On Sparse Principal Components and Sparse Covariance Estimation in High Dimensions

Boaz Nadler

Department of Computer Science and Applied Mathematics The Weizmann Institute of Science

Based on joint works with Iain Johnstone (Stanford), Debashis Paul (UC-Davis), Aharon Birnbaum

Robert Krauthgamer (Weizmann), Danny Vilenchik (Weizmann)

John Goes, Gilad Lerman (Minnesota)

Apr 2017

1

- 1. Covariance Matrices and PCA
- 2. Sparse PCA, ℓ_q sparsity
- 3. Sparse PCA, ℓ_0 sparsity
- 4. Sparse covariance estimation with heavy tailed data

p dimensional random variable $X \in \mathbb{R}^p$

Observe $\mathbf{x}_1, \ldots, \mathbf{x}_n$: n i.i.d. realizations of X

2

・ロト ・四ト ・ヨト ・ヨト

p dimensional random variable $X \in \mathbb{R}^p$

Observe $\mathbf{x}_1, \ldots, \mathbf{x}_n$: n i.i.d. realizations of X

In principle, X fully characterized by its density f(x)

∢ ≣ ≯

p dimensional random variable $X \in \mathbb{R}^p$

Observe $\mathbf{x}_1, \ldots, \mathbf{x}_n$: n i.i.d. realizations of X

In principle, X fully characterized by its density f(x)

but

Curse of Dimensionality:

accurate non-parametric estimate of f requires $n \propto \exp(p)$

$$\mu = \mathbb{E}[\mathbf{x}]$$

< ≣ >

臣

$$\mu = \mathbb{E}[\mathbf{x}]$$

Covariance

$$\boldsymbol{\Sigma} = \mathbb{E}[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T]$$

< ≣ >

臣

$$\mu = \mathbb{E}[\mathbf{x}]$$

Covariance

$$\boldsymbol{\Sigma} = \mathbb{E}[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T]$$

Principal Components

leading eigenvalues/vectors $(\lambda_j, \mathbf{v}_j)$ of Σ

< ≣ >

$$\mu = \mathbb{E}[\mathbf{x}]$$

Covariance

$$\boldsymbol{\Sigma} = \mathbb{E}[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T]$$

Principal Components

leading eigenvalues/vectors $(\lambda_j, \mathbf{v}_j)$ of Σ

examples: dimension reduction, denoising, regression, classification etc

Sample / Empirical Estimates

sample mean:

$$\hat{\mu} = \bar{\mathbf{x}} = \frac{1}{n} \sum_{i} \mathbf{x}_{i}$$

▶ ★ 臣 ▶ ...

æ

(日)

Sample / Empirical Estimates

sample mean:

$$\hat{\mu} = \bar{\mathbf{x}} = \frac{1}{n} \sum_{i} \mathbf{x}_{i}$$

sample covariance matrix:

$$\hat{\Sigma} = rac{1}{n-1}\sum_i (\mathbf{x}_i - ar{\mathbf{x}}) (\mathbf{x}_i - ar{\mathbf{x}})^{\mathcal{T}}$$

Sample PCA: eigen-decomposition of $\hat{\Sigma}$

$$\hat{\boldsymbol{\Sigma}} = \sum_{i} \ell_{i} \hat{\boldsymbol{v}}_{i} \hat{\boldsymbol{v}}_{i}^{T}$$

Sample / Empirical Estimates

sample mean:

$$\hat{\mu} = \bar{\mathbf{x}} = \frac{1}{n} \sum_{i} \mathbf{x}_{i}$$

sample covariance matrix:

$$\hat{\Sigma} = rac{1}{n-1}\sum_i (\mathbf{x}_i - ar{\mathbf{x}}) (\mathbf{x}_i - ar{\mathbf{x}})^{\mathcal{T}}$$

Sample PCA: eigen-decomposition of $\hat{\Sigma}$

$$\hat{\boldsymbol{\Sigma}} = \sum_{i} \ell_{i} \hat{\boldsymbol{\mathsf{v}}}_{i} \hat{\boldsymbol{\mathsf{v}}}_{i}^{\mathsf{T}}$$

Use $\hat{\mathbf{v}}_i$ as estimate of *i*-th principal component \mathbf{v}_i

The good old days

Datasets had "small p - large n".

< E > E

→ < Ξ</p>

Datasets had "small p - large n".

Asymptotic analysis: dimension p fixed, sample size $n \to \infty$, under mild conditions on X, asymptotic consistency of $\hat{\mu}, \hat{\Sigma}$ to their population counterparts.

Similarly, sample PCA is *asymptotically consistent*:

 $\hat{\Sigma} \rightarrow \Sigma$ and for all λ_i with multiplicity one, $\hat{\mathbf{v}}_i \rightarrow \mathbf{v}_i$

Datasets had "small p - large n".

Asymptotic analysis: dimension p fixed, sample size $n \to \infty$, under mild conditions on X, asymptotic consistency of $\hat{\mu}, \hat{\Sigma}$ to their population counterparts.

