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Talk Outline

1. Covariance Matrices and PCA
2. Sparse PCA, /4 sparsity
3. Sparse PCA, ¢y sparsity

4. Sparse covariance estimation with heavy tailed data
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p dimensional random variable X € RP

Observe x1,...,X,: ni.i.d. realizations of X
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Intro

p dimensional random variable X € RP
Observe x1,...,X,: ni.i.d. realizations of X
In principle, X fully characterized by its density f(x)

but
Curse of Dimensionality:

accurate non-parametric estimate of f requires n o< exp(p)
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Low order moments

Luckily, many statistical tasks need only low order moments of X.

Mean:
n=E[x]
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Low order moments

Luckily, many statistical tasks need only low order moments of X.
Mean:
n=E[x]
Covariance
T = El(x — 1) (x — 1))
Principal Components
leading eigenvalues/vectors (A, v;) of &

examples: dimension reduction, denoising, regression, classification etc
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Sample / Empirical Estimates

sample mean:
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Sample / Empirical Estimates

sample mean:
. - 1
,u:x:—g X;
n

sample covariance matrix:

$ - niIZ(x;—i)(x;—i)T

i

Sample PCA: eigen-decomposition of )y

=) oa]
i
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Sample / Empirical Estimates

sample mean: .

p=x= ; in
sample covariance matrix:
1 < AT
—3 Z(x; —X)(x; — X)

i

Y =

Sample PCA: eigen-decomposition of )y
=) oa]
i

Use v; as estimate of i-th principal component v;
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The good old days

Datasets had "small p - large n".
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The good old days

Datasets had "small p - large n".

Asymptotic analysis: dimension p fixed, sample size n — oo,

under mild conditions on X, asymptotic consistency of /i, 3 to their
population counterparts.

Similarly, sample PCA is asymptotically consistent:

$ Y and for all A with multiplicity one, v; — v;
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The good old days

Datasets had "small p - large n".

Asymptotic analysis: dimension p fixed, sample size n — oo,

under mild conditions on X, asymptotic consistency of /i, 3 to their
population counterparts.

Similarly, sample PCA is asymptotically consistent:

$ Y and for all A with multiplicity one, v; — v;

However in high dimensions, as p,n — oo with p/n — ¢ > 1,

12 = ull = Op(p/n), = = ZI| = Amin(E)
sample PCA is inconsistent.
[Johnstone & Lu, 09']
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Inconsistency of Sample PCA

Consider x ~ N(0,X) where & = diag(\1, ..., A\, 0,...,0) + 21,

Spiked Covariance Model with k spikes
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Inconsistency of Sample PCA

Consider x ~ N(0,X) where & = diag(\1, ..., A\, 0,...,0) + 21,

Spiked Covariance Model with k spikes

As p,n — oo with p/n — ¢,

0 )\,’<0'2 p/n
R w2 d 22

2 — (3, )| ;57;; \i > o2\/p/n
Co’iz i

[statistical mechanics literature 90's]
[Paul 07", Nadler 08']
Key point:
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(Sparse)-PCA
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Sparsity and High-Dimensions

Key Question:
Can one do better under sparsity assumptions ?
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Sparsity and High-Dimensions

Key Question:
Can one do better under sparsity assumptions ?

[Donoho & Johnstone 94, others]
For estimation of y - well studied sparse normal means problem

[Bickel & Levina, El-Karoui, Cai & Zhou, etc]
Sparse covariance estimation by thresholding, minimax lower
bounds, works for sub-Gaussian r.v.s

In this talk:
- Estimation of sparse PCA
- Sparse covariance estimation under heavy tails
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The Sparse PCA problem

Given {x;}7_, iid with population covariance

Y = diag(M\1,. .., M\ 0, .., 0) + 021,

Assume k leading eigenvectors v; are sparse:

How well can we estimate them ?
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Sparse PCA

Two settings:
a) Approximate sparsity: for g € (0, 2),

vz =1and v € {,(C) = {z € RP|||Z|qg < C}

b) Exact Lo sparsity, ||v|lo = k.
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Sparse-PCA: Theoretical Questions

» Minimax Rates of Estimation ?
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Sparse-PCA: Theoretical Questions

» Minimax Rates of Estimation ?

» (Computationally Efficient) Methods that achieve those ?
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Sparse-PCA: Theoretical Questions

» Minimax Rates of Estimation ?
» (Computationally Efficient) Methods that achieve those ?

