left(\frac{\tilde{q}(X_i)}{q(X_i)}\right) - \int f^*\left(f'\left(\frac{\tilde{q}}{q}\right)\right) dQ \right\}$$

f-GAN
$$\min_{Q \in \mathcal{Q}} \max_{T \in \mathcal{T}} \left\{ \frac{1}{n} \sum_{i=1}^{n} T(X_i) - \int f^*(T) \, dQ \right\}$$

f-Learning
$$\min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} f'\left(\frac{\tilde{q}(X_i)}{q(X_i)}\right) - \int f^*\left(f'\left(\frac{\tilde{q}}{q}\right)\right) dQ \right\}$$

f-GAN
$$\min_{Q \in \mathcal{Q}} \max_{T \in \mathcal{T}} \left\{ \frac{1}{n} \sum_{i=1}^{n} T(X_i) - \int f^*(T) \, dQ \right\}$$

f-Learning
$$\min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} f'\left(\frac{\tilde{q}(X_i)}{q(X_i)}\right) - \int f^*\left(f'\left(\frac{\tilde{q}}{q}\right)\right) dQ \right\}$$

[Nowozin, Cseke, Tomioka]

Jensen-Shannon	$f(x) = x \log x - (x+1) \log(x+1)$	GAN

[Goodfellow et al.]

Jensen-Shannon	$f(x) = x \log x - (x+1) \log(x+1)$	GAN
Kullback-Leibler	$f(x) = x \log x$	MLE

[Goodfellow et al.]

Jensen-Shannon	$f(x) = x \log x - (x+1) \log(x+1)$	GAN
Kullback-Leibler	$f(x) = x \log x$	MLE
Hellinger Squared	$f(x) = 2 - 2\sqrt{x}$	rho

[Goodfellow et al., Baraud and Birge]

Jensen-Shannon	$f(x) = x \log x - (x+1) \log(x+1)$	GAN
Kullback-Leibler	$f(x) = x \log x$	MLE
Hellinger Squared	$f(x) = 2 - 2\sqrt{x}$	rho
Total Variation	$f(x) = (x - 1)_+$	depth

[Goodfellow et al., Baraud and Birge]

 $\min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{ \frac{\tilde{q}(X_i)}{q(X_i)} \ge 1 \right\} - Q\left(\frac{\tilde{q}}{q} \ge 1\right) \right\}$

$$\min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{ \frac{\tilde{q}(X_i)}{q(X_i)} \ge 1 \right\} - Q\left(\frac{\tilde{q}}{q} \ge 1\right) \right\}$$

$$\mathcal{Q} = \left\{ N(\theta, I_p) : \theta \in \mathbb{R}^p \right\} \qquad \tilde{\mathcal{Q}} = \left\{ N(\tilde{\theta}, I_p) : \tilde{\theta} \in \mathcal{N}_r(\theta) \right\}$$

$$\min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{ \frac{\tilde{q}(X_i)}{q(X_i)} \ge 1 \right\} - Q\left(\frac{\tilde{q}}{q} \ge 1\right) \right\}$$

$$Q = \left\{ N(\theta, I_p) : \theta \in \mathbb{R}^p \right\} \qquad \tilde{Q} = \left\{ N(\tilde{\theta}, I_p) : \tilde{\theta} \in \mathcal{N}_r(\theta) \right\}$$
$$r \to 0$$

$$\min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{ \frac{\tilde{q}(X_i)}{q(X_i)} \ge 1 \right\} - Q\left(\frac{\tilde{q}}{q} \ge 1\right) \right\}$$

$$Q = \left\{ N(\theta, I_p) : \theta \in \mathbb{R}^p \right\} \qquad \tilde{Q} = \left\{ N(\tilde{\theta}, I_p) : \tilde{\theta} \in \mathcal{N}_r(\theta) \right\}$$
$$r \to 0$$

Tukey depth
$$\max_{\theta \in \mathbb{R}} \min_{\|u\|=1} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{u^{T} X_{i} \geq u^{T} \theta\right\}$$