Similarly, sample PCA is *asymptotically consistent*:

$$\hat{\Sigma} \rightarrow \Sigma$$
 and for all λ_i with multiplicity one, $\hat{\mathbf{v}}_i \rightarrow \mathbf{v}_i$

However in high dimensions, as $p, n \rightarrow \infty$ with $p/n \rightarrow c > 1$,

$$\|\hat{\mu} - \mu\| = O_p(p/n), \|\hat{\Sigma} - \Sigma\| \ge \lambda_{\min}(\Sigma)$$

sample PCA is inconsistent.

[Johnstone & Lu, 09']

Inconsistency of Sample PCA

Consider $\mathbf{x} \sim \mathcal{N}(0, \Sigma)$ where $\Sigma = diag(\lambda_1, \dots, \lambda_k, 0, \dots, 0) + \sigma^2 \mathbf{I}_p$

Spiked Covariance Model with k spikes

< ≣ > ≣

Consider $\mathbf{x} \sim \mathcal{N}(0, \Sigma)$ where $\Sigma = diag(\lambda_1, \dots, \lambda_k, 0, \dots, 0) + \sigma^2 \mathbf{I}_p$

Spiked Covariance Model with k spikes

As $p, n
ightarrow \infty$ with p/n
ightarrow c,

$$R_i^2 = |\langle \hat{\mathbf{v}}_i, \mathbf{v}_i \rangle|^2 \rightarrow \begin{cases} 0 & \lambda_i < \sigma^2 \sqrt{p/n} \\ \frac{\lambda_i^2}{c\sigma^2} - \sigma^2 \\ \frac{\lambda_i^2}{c\sigma^2} + \lambda_i \end{cases} \quad \lambda_i > \sigma^2 \sqrt{p/n} \end{cases}$$

[statistical mechanics literature 90's] [Paul 07', Nadler 08']

Key point:

$$R^2 = 1 - \frac{\sigma^2}{\lambda} \frac{p}{n} + \dots$$

2

Can one do better under sparsity assumptions ?

Can one do better under sparsity assumptions ?

[Donoho & Johnstone 94', others] For estimation of μ - well studied sparse normal means problem

Can one do better under sparsity assumptions ?

[Donoho & Johnstone 94', others] For estimation of μ - well studied sparse normal means problem

[Bickel & Levina, El-Karoui, Cai & Zhou, etc] Sparse covariance estimation by thresholding, minimax lower bounds, works for sub-Gaussian r.v.'s

Can one do better under sparsity assumptions ?

[Donoho & Johnstone 94', others] For estimation of μ - well studied sparse normal means problem

[Bickel & Levina, El-Karoui, Cai & Zhou, etc] Sparse covariance estimation by thresholding, minimax lower bounds, works for sub-Gaussian r.v.'s

In this talk:

- Estimation of sparse PCA
- Sparse covariance estimation under heavy tails

Given $\{\mathbf{x}_i\}_{i=1}^n$ iid with population covariance $\Sigma = diag(\lambda_1, \dots, \lambda_k, 0, \dots, 0) + \sigma^2 \mathbf{I}_p$

Assume k leading eigenvectors \mathbf{v}_i are sparse:

How well can we estimate them ?

Two settings:

a) Approximate sparsity: for $q \in (0,2)$,

$$\|\mathbf{v}\|_2 = 1$$
 and $\mathbf{v} \in \ell_q(\mathcal{C}) = \{\mathbf{z} \in \mathbb{R}^p \,|\, \|z\|_q < \mathcal{C}\}$

b) Exact L_0 sparsity, $\|\mathbf{v}\|_0 = k$.

< 臣 → 臣

< 臣 → 臣

- Minimax Rates of Estimation ?
- Computationally Efficient) Methods that achieve those ?

∢ ≣⇒

- Minimax Rates of Estimation ?
- Computationally Efficient) Methods that achieve those ?
- What happens when $\mathbf{v} \in \ell_0$?

Many works (algorithms, analysis, optimizations) on sparse PCA.

< E > _ E

Many works (algorithms, analysis, optimizations) on sparse PCA. **Diagonal Thresholding**: [Johnstone & Lu, JASA 09]:

- Compute only diagonal entries of covariance matrix $\hat{\Sigma}_{ii}$.
- Variable selection by thresholding

$$I = \{i \mid \hat{\Sigma}_{ii} > t(\alpha, p, n)\}$$

- Compute $\hat{\Sigma}|_{\textit{I}}$ and its leading eigenvectors via PCA.

Many works (algorithms, analysis, optimizations) on sparse PCA. **Diagonal Thresholding**: [Johnstone & Lu, JASA 09]:

- Compute only diagonal entries of covariance matrix $\hat{\Sigma}_{ii}$
- Variable selection by thresholding

$$I = \{i \mid \hat{\Sigma}_{ii} > t(\alpha, p, n)\}$$

- Compute $\hat{\Sigma}|_{\textit{I}}$ and its leading eigenvectors via PCA.

Algorithm extremely fast $O(pn^2)$. Is it (rate) optimal ?