» What happens when v € ¢y ?
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Sparse PCA

Many works (algorithms, analysis, optimizations) on sparse PCA.
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Sparse PCA

Many works (algorithms, analysis, optimizations) on sparse PCA.
Diagonal Thresholding: [Johnstone & Lu, JASA 09]:
- Compute only diagonal entries of covariance matrix S

- Variable selection by thresholding
I={i| i > t{e, p, n)}

- Compute f|/ and its leading eigenvectors via PCA.
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Sparse PCA

Many works (algorithms, analysis, optimizations) on sparse PCA.
Diagonal Thresholding: [Johnstone & Lu, JASA 09]:
- Compute only diagonal entries of covariance matrix S

- Variable selection by thresholding
I={i| i > t{e, p, n)}
- Compute f|/ and its leading eigenvectors via PCA.

Algorithm extremely fast O(pn?). Is it (rate) optimal ?
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Minimax Rate for Sparse PCA

[with A. Birnbaum, I. Johnstone and D. Paul]
[Annals of Statistics, 2013]

Theorem: |If v is sparse, then

Inp 1-q/2
min max BJa vl > COq) ()
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Minimax Rate for Sparse PCA

[with A. Birnbaum, I. Johnstone and D. Paul]
[Annals of Statistics, 2013]

Theorem: |If v is sparse, then
Inp 1-q/2
El[||v — > (),
min max BJa vl > COq) ()

Theorem: Diagonal thresholding is not rate optimal.

[related work by Z. Ma and by Vu and Lei]
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Some Intuition

[N. discussion in JASA 09']
Diagonal Thresholding:

iii/d2 >14+ C\/Inp/n

threshold set to avoid too many false detections.
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Some Intuition

[N. discussion in JASA 09']
Diagonal Thresholding:

iii/d2 >14+ C\/Inp/n

threshold set to avoid too many false detections.

Detect only signal coordinates v; = O ((In p/n)1/4)
For minimax: choose all coordinates v; > O ((In p/n)/?)

Need to look at off-diagonal entries of covariance matrix.
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2-Step Sparse-PCA

Given p x p sample covariance matrix
1. Run Diagonal Thresholding
I={i|Sii> t(ar, p,n)}
2. Eigendecomposition of S|,
S| = ZﬁjijjT
J

3. Keep only m significant eigenvalues.
4. Find coordinates with high covariance to eigenvector

1= {i|le] Swj| > t'(a, p,n)}
5. Eigendecomposition of S on variable set /U.
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Sparse PCA

Theorem: For sufficiently strong signal, above computationally
efficient 2-step estimator achieves the (lower bound on) minimax
rate.

Z. Ma - different (iterative) estimator also achieves same rates.
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Sparse PCA

Theorem: For sufficiently strong signal, above computationally
efficient 2-step estimator achieves the (lower bound on) minimax
rate.

Z. Ma - different (iterative) estimator also achieves same rates.

Comparison with Sparse Covariance Estimation: Under
similar sparsity model, with g € (0,1)
[Bickel and Levina, Cai & at. |

. | 1—q
min max E[||S — Z||?] o (”)
n

Sparse PCA and Sparse Covariance Estimation are different problems
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Lo sparse PCA

What happens if v e £y ?

Typical problems with £ norm are NP-Hard...
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Lo sparse PCA

[Amini and Wainwright, AoS 09]
Consider the ‘hardest’ case in {g(k), (single spike)

1
v=—(1,0,....—1.0,....1,....0
N )

Information limit: As n, p — oo no recovery possible unless
n> Cklin(p)

For recovery by diagonal thresholding, as n,p — co
n> Ck* In(p)

Question: computationally efficient method that closes gap ?
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SDP for sparse-PCA

[d'Aspremont et. al., Bach et. al ]
Semi-Definite formulation (relaxation) for Sparse PCA.

A~

max Trace(XX)

subject to

a) Trace(X) =1,

b) X € 8P = {X e RP*P: X=XT, X = 0}
c) Sparsity: [|X][x = >_,;;|X;| < k.
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SDP for sparse-PCA

[d'Aspremont et. al., Bach et. al ]
Semi-Definite formulation (relaxation) for Sparse PCA.

A~

max Trace(XX)

subject to

a) Trace(X) =1,

b) X € 8P = {X e RP*P: X=XT, X = 0}
c) Sparsity: [|X][x = >_,;;|X;| < k.

Theorem:[Amini & Wainwright] /f SDP has rank one solution,
then SDP is statistically optimal, able to recover support with

n> Cklnp

Result seems to close gap between information and computation
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Does SDP really solve Ly Sparse PCA 7

[ with D. Vilenchik and R. Krauthgamer, AoS 15']
Questions:
- Is SDP solution indeed rank one up to information limit ?
- If it is close to rank one (say A1(X) = 0.99), what is relation
between leading eigenvector and true spike ?
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Does SDP really solve Ly Sparse PCA 7

[ with D. Vilenchik and R. Krauthgamer, AoS 15']
Questions:
- Is SDP solution indeed rank one up to information limit ?
- If it is close to rank one (say A1(X) = 0.99), what is relation
between leading eigenvector and true spike ?