 $\min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{ \frac{\tilde{q}(X_i)}{q(X_i)} \ge 1 \right\} - Q\left(\frac{\tilde{q}}{q} \ge 1\right) \right\}$

$$\min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{ \frac{\tilde{q}(X_i)}{q(X_i)} \ge 1 \right\} - Q\left(\frac{\tilde{q}}{q} \ge 1\right) \right\}$$

$$\mathcal{Q} = \left\{ N(0, \Sigma) : \Sigma \in \mathbb{R}^{p \times p} \right\} \quad \tilde{\mathcal{Q}} = \left\{ N(0, \tilde{\Sigma}) : \tilde{\Sigma} = \Sigma + ruu^T, \|u\| = 1 \right\}$$

$$\min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{ \frac{\tilde{q}(X_i)}{q(X_i)} \ge 1 \right\} - Q\left(\frac{\tilde{q}}{q} \ge 1\right) \right\}$$

$$\mathcal{Q} = \left\{ N(0, \Sigma) : \Sigma \in \mathbb{R}^{p \times p} \right\} \quad \tilde{\mathcal{Q}} = \left\{ N(0, \tilde{\Sigma}) : \tilde{\Sigma} = \Sigma + ruu^T, \|u\| = 1 \right\}$$
$$r \to 0$$

$$\min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{ \frac{\tilde{q}(X_i)}{q(X_i)} \ge 1 \right\} - Q\left(\frac{\tilde{q}}{q} \ge 1\right) \right\}$$

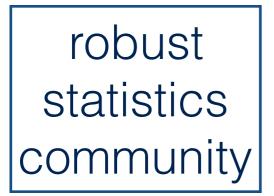
$$\mathcal{Q} = \left\{ N(0,\Sigma) : \Sigma \in \mathbb{R}^{p \times p} \right\} \quad \tilde{\mathcal{Q}} = \left\{ N(0,\tilde{\Sigma}) : \tilde{\Sigma} = \Sigma + ruu^{T}, ||u|| = 1 \right\}$$
(related to)
matrix depth
$$\max_{\Sigma} \min_{\||u\||=1} \left[\left(\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{|u^{T}X_{i}|^{2} \le u^{T}\Sigma u\} - \mathbb{P}(\chi_{1}^{2} \le 1) \right) \land \left(\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{|u^{T}X_{i}|^{2} > u^{T}\Sigma u\} - \mathbb{P}(\chi_{1}^{2} > 1) \right) \right]$$

m

robust statistics community deep learning community

f-GAN

deep learning community



f-GAN

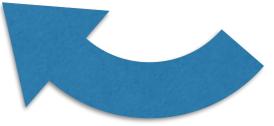
deep learning community

practically good algorithms

theoretical foundation

robust statistics community

f-Learning f-GAN deep learning community



practically good algorithms

$$\widehat{\theta} = \underset{\eta \quad w, b}{\operatorname{argmin}} \left[\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + e^{-w^{T}X_{i} - b}} - E_{\eta} \frac{1}{1 + e^{-w^{T}X - b}} \right]$$

$$\widehat{\theta} = \underset{\eta \quad w, b}{\operatorname{argmin}} \sup_{w, b} \left[\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + e^{-w^{T}X_{i} - b}} - \underbrace{E_{\eta} \frac{1}{1 + e^{-w^{T}X - b}}}_{N(\eta, I_{p})} \right]$$

$$\widehat{\theta} = \underset{\eta \quad w, b}{\operatorname{argmin}} \left[\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + e^{-w^{T}X_{i}-b}} - \underbrace{E_{\eta} \frac{1}{1 + e^{-w^{T}X-b}}}_{N(\eta, I_{p})} \right]$$

logistic regression classifier

$$\widehat{\theta} = \underset{\eta \quad w, b}{\operatorname{argmin}} \left[\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + e^{-w^{T}X_{i}-b}} - E_{\eta} \frac{1}{1 + e^{-w^{T}X-b}} \right]$$

$$N(\eta, I_{p})$$

logistic regression classifier

Theorem [GLYZ18]. For some C > 0, $\|\widehat{\theta} - \theta\|^2 \le C\left(\frac{p}{n} \lor \epsilon^2\right)$ with high probability uniformly over $\theta \in \mathbb{R}^p, Q$. TV-GAN

very hard to optimize!

$$\widehat{\theta} = \operatorname*{argmin}_{\eta \in \mathbb{R}^p} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^n \log T(X_i) + E_\eta \log(1 - T(X)) \right] + \log 4$$