[with A. Birnbaum, I. Johnstone and D. Paul] [Annals of Statistics, 2013]

Theorem: If **v** is *sparse*, then

$$\min_{\hat{\mathbf{v}}} \max_{\mathbf{v} \in \ell_q(C)} \mathbb{E}[\|\hat{\mathbf{v}} - \mathbf{v}\|^2] \ge C(\lambda, q) \left(\frac{\ln p}{n}\right)^{1-q/2}$$

∢ ≣ ≯

[with A. Birnbaum, I. Johnstone and D. Paul] [Annals of Statistics, 2013]

Theorem: If **v** is *sparse*, then

$$\min_{\hat{\mathbf{v}}} \max_{\mathbf{v} \in \ell_q(C)} \mathbb{E}[\|\hat{\mathbf{v}} - \mathbf{v}\|^2] \ge C(\lambda, q) \left(\frac{\ln p}{n}\right)^{1-q/2}$$

Theorem: Diagonal thresholding is *not* rate optimal.

$$\max_{\mathbf{v}\in\ell_q(C)}\mathbb{E}[\|\hat{\mathbf{v}}_{DT}-\mathbf{v}\|^2]\geq C(\lambda,q)\left(\frac{1}{n}\right)^{\frac{1}{2}(1-q/2)}$$

[related work by Z. Ma and by Vu and Lei]

[N. discussion in JASA 09']

Diagonal Thresholding:

$$\hat{\Sigma}_{ii}/\sigma^2 \ge 1 + C\sqrt{\ln p/n}$$

threshold set to avoid too many false detections.

★国社

[N. discussion in JASA 09']

Diagonal Thresholding:

$$\hat{\Sigma}_{ii}/\sigma^2 \ge 1 + C\sqrt{\ln p/n}$$

threshold set to avoid too many false detections.

Detect only signal coordinates $v_i = O\left((\ln p/n)^{1/4}\right)$

∢ ≣ ≯

[N. discussion in JASA 09']

Diagonal Thresholding:

$$\hat{\Sigma}_{ii}/\sigma^2 \ge 1 + C\sqrt{\ln p/n}$$

threshold set to avoid too many false detections.

Detect only signal coordinates $v_i = O\left((\ln p/n)^{1/4}\right)$

For minimax: choose all coordinates $v_i \ge O\left((\ln p/n)^{1/2}\right)$

Need to look at off-diagonal entries of covariance matrix.

Image: Second second

2-Step Sparse-PCA

Given $p \times p$ sample covariance matrix

1. Run Diagonal Thresholding

$$I = \{i | S_{ii} > t(\alpha, p, n)\}$$

2. Eigendecomposition of $S|_I$

$$S|_I = \sum_j \ell_j \mathbf{w}_j \mathbf{w}_j^T$$

- 3. Keep only *m* significant eigenvalues.
- 4. Find coordinates with high covariance to eigenvector

$$\tilde{I} = \{i \mid |\mathbf{e}_i^T S \mathbf{w}_j| > t'(\alpha, p, n)\}$$

5. Eigendecomposition of S on variable set $I \cup \tilde{I}$.
Theorem: For sufficiently strong signal, above computationally efficient 2-step estimator achieves the (lower bound on) minimax rate.

Z. Ma - different (iterative) estimator also achieves same rates.

Theorem: For sufficiently strong signal, above computationally efficient 2-step estimator achieves the (lower bound on) minimax rate.

Z. Ma - different (iterative) estimator also achieves same rates.

Comparison with Sparse Covariance Estimation: Under similar sparsity model, with $q \in (0, 1)$

[Bickel and Levina, Cai & at.]

$$\min \max \mathbb{E}[\|\hat{\Sigma} - \Sigma\|^2] \propto \left(\frac{\ln p}{n}\right)^{1-q}$$

Sparse PCA and Sparse Covariance Estimation are *different* problems

17

What happens if $\bm{v}\in\ell_0$?

Typical problems with ℓ_0 norm are NP-Hard...

★国社

臣

[Amini and Wainwright, AoS 09] Consider the 'hardest' case in $\ell_0(k)$, (single spike)

$$\mathbf{v} = \frac{1}{\sqrt{k}}(1, 0, \dots, -1, 0, \dots, 1, \dots, 0)$$

Information limit: As $n, p \rightarrow \infty$ no recovery possible unless

 $n \geq Ck \ln(p)$

For recovery by diagonal thresholding, as $n, p \rightarrow \infty$

 $n \geq Ck^2 \ln(p)$

Question: computationally efficient method that closes gap ?

(* E) * E)

[d'Aspremont et. al., Bach et. al.] Semi-Definite formulation (relaxation) for Sparse PCA.

 $\max \mathit{Trace}(\hat{\Sigma}X)$

subject to a) Trace(X) = 1, b) $X \in S^{p}_{+} = \{X \in \mathbb{R}^{p \times p} : X = X^{T}, X \succeq 0\}$ c) Sparsity: $\|X\|_{1} = \sum_{i,j} |X_{ij}| \leq k.$ [d'Aspremont et. al., Bach et. al.] Semi-Definite formulation (relaxation) for Sparse PCA.