[Berthet & Rigollet, 2013]
sparse-PCA ~ hidden clique:
If 3 polynomial algorithm to detect spike of sparsity k > /n then
can detect in polynomial time hidden clique of size r < /n in
random graph G(n,1/2).

hidden clique believed to be computationally hard problem
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Does SDP really solve Ly Sparse PCA 7

Challenge: No closed form expression for SDP solution.
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Does SDP really solve Ly Sparse PCA 7

Challenge: No closed form expression for SDP solution.

Theorem 1: Let p, n, k — co with p/n — ¢ > 1, k= o(n) but
k> p/+/n, then if A < /c
2 < SDP(Xope) < (1+,/2)?

Remark: If p/n>> 1 lower and upper bounds are relatively close.
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Does SDP really solve Ly Sparse PCA 7

Challenge: No closed form expression for SDP solution.

Theorem 1: Let p, n, k — co with p/n — ¢ > 1, k= o(n) but
k> p/+/n, then if A < /c

2 < SDP(Xope) < (1+,/2)?
Remark: If p/n>> 1 lower and upper bounds are relatively close.
Theorem 2: Let p, n, k — oo, with p/n — ¢ > 10, A < 1 and
p/+/n < k< Cp/(Inp)?. If Xis a rank-one feasible matrix, then

3 P
< — =,
SDP(X) < £°

Corollary: Exist (p, n, k) where SDP solution is not rank one.

Boaz Nadler Sparse PCA 22



Does SDP really solve Ly Sparse PCA 7

Suppose X is almost rank one,
largest eigenvalue A; = A1(X), corresponding eigenvector wj.

Theorem 3 If signal strength < 1, as p, n, k —

> _O(1) [n
< S 2
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Does SDP really solve Ly Sparse PCA 7

Suppose X is almost rank one,
largest eigenvalue A; = A1(X), corresponding eigenvector wj.

Theorem 3 If signal strength < 1, as p, n, k —

> _O(1) [n
< S 2

Corollary: if p/n>> 1, largest eigenvector weakly related to sparse
spike v

Boaz Nadler Sparse PCA 23



Lo sparsity

1 T T
' 1 1
sop ! \ sDP
[ 1 1 1
O | rank1 1 : not rank 1 :
T , 5 ,  estimation
g 1 : | not possible
— 1
0 DT 1 1
W | works 1 1 1
..... e e e e e e a -
1 1
1 1
1 1
1 1 1
c Comgf;‘iﬁgﬂ?a"y ! hidden clique 1 detection
o - ' hardness ' not possible
8 detection : :
_&) 1 1
o ' '
D 1 L L >
n .
Vi Vn n/lnn sparsity k
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Covariance Thresholding for Ly sparsity

Motivated by Bickel and Levina:

- compute sample covariance matrix )N
- threshold it at suitable threshold

- compute leading eigenvectors

- possibly threshold them.
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Scaling is k= O(+/n).

Boaz Nadler

success rate

Covariance Thresholding for Ly sparsity

1
—n=1000
0.8 ——n=2000
—+-n=3000
06 ~=-n=4000
—+—n=5000
0.4
0.2
0
0 4

[Deshpande & Montanari]

Sparse PCA




Covariance Thresholding for Ly sparsity

. -e-CT ——n=1000
0.8 : —--DT —=—n=2000
© ‘e © ~+-n=3000
Sos ' 8 ~+-n=4000
P | 9 —+—n=5000
Q Q Q
go4 . g
0 N 0
0.2 %
0 B==
0 50 100 = 150 200 4 6

sparsity k

[Deshpande & Montanari]
Scaling is k= O(+/n).
Conjecture:
No computationally efficient method to recover Ly spike
for sparsity levels k> \/n
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Sparse Covariance Estimation

[Bickel and Levina, 08']
Let U(q, Sp, M, Smax) be the class of row/column sp-sparse
covariance matrices with sparsity parameter g € [0,1):

p
U(C% Sp> M, Smax) =4¢5:0;< M7 Z |O'ij‘q < Sp, ”S” < Smax
j=1
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Sparse Covariance Estimation