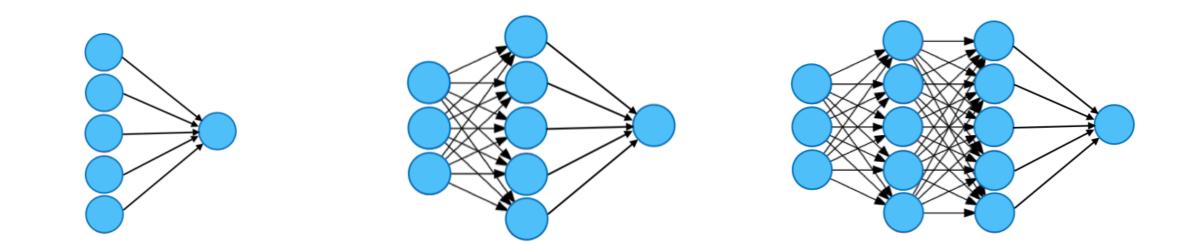
$$\widehat{\theta} = \operatorname*{argmin}_{\eta \in \mathbb{R}^p} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^n \log T(X_i) + E_\eta \log(1 - T(X)) \right] + \log 4$$

numerical experiment $X_1, ..., X_n \sim (1 - \epsilon)N(\theta, I_p) + \epsilon N(\tilde{\theta}, I_p)$

JS-GAN

$$\widehat{\theta} = \operatorname*{argmin}_{\eta \in \mathbb{R}^p} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^n \log T(X_i) + E_\eta \log(1 - T(X)) \right] + \log 4$$

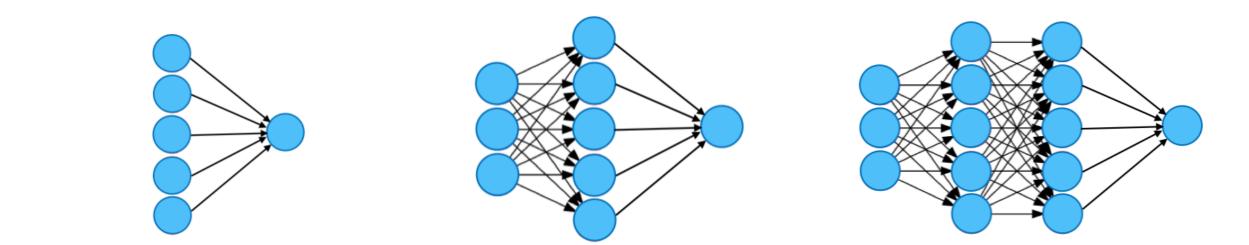
numerical experiment $X_1, ..., X_n \sim (1 - \epsilon)N(\theta, I_p) + \epsilon N(\tilde{\theta}, I_p)$



JS-GAN

$$\widehat{\theta} = \operatorname*{argmin}_{\eta \in \mathbb{R}^p} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^n \log T(X_i) + E_\eta \log(1 - T(X)) \right] + \log 4$$

numerical experiment $X_1, ..., X_n \sim (1 - \epsilon)N(\theta, I_p) + \epsilon N(\widetilde{\theta}, I_p)$

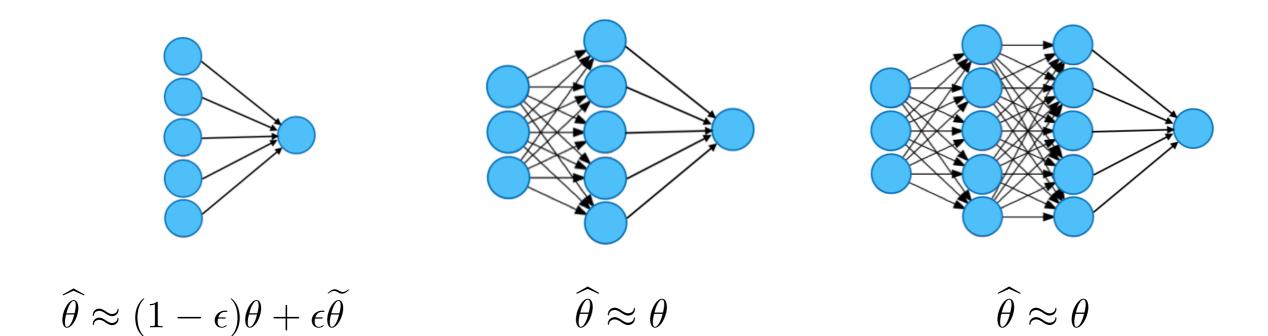


 $\widehat{\theta} \approx (1 - \epsilon)\theta + \epsilon \widetilde{\theta}$

JS-GAN

$$\widehat{\theta} = \operatorname*{argmin}_{\eta \in \mathbb{R}^p} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^n \log T(X_i) + E_\eta \log(1 - T(X)) \right] + \log 4$$

numerical experiment $X_1, ..., X_n \sim (1 - \epsilon)N(\theta, I_p) + \epsilon N(\tilde{\theta}, I_p)$



A classifier with hidden layers leads to robustness. Why?