 $\max \mathit{Trace}(\hat{\Sigma}X)$

subject to a) Trace(X) = 1, b) $X \in S^{p}_{+} = \{X \in \mathbb{R}^{p \times p} : X = X^{T}, X \succeq 0\}$ c) Sparsity: $||X||_{1} = \sum_{i,j} |X_{ij}| \le k$.

Theorem:[Amini & Wainwright] *If* SDP has rank one solution, then SDP is statistically optimal, able to recover support with

$$n > C' k \ln p$$

Result seems to close gap between information and computation

[with D. Vilenchik and R. Krauthgamer, AoS 15']

Questions:

- Is SDP solution indeed rank one up to information limit ?
- If it is close to rank one (say $\lambda_1(X) = 0.99$), what is relation between leading eigenvector and true spike ?

[with D. Vilenchik and R. Krauthgamer, AoS 15']

Questions:

- Is SDP solution indeed rank one up to information limit ?
- If it is close to rank one (say $\lambda_1(X) = 0.99$), what is relation between leading eigenvector and true spike ?

[Berthet & Rigollet, 2013]

sparse-PCA \sim hidden clique:

If \exists polynomial algorithm to detect spike of sparsity $k \gg \sqrt{n}$ then can detect in polynomial time hidden clique of size $r \ll \sqrt{n}$ in random graph G(n, 1/2).

hidden clique believed to be computationally hard problem

Does SDP really solve L_0 Sparse PCA ?

Challenge: No closed form expression for SDP solution.

Challenge: No closed form expression for SDP solution.

Theorem 1: Let $p, n, k \to \infty$ with $p/n \to c > 1$, k = o(n) but $k \ge p/\sqrt{n}$, then if $\lambda < \sqrt{c}$ $\frac{p}{n} \le SDP(X_{opt}) \le (1 + \sqrt{\frac{p}{n}})^2$

Remark: If $p/n \gg 1$ lower and upper bounds are relatively close.

Challenge: No closed form expression for SDP solution.

Theorem 1: Let $p, n, k \to \infty$ with $p/n \to c > 1$, k = o(n) but $k \ge p/\sqrt{n}$, then if $\lambda < \sqrt{c}$ $\frac{p}{n} \le SDP(X_{opt}) \le (1 + \sqrt{\frac{p}{n}})^2$

Remark: If $p/n \gg 1$ lower and upper bounds are relatively close.

Theorem 2: Let $p, n, k \to \infty$, with $p/n \to c > 10$, $\lambda < 1$ and $p/\sqrt{n} \le k \le Cp/(\ln p)^2$. If X is a rank-one feasible matrix, then

$$SDP(X) \leq \frac{3}{5}\frac{p}{n}.$$

Corollary: Exist (p, n, k) where SDP solution is *not* rank one.

★ E ► ★ E ►

Suppose X is almost rank one,

largest eigenvalue $\lambda_1 = \lambda_1(X)$, corresponding eigenvector \mathbf{w}_1 .

Theorem 3 If signal strength < 1, as $p, n, k \rightarrow \infty$

$$|\langle \mathbf{w_1}, \mathbf{v} \rangle|^2 \leq \frac{O(1)}{\lambda_1} \sqrt{\frac{n}{p}}$$

Suppose X is almost rank one,

largest eigenvalue $\lambda_1 = \lambda_1(X)$, corresponding eigenvector **w**₁.

Theorem 3 If signal strength < 1, as $p, n, k \rightarrow \infty$

$$|\langle \mathbf{w_1}, \mathbf{v} \rangle|^2 \leq \frac{O(1)}{\lambda_1} \sqrt{\frac{n}{p}}$$

Corollary: if $p/n \gg 1$, largest eigenvector weakly related to sparse spike **v**

L₀ sparsity

æ,

ヘロン ヘロン ヘビン ヘビン

Motivated by Bickel and Levina:

- compute sample covariance matrix $\hat{\Sigma}$
- threshold it at suitable threshold
- compute leading eigenvectors
- possibly threshold them.

Covariance Thresholding for L₀ sparsity

[Deshpande & Montanari]

Scaling is $k = O(\sqrt{n})$.

Covariance Thresholding for L_0 sparsity

[Deshpande & Montanari]

Scaling is $k = O(\sqrt{n})$.