[Bickel and Levina, 08']
Let U(q, Sp, M, Smax) be the class of row/column sp-sparse
covariance matrices with sparsity parameter g € [0,1):

p
U(C% Sp> M, Smax) =4¢5:0;< M’Z |O'ij‘q < Sp, ||S|| < Smax
j=1

X sub-Gaussian r.v. with mean zero, covariance ~ € U. Then,
given n i.i.d. samples, thresholding ¥ at t = C\/log p/n gives

I7e(2) = £l = Op(sp(log p/n)+~9/

Boaz Nadler Sparse PCA 27



Outlier/Heavy Tail breakdown of sample covariance

Key reason why thresholding works is following lemma
Lemma: Assume B € U(q, Sp, M, smax). Let A be close to B, s.t.

max;j|Aij — Bjj| < Cy/log p/n. Then, for any t = Ky/log p/n with
K> C, thereis G = G(C K, q) s.t.

|7¢(A) — B|| < Casy(log p/n)E=9/2
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Outlier/Heavy Tail breakdown of sample covariance

Key reason why thresholding works is following lemma
Lemma: Assume B € U(q, Sp, M, smax). Let A be close to B, s.t.

max;j|Aij — Bjj| < Cy/log p/n. Then, for any t = Ky/log p/n with
K> C, thereis G = G(C K, q) s.t.

Im(A) = BI| < Gasp(log p/m) =9/

bound on individual entries — global bound on spectral norm
Bickel & Levina: if X sub-Gaussian, then

max;; | — L) < Cy/log p/n
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Outlier/Heavy Tail breakdown of sample covariance

[with J. Goes and G. Lerman]
Problem: For heavy-tailed data the sample covariance may be a
poor entry-wise estimator of X
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Outlier/Heavy Tail breakdown of sample covariance

[with J. Goes and G. Lerman]
Problem: For heavy-tailed data the sample covariance may be a
poor entry-wise estimator of X

Thresholding it will be a poor estimator of ¥ in spectral norm.

Key Questions:

- Lower bounds - how well can one estimate a sparse covariance
under heavy-tailed distributions.
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Outlier/Heavy Tail breakdown of sample covariance

[with J. Goes and G. Lerman]
Problem: For heavy-tailed data the sample covariance may be a
poor entry-wise estimator of X

Thresholding it will be a poor estimator of ¥ in spectral norm.

Key Questions:

- Lower bounds - how well can one estimate a sparse covariance
under heavy-tailed distributions.

- Computationally efficient rate optimal estimator ?

Answer these questions for elliptical distributions
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(Generalized) Elliptical Distribution

[Frahm 04']
Definition: X follows a generalized elliptical distribution with
positive definite p x p shape matrix S, if

X = USy%¢

where £ ~ N(0, I,) and U € R is either stochastic or deterministic
but U # 0.
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(Generalized) Elliptical Distribution

[Frahm 04']
Definition: X follows a generalized elliptical distribution with
positive definite p x p shape matrix S, if

X = USy%¢

where £ ~ N(0, I,) and U € R is either stochastic or deterministic
but U # 0.

Common model in multiple applications involving heavy tails.
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(Generalized) Elliptical Distribution

[Frahm 04']
Definition: X follows a generalized elliptical distribution with
positive definite p x p shape matrix S, if

X = USy%¢

where £ ~ N(0, I,) and U € R is either stochastic or deterministic
but U # 0.

Common model in multiple applications involving heavy tails.

For unique scaling of shape matrix we assume tr(Sp,) = p.
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Elliptical Distribution, sparse shape matrix

If distribution is not too heavy tailed, then population covariance
of X exists and ¥ = cS,,.
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Elliptical Distribution, sparse shape matrix

If distribution is not too heavy tailed, then population covariance
of X exists and ¥ = cS,,.

Question: Given ni.i.d. samples x1, ..., X, from potentially heavy
tailed elliptical distribution, accurately estimate its approximately
sparse shape matrix S, in a computationally efficient way.
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Elliptical Distribution, sparse shape matrix

If distribution is not too heavy tailed, then population covariance
of X exists and ¥ = cS,,.

Question: Given ni.i.d. samples x1, ..., X, from potentially heavy
tailed elliptical distribution, accurately estimate its approximately
sparse shape matrix S, in a computationally efficient way.

Key to solution: as in Bickel and Levina, need to construct some
matrix Sp, such that max;;|S, — Sp| < Cy/log p/n

Boaz Nadler Sparse PCA 31



Tyler's M-estimator

[Tyler, 87']
Solution to:

pz TZ 1X ’

normalized so that TH{X) = 1.
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Tyler's M-estimator

[Tyler, 87']
Solution to:

pz TZ 1X ’

normalized so that TH{X) = 1.