A classifier with hidden layers leads to robustness. Why?

$$\mathsf{JS}_g(\mathbb{P}, \mathbb{Q}) = \max_{w \in \mathbb{R}^d} \left[\mathbb{P}\log \frac{1}{1 + e^{-w^T g(X)}} + \mathbb{Q}\log \frac{1}{1 + e^{w^T g(X)}} \right] + \log 4.$$

A classifier with hidden layers leads to robustness. Why?

$$\mathsf{JS}_g(\mathbb{P}, \mathbb{Q}) = \max_{w \in \mathbb{R}^d} \left[\mathbb{P}\log \frac{1}{1 + e^{-w^T g(X)}} + \mathbb{Q}\log \frac{1}{1 + e^{w^T g(X)}} \right] + \log 4.$$

Proposition.
$$JS_g(\mathbb{P}, \mathbb{Q}) = 0 \iff \mathbb{P}g(X) = \mathbb{Q}g(X)$$

$$\widehat{\theta} = \underset{\eta \in \mathbb{R}^p}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^n \log T(X_i) + E_\eta \log(1 - T(X)) \right] + \log 4$$

Theorem [GLYZ18]. For a neural network class \mathcal{T} with at least one hidden layer and appropriate regularization, we have

 $\|\widehat{\theta} - \theta\|^2 \lesssim \begin{cases} \frac{p}{n} + \epsilon^2 & \text{(indicator/sigmoid/ramp)} \\ \frac{p\log p}{n} + \epsilon^2 & \text{(ReLU after top two layers)} \end{cases}$

with high probability uniformly over $\theta \in \mathbb{R}^p, Q$.

unknown covariance?

 $X_1, ..., X_n \sim (1 - \epsilon) N(\theta, \Sigma) + \epsilon Q$

unknown covariance?

$$X_1, ..., X_n \sim (1 - \epsilon) N(\theta, \Sigma) + \epsilon Q$$

$$(\widehat{\theta}, \widehat{\Sigma}) = \operatorname*{argmin}_{\eta, \Gamma} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^{n} \log T(X_i) + \mathbb{E}_{X \sim N(\eta, \Gamma)} \log(1 - T(X)) \right]$$

unknown covariance?

$$X_1, ..., X_n \sim (1 - \epsilon) N(\theta, \Sigma) + \epsilon Q$$

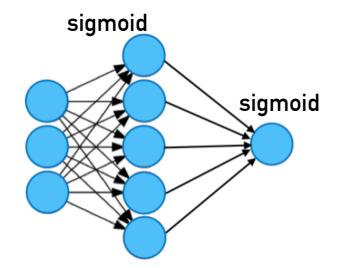
$$(\widehat{\theta}, \widehat{\Sigma}) = \underset{\eta, \Gamma}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^{n} \log T(X_i) + \mathbb{E}_{X \sim N(\eta, \Gamma)} \log(1 - T(X)) \right]$$

no need to change the discriminator class

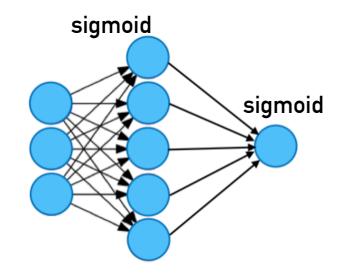
Covariance Matrix

$$\widehat{\Sigma} = \underset{\Gamma}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^{n} \log T(X_i) + \mathbb{E}_{X \sim N(0,\Gamma)} \log(1 - T(X)) \right]$$

$$\widehat{\Sigma} = \underset{\Gamma}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^{n} \log T(X_i) + \mathbb{E}_{X \sim N(0,\Gamma)} \log(1 - T(X)) \right]$$