Conjecture:

No computationally efficient method to recover L_0 spike for sparsity levels $k \gg \sqrt{n}$

[Bickel and Levina, 08'] Let $\mathcal{U}(q, s_p, M, s_{\max})$ be the class of row/column s_p -sparse covariance matrices with sparsity parameter $q \in [0, 1)$:

$$\mathcal{U}(q, s_p, M, s_{\max}) := \left\{ S : \sigma_{ii} \leq M, \sum_{j=1}^p |\sigma_{ij}|^q \leq s_p, \|S\| \leq s_{\max} \right\}.$$

[Bickel and Levina, 08'] Let $\mathcal{U}(q, s_p, M, s_{\max})$ be the class of row/column s_p -sparse covariance matrices with sparsity parameter $q \in [0, 1)$:

$$\mathcal{U}(q, s_p, M, s_{\max}) := \left\{ S : \sigma_{ii} \leq M, \sum_{j=1}^p |\sigma_{ij}|^q \leq s_p, \|S\| \leq s_{\max} \right\}.$$

X sub-Gaussian r.v. with mean zero, covariance $\Sigma \in \mathcal{U}$. Then, given *n* i.i.d. samples, thresholding $\hat{\Sigma}$ at $t = C\sqrt{\log p/n}$ gives

$$\|\tau_t(\hat{\Sigma}) - \Sigma\| = O_P(s_p(\log p/n)^{(1-q)/2})$$

Key reason why thresholding works is following lemma **Lemma:** Assume $B \in \mathcal{U}(q, s_p, M, s_{\max})$. Let A be close to B, s.t. $\max_{i,j}|A_{ij} - B_{ij}| < C\sqrt{\log p/n}$. Then, for any $t = K\sqrt{\log p/n}$ with K > C, there is $C_2 = C_2(C, K, q)$ s.t.

$$\|\tau_t(A) - B\| \le C_2 s_p (\log p/n)^{(1-q)/2}$$

Key reason why thresholding works is following lemma **Lemma:** Assume $B \in \mathcal{U}(q, s_p, M, s_{\max})$. Let A be close to B, s.t. $\max_{i,j}|A_{ij} - B_{ij}| < C\sqrt{\log p/n}$. Then, for any $t = K\sqrt{\log p/n}$ with K > C, there is $C_2 = C_2(C, K, q)$ s.t.

$$\|\tau_t(A) - B\| \le C_2 s_p (\log p/n)^{(1-q)/2}$$

bound on individual entries \rightarrow global bound on spectral norm Bickel & Levina: if X sub-Gaussian, then $\max_{ij} |\hat{\Sigma}_{ij} - \Sigma_{ij}| < C \sqrt{\log p/n}$

[with J. Goes and G. Lerman] **Problem:** For heavy-tailed data the sample covariance may be a poor entry-wise estimator of Σ

Thresholding it will be a poor estimator of Σ in spectral norm.

[with J. Goes and G. Lerman] **Problem:** For heavy-tailed data the sample covariance may be a poor entry-wise estimator of Σ

Thresholding it will be a poor estimator of $\boldsymbol{\Sigma}$ in spectral norm.

Key Questions:

- Lower bounds - how well can one estimate a sparse covariance under heavy-tailed distributions.

[with J. Goes and G. Lerman] **Problem:** For heavy-tailed data the sample covariance may be a poor entry-wise estimator of Σ

Thresholding it will be a poor estimator of Σ in spectral norm.

Key Questions:

- Lower bounds how well can one estimate a sparse covariance under heavy-tailed distributions.
- Computationally efficient rate optimal estimator ?

[with J. Goes and G. Lerman] **Problem:** For heavy-tailed data the sample covariance may be a poor entry-wise estimator of Σ

Thresholding it will be a poor estimator of Σ in spectral norm.

Key Questions:

- Lower bounds - how well can one estimate a sparse covariance under heavy-tailed distributions.

- Computationally efficient rate optimal estimator ?

Answer these questions for *elliptical* distributions

[Frahm 04'] **Definition:** X follows a generalized elliptical distribution with positive definite $p \times p$ shape matrix S_p if

$$X = U S_p^{1/2} \xi$$

where $\xi \sim N(0, I_p)$ and $U \in \mathbb{R}$ is either stochastic or deterministic but $U \neq 0$.

[Frahm 04'] **Definition:** X follows a generalized elliptical distribution with positive definite $p \times p$ shape matrix S_p if

$$X = U S_p^{1/2} \xi$$

where $\xi \sim N(0, I_p)$ and $U \in \mathbb{R}$ is either stochastic or deterministic but $U \neq 0$.

Common model in multiple applications involving heavy tails.

[Frahm 04'] **Definition:** X follows a generalized elliptical distribution with positive definite $p \times p$ shape matrix S_p if

$$X = U S_p^{1/2} \xi$$

where $\xi \sim N(0, I_p)$ and $U \in \mathbb{R}$ is either stochastic or deterministic but $U \neq 0$.

Common model in multiple applications involving heavy tails.

For unique scaling of shape matrix we assume $tr(S_p) = p$.

If distribution is not too heavy tailed, then population covariance of X exists and $\Sigma = cS_p$.

If distribution is not too heavy tailed, then population covariance of X exists and $\Sigma = cS_p$.

Question: Given *n* i.i.d. samples $\mathbf{x}_1, \ldots, \mathbf{x}_n$ from potentially heavy tailed elliptical distribution, accurately estimate its approximately sparse shape matrix S_p in a computationally efficient way.

If distribution is not too heavy tailed, then population covariance of X exists and $\Sigma = cS_p$.

Question: Given *n* i.i.d. samples $\mathbf{x}_1, \ldots, \mathbf{x}_n$ from potentially heavy tailed elliptical distribution, accurately estimate its approximately sparse shape matrix S_p in a computationally efficient way.