Solution can be obtained as limit of following iterations

ZM*Z Tz x,/Tr(Z Tz x,>
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Tyler's M-estimator

[Tyler, 87']
Solution to:

pz TZ 1X ’

normalized so that TH{X) = 1.

Solution can be obtained as limit of following iterations

ZM*Z Tz x,/Tr(Z Tz x,>

Intuition: iterative scaling by Mahalanobis distance
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Tyler's M-estimator

[Tyler, 87']
Solution to:

pz TZ 1X ’

normalized so that TH{X) = 1.

Solution can be obtained as limit of following iterations

ZM*Z Tz x,/Tr(Z Tz x,>

Intuition: iterative scaling by Mahalanobis distance

Robust estimate of S, consistent for p fixed, n — oo.
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Tyler's M-estimator

[Tyler, 87']
Solution to:

pz TZ 1X ’

normalized so that TH{X) = 1.
Solution can be obtained as limit of following iterations

ZM*Z Tz x,/Tr(Z Tz x,>

Intuition: iterative scaling by Mahalanobis distance
Robust estimate of S, consistent for p fixed, n — oo.
Good candidate to threshold but not defined when p > n'!

Boaz Nadler Sparse PCA 32



Regularized Tyler's M-estimator

[Abramovich & Spencer 07', Wiesel 12, etc.]
Solution to fixed point equation

~ 1 p xix;| o
Y(a) = - — + /
() 1+an§i: xI.TZ(oz)—lx,- 1+«

where o > 0 is regularization parameter.

[Sun, Babu & Palomar 14']
If @ > max(0, p/n — 1) then regularized-TME exists and is limit of
following iterations
1 p x,-x,-T n o}
= Lt o i
1+an<= x]Xi(a) “x; l+a

zA3/<+1(04)
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Regularized Tyler's M-estimator

[Abramovich & Spencer 07', Wiesel 12, etc.]
Solution to fixed point equation

A 1 p xix;| o
Y(a) = - — + /
() 1+an§i: xiTZ(oz)—lx,- 1+«

where o > 0 is regularization parameter.

[Sun, Babu & Palomar 14']
If @ > max(0, p/n — 1) then regularized-TME exists and is limit of
following iterations

1 p xix| n

B « f
= Lt - — i
l+an - X;Tzk(a) X; 1+«

zA3/<+1(04)

Perhaps i(a) — 1341 is good candidate to threshold as estimator
of Sp.
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Our Results

Consider following thresholding estimator for shape matrix:

. S(o) — 121
v (”Tr(i(a)— @l))'
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Our Results

Consider following thresholding estimator for shape matrix:

s _r > (a) — et
P P TS () - )

Theorem: Let n, p — oo with p/n — v € (0,00). Assume S, is
approximately sparse. Then for any o > max(0, p/n — 1), for any

threshold t = M’y /log p/n with large enough M',

7o (8) = || = 0 ( <Ioip>( q>/2> |
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Our Results

Consider following thresholding estimator for shape matrix:

s _r > (a) — et
P P TS () - )

Theorem: Let n, p — oo with p/n — v € (0,00). Assume S, is
approximately sparse. Then for any o > max(0, p/n — 1), for any

threshold t = M’y /log p/n with large enough M',

e (3) -5 -0 (o (22) ).

Remark: This is also minimax rate for sparse covariance
estimation with sub-Gaussian data [Cai & Zhou]

— Our estimator is minimax rate optimal
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Proof Outline

Quite involved. Relies on recent results from random matrix
theory, concentration of quadratic forms, etc.

Key ideas:
1) regularized TME invariant to scaling, assume x; ~ N(0, Sp).
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Proof Outline

Quite involved. Relies on recent results from random matrix
theory, concentration of quadratic forms, etc.

Key ideas:
1) regularized TME invariant to scaling, assume x; ~ N(0, Sp).

2) Write

1 a
Z(a) = P Z W,-X,'X,-T7L 1ta

;1+a

Show tight concentration of weights to uniform vector
Pr(max |nw; — | > €) < Cp® exp(—cpe?)
1

where r is solution of some complicated equation.
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Proof Outline

Quite involved. Relies on recent results from random matrix
theory, concentration of quadratic forms, etc.

Key ideas:
1) regularized TME invariant to scaling, assume x; ~ N(0, Sp).

2) Write

1 a
Z(a) = P Z W,-X,'X,-T7L 1ta

;1+a

Show tight concentration of weights to uniform vector
Pr(max |nw; — | > €) < Cp® exp(—cpe?)
1

where r is solution of some complicated equation.
This means that ¥