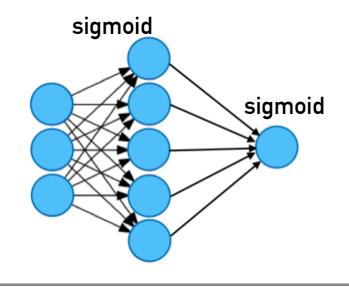


$$\widehat{\Sigma} = \underset{\Gamma}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^{n} \log T(X_i) + \mathbb{E}_{X \sim N(0,\Gamma)} \log(1 - T(X)) \right]$$



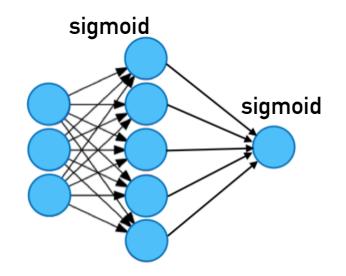
optimal for mean estimation

$$\widehat{\Sigma} = \underset{\Gamma}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^{n} \log T(X_i) + \mathbb{E}_{X \sim N(0,\Gamma)} \log(1 - T(X)) \right]$$

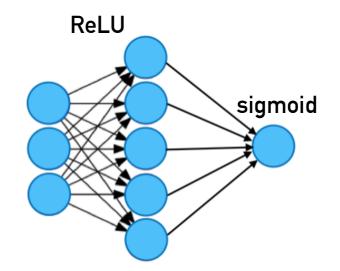


optimal for mean estimation but **inconsistent** for covariance estimation

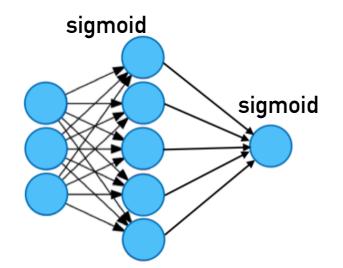
$$\widehat{\Sigma} = \underset{\Gamma}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^{n} \log T(X_i) + \mathbb{E}_{X \sim N(0,\Gamma)} \log(1 - T(X)) \right]$$



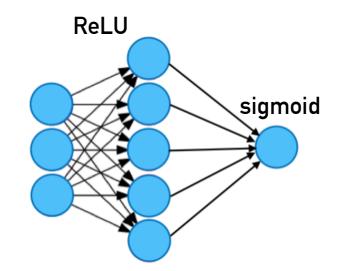
optimal for mean estimation but **inconsistent** for covariance estimation



$$\widehat{\Sigma} = \underset{\Gamma}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^{n} \log T(X_i) + \mathbb{E}_{X \sim N(0,\Gamma)} \log(1 - T(X)) \right]$$

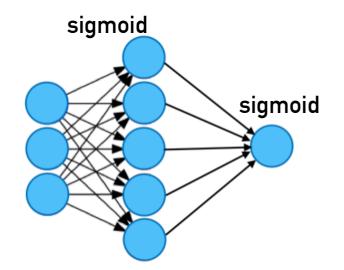


optimal for mean estimation but **inconsistent** for covariance estimation

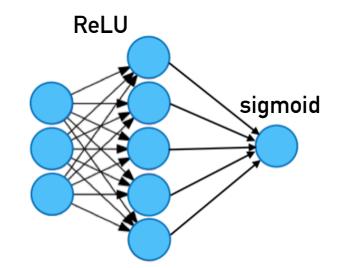


optimal without contamination

$$\widehat{\Sigma} = \underset{\Gamma}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^{n} \log T(X_i) + \mathbb{E}_{X \sim N(0,\Gamma)} \log(1 - T(X)) \right]$$

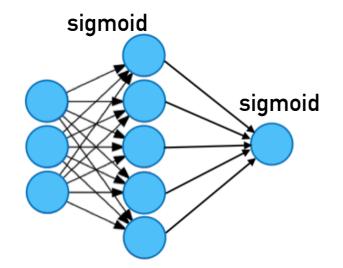


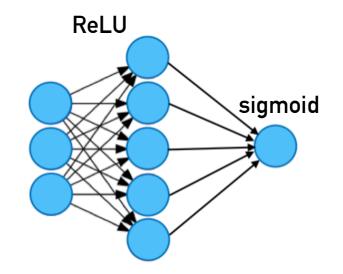
optimal for mean estimation but **inconsistent** for covariance estimation