Key to solution: as in Bickel and Levina, need to construct some matrix \hat{S}_p such that $\max_{ij} |\hat{S}_p - S_p| < C\sqrt{\log p/n}$

Tyler's M-estimator

[Tyler, 87']

Solution to:

$$\frac{p}{n}\sum_{i=1}^{n}\frac{\mathbf{x}_{i}\mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T}\Sigma^{-1}\mathbf{x}_{i}}=\Sigma,$$

normalized so that $Tr(\Sigma) = 1$.

æ

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

[Tyler, 87']

Solution to:

$$\frac{p}{n}\sum_{i=1}^{n}\frac{\mathbf{x}_{i}\mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T}\boldsymbol{\Sigma}^{-1}\mathbf{x}_{i}}=\boldsymbol{\Sigma},$$

normalized so that $Tr(\Sigma) = 1$.

Solution can be obtained as limit of following iterations

$$\hat{\Sigma}_{k+1} = \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \hat{\Sigma}_{k}^{-1} \mathbf{x}_{i}} \Big/ Tr\left(\sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \hat{\Sigma}_{k}^{-1} \mathbf{x}_{i}}\right)$$

★国社

[Tyler, 87']

Solution to:

$$\frac{p}{n}\sum_{i=1}^{n}\frac{\mathbf{x}_{i}\mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T}\Sigma^{-1}\mathbf{x}_{i}}=\Sigma,$$

normalized so that $Tr(\Sigma) = 1$.

Solution can be obtained as limit of following iterations

$$\hat{\boldsymbol{\Sigma}}_{k+1} = \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{k}^{-1} \mathbf{x}_{i}} \Big/ Tr\left(\sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{k}^{-1} \mathbf{x}_{i}}\right)$$

Intuition: iterative scaling by Mahalanobis distance

[Tyler, 87']

Solution to:

$$\frac{p}{n}\sum_{i=1}^{n}\frac{\mathbf{x}_{i}\mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T}\Sigma^{-1}\mathbf{x}_{i}}=\Sigma,$$

normalized so that $Tr(\Sigma) = 1$.

Solution can be obtained as limit of following iterations

$$\hat{\Sigma}_{k+1} = \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \hat{\Sigma}_{k}^{-1} \mathbf{x}_{i}} \Big/ Tr\left(\sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \hat{\Sigma}_{k}^{-1} \mathbf{x}_{i}}\right)$$

Intuition: iterative scaling by Mahalanobis distance Robust estimate of S_p , consistent for p fixed, $n \to \infty$.
[Tyler, 87']

Solution to:

$$\frac{p}{n}\sum_{i=1}^{n}\frac{\mathbf{x}_{i}\mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T}\Sigma^{-1}\mathbf{x}_{i}}=\Sigma,$$

normalized so that $Tr(\Sigma) = 1$.

Solution can be obtained as limit of following iterations

$$\hat{\boldsymbol{\Sigma}}_{k+1} = \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{k}^{-1} \mathbf{x}_{i}} \Big/ Tr\left(\sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{k}^{-1} \mathbf{x}_{i}}\right)$$

Intuition: iterative scaling by Mahalanobis distance Robust estimate of S_p , consistent for p fixed, $n \to \infty$. Good candidate to threshold but not defined when p > n !

32

[Abramovich & Spencer 07', Wiesel 12', etc.] Solution to fixed point equation

$$\hat{\Sigma}(\alpha) = \frac{1}{1+\alpha} \frac{p}{n} \sum_{i} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \hat{\Sigma}(\alpha)^{-1} \mathbf{x}_{i}} + \frac{\alpha}{1+\alpha} \mathbf{I}$$

where $\alpha > 0$ is regularization parameter.

[Sun, Babu & Palomar 14'] If $\alpha > \max(0, p/n - 1)$ then regularized-TME exists and is limit of following iterations

$$\hat{\boldsymbol{\Sigma}}_{k+1}(\alpha) = \frac{1}{1+\alpha} \frac{p}{n} \sum_{i} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{k}(\alpha)^{-1} \mathbf{x}_{i}} + \frac{\alpha}{1+\alpha} \boldsymbol{I}.$$

[Abramovich & Spencer 07', Wiesel 12', etc.] Solution to fixed point equation

$$\hat{\Sigma}(\alpha) = \frac{1}{1+\alpha} \frac{p}{n} \sum_{i} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \hat{\Sigma}(\alpha)^{-1} \mathbf{x}_{i}} + \frac{\alpha}{1+\alpha} \mathbf{I}$$

where $\alpha > 0$ is regularization parameter.

[Sun, Babu & Palomar 14'] If $\alpha > \max(0, p/n - 1)$ then regularized-TME exists and is limit of following iterations

$$\hat{\boldsymbol{\Sigma}}_{k+1}(\alpha) = \frac{1}{1+\alpha} \frac{p}{n} \sum_{i} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \hat{\boldsymbol{\Sigma}}_{k}(\alpha)^{-1} \mathbf{x}_{i}} + \frac{\alpha}{1+\alpha} \boldsymbol{I}.$$

Perhaps $\hat{\Sigma}(\alpha) - \frac{\alpha}{1+\alpha} I$ is good candidate to threshold as estimator of S_p .

▶ ★ 문 ▶ ★ 문 ▶ ... 문

Our Results

Consider following thresholding estimator for shape matrix:

$$\hat{S}_{p} = \tau_{t} \left(p \frac{\hat{\Sigma}(\alpha) - \frac{\alpha}{1+\alpha} I}{Tr(\hat{\Sigma}(\alpha) - \frac{\alpha}{1+\alpha} I)} \right).$$

< 注→ 注

Consider following thresholding estimator for shape matrix:

$$\hat{S}_{p} = \tau_{t} \left(p \frac{\hat{\Sigma}(\alpha) - \frac{\alpha}{1+\alpha} I}{Tr(\hat{\Sigma}(\alpha) - \frac{\alpha}{1+\alpha} I)} \right)$$

Theorem: Let $n, p \to \infty$ with $p/n \to \gamma \in (0, \infty)$. Assume S_p is approximately sparse. Then for any $\alpha > \max(0, p/n - 1)$, for any threshold $t = M' \sqrt{\log p/n}$ with large enough M',

$$\left\| \tau_{t_n} \left(\hat{S}_p \right) - S_p \right\| = \mathcal{O}_P \left(s_p \left(\frac{\log p}{n} \right)^{(1-q)/2} \right).$$

Consider following thresholding estimator for shape matrix:

$$\hat{S}_{p} = \tau_{t} \left(p \frac{\hat{\Sigma}(\alpha) - \frac{\alpha}{1+\alpha} I}{Tr(\hat{\Sigma}(\alpha) - \frac{\alpha}{1+\alpha} I)} \right).$$

Theorem: Let $n, p \to \infty$ with $p/n \to \gamma \in (0, \infty)$. Assume S_p is approximately sparse. Then for any $\alpha > \max(0, p/n - 1)$, for any threshold $t = M' \sqrt{\log p/n}$ with large enough M',

$$\left\| \tau_{t_n} \left(\hat{S}_p \right) - S_p \right\| = \mathcal{O}_P \left(s_p \left(\frac{\log p}{n} \right)^{(1-q)/2} \right).$$

Remark: This is also minimax rate for sparse covariance estimation with sub-Gaussian data [Cai & Zhou]

 \rightarrow Our estimator is minimax rate optimal

34

Quite involved. Relies on recent results from random matrix theory, concentration of quadratic forms, etc.

Key ideas:

1) regularized TME invariant to scaling, assume $\mathbf{x}_i \sim N(0, S_p)$.

Quite involved. Relies on recent results from random matrix theory, concentration of quadratic forms, etc.

Key ideas:

1) regularized TME invariant to scaling, assume $\mathbf{x}_i \sim N(0, S_p)$. 2) Write

$$\Sigma(\alpha) = \frac{p}{n} \frac{1}{1+\alpha} \sum_{i} w_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} + \frac{\alpha}{1+\alpha} \mathbf{I}$$

Show tight concentration of weights to uniform vector

$$\Pr(\max_{i} |nw_i - r| > \epsilon) < Cp^2 \exp(-cp\epsilon^2)$$

where r is solution of some complicated equation.

Quite involved. Relies on recent results from random matrix theory, concentration of quadratic forms, etc.

Key ideas:

1) regularized TME invariant to scaling, assume $\mathbf{x}_i \sim N(0, S_p)$. 2) Write

$$\Sigma(\alpha) = \frac{p}{n} \frac{1}{1+\alpha} \sum_{i} w_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} + \frac{\alpha}{1+\alpha} \mathbf{I}$$

Show tight concentration of weights to uniform vector

$$\Pr(\max_{i} |nw_{i} - r| > \epsilon) < Cp^{2} \exp(-cp\epsilon^{2})$$

where r is solution of some complicated equation.

This means that $\Sigma(\alpha) - \frac{\alpha}{1+\alpha}I$ is close to S_p elementwise as needed for earlier proofs.

> < E > < E > <</p>

Can one compute regularized TME in polynomial time ?

< ≣ >

Can one compute regularized TME in polynomial time ? Define $C(X) = \|\frac{1}{n} \sum_{i=1}^{n} (\sqrt{p} \mathbf{x}_i / \|\mathbf{x}_i\|) (\sqrt{p} \mathbf{x}_i / \|\mathbf{x}_i\|)^T \|$ Can one compute regularized TME in polynomial time ? Define $C(X) = \|\frac{1}{n} \sum_{i=1}^{n} (\sqrt{p} \mathbf{x}_i / \|\mathbf{x}_i\|) (\sqrt{p} \mathbf{x}_i / \|\mathbf{x}_i\|)^T \|$

Lemma if $1 + \alpha > 5C(X)$ then regularized TME iterations converge *linearly*

$$\|\hat{\Sigma}_{k+1} - \Sigma(\alpha)\| < \frac{1}{2} \|\hat{\Sigma}_k - \Sigma(\alpha)\|$$

Each iteration $O(p^3)$ operations due to matrix inversion. For accuracy ϵ need only $O(\log(1/\epsilon))$ iterations.