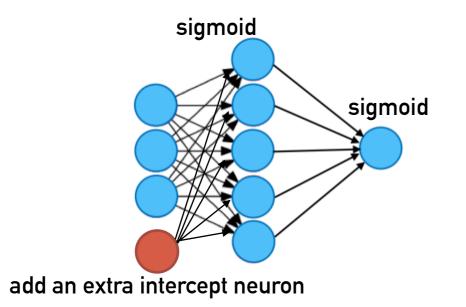
optimal without contamination but **not robust**

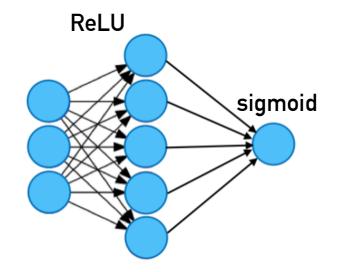
$$\widehat{\Sigma} = \underset{\Gamma}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^{n} \log T(X_i) + \mathbb{E}_{X \sim N(0,\Gamma)} \log(1 - T(X)) \right]$$



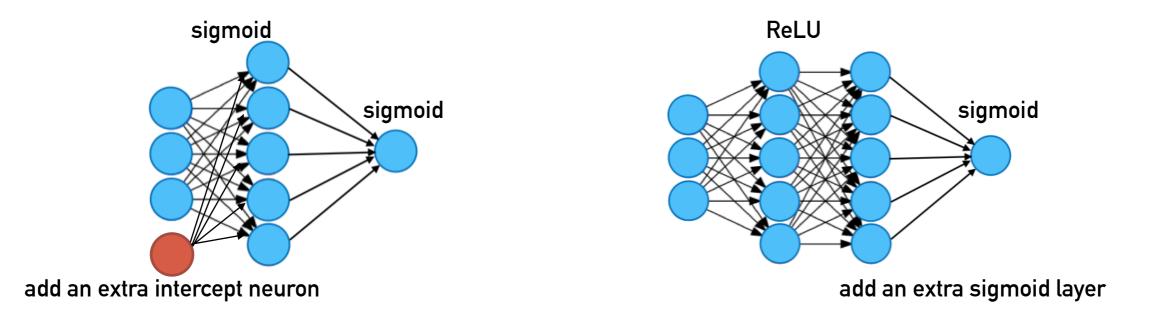


$$\widehat{\Sigma} = \underset{\Gamma}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^{n} \log T(X_i) + \mathbb{E}_{X \sim N(0,\Gamma)} \log(1 - T(X)) \right]$$





$$\widehat{\Sigma} = \underset{\Gamma}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^{n} \log T(X_i) + \mathbb{E}_{X \sim N(0,\Gamma)} \log(1 - T(X)) \right]$$

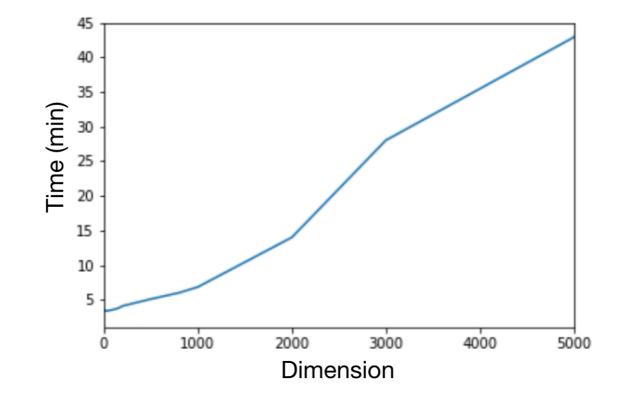


$$\widehat{\Sigma} = \underset{\Gamma}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^{n} \log T(X_i) + \mathbb{E}_{X \sim N(0,\Gamma)} \log(1 - T(X)) \right]$$

Theorem [GYZ18+]. For the above two neural network classes, we have

$$\|\widehat{\Sigma} - \Sigma\|_{\text{op}}^2 \lesssim \begin{cases} \frac{p}{n} + \epsilon^2 \text{ (2-layer sigmoid with intercept)} \\ \frac{p \log p}{n} + \epsilon^2 \\ \frac{p \log p}{n} + \epsilon^2 \\ \end{cases} \text{ (3-layer ReLU)}$$

with high probability uniformly over Σ, Q .



Summary

Thank You