(本語) (本語) (二)

Can one compute regularized TME in polynomial time ? Define $C(X) = \|\frac{1}{n} \sum_{i=1}^{n} (\sqrt{p} \mathbf{x}_i / \|\mathbf{x}_i\|) (\sqrt{p} \mathbf{x}_i / \|\mathbf{x}_i\|)^T \|$

Lemma if $1 + \alpha > 5C(X)$ then regularized TME iterations converge *linearly*

$$\|\hat{\Sigma}_{k+1} - \Sigma(\alpha)\| < \frac{1}{2}\|\hat{\Sigma}_k - \Sigma(\alpha)\|$$

Each iteration $O(p^3)$ operations due to matrix inversion. For accuracy ϵ need only $O(\log(1/\epsilon))$ iterations.

Regularized TME requires polynomial number of operations practical: few seconds on standard PC for $p, n \approx 1000$.

▶ ★ E ▶ ★ E ▶

Took approximately sparse matrix

$$(S_p)_{ij} = (0.7^{|i-j})$$

Three choices for U:

- U = 1, Gaussian data
- $U \sim Laplace$, heavy tailed but all moments exist
- $U\sim$ Cauchy, no moments exist

Took approximately sparse matrix

$$(S_p)_{ij} = (0.7^{|i-j})$$

Three choices for U:

- U = 1, Gaussian data
- $U \sim Laplace$, heavy tailed but all moments exist
- $U\sim$ Cauchy, no moments exist

$$p/n = \gamma = 1/2, 1 \text{ or } 2$$

Compare 4 estimators:

- Scaled sample covariance $p\hat{\Sigma}/\mathit{Tr}(\hat{\Sigma})$
- Thresholding it
- Scaled Regularized TME $\Sigma(\alpha) rac{lpha}{1+lpha} I$
- Thresholding regularized TME

< ≣ >

臣

Compare 4 estimators:

- Scaled sample covariance $p\hat{\Sigma}/\mathit{Tr}(\hat{\Sigma})$
- Thresholding it
- Scaled Regularized TME $\Sigma(\alpha) rac{lpha}{1+lpha} I$
- Thresholding regularized TME

Accuracy Measure: Log relative ratio

$$\mathsf{LRE} = \mathsf{log}\left(rac{\mathbb{E}[\|\hat{S}_p - S_p\|]}{\|S_p\|}
ight)$$

< ≣ ▶

Simulation Results

÷.

æ

- Estimate optimal threshold in data-driven manner
- What if $p = n^{\beta}$ for $\beta > 1$?
- ϵ -contamination model ?

Chen,Gao, Ren [15'] proved minimax optimality for estimator based on Tukey's depth function. But NP-hard to compute.

- Estimate optimal threshold in data-driven manner
- What if $p = n^{\beta}$ for $\beta > 1$?
- ϵ -contamination model ?

Chen,Gao, Ren [15'] proved minimax optimality for estimator based on Tukey's depth function. But NP-hard to compute.

Is there computationally efficient / practical robust estimator ?

- Various contemporary applications involve 'large p – small n' data.

- Minimax Rates for Sparse PCA with ℓ_q approximate sparsity.
- Computationally efficient algorithm achieves minimax rate in ℓ_q .

- Various contemporary applications involve 'large *p* – small *n*' data.

- Minimax Rates for Sparse PCA with ℓ_q approximate sparsity.
- Computationally efficient algorithm achieves minimax rate in ℓ_q .
- Sparse covariance estimation for heavy tailed elliptical data

- Various contemporary applications involve 'large *p* – small *n*' data.

- Minimax Rates for Sparse PCA with ℓ_q approximate sparsity.
- Computationally efficient algorithm achieves minimax rate in ℓ_q .
- Sparse covariance estimation for heavy tailed elliptical data

- Is there a computationally efficient method up to information limit for detection / estimation in ℓ_0 case ?

- Various contemporary applications involve 'large *p* – small *n*' data.

- Minimax Rates for Sparse PCA with ℓ_q approximate sparsity.
- Computationally efficient algorithm achieves minimax rate in ℓ_q .
- Sparse covariance estimation for heavy tailed elliptical data

- Is there a computationally efficient method up to information limit for detection / estimation in ℓ_0 case ?

- Is there computiationally efficient method to handle arbitrary outliers ?

www.weizmann.ac.il/math/nadler

A 3 3

 Various contemporary applications involve 'large p – small n' data.

- Minimax Rates for Sparse PCA with ℓ_q approximate sparsity.
- Computationally efficient algorithm achieves minimax rate in ℓ_q .
- Sparse covariance estimation for heavy tailed elliptical data

- Is there a computationally efficient method up to information limit for detection / estimation in ℓ_0 case ?

- Is there computiationally efficient method to handle arbitrary outliers ?

www.weizmann.ac.il/math/nadler

THE END / THANK YOU !

글에서 글에 드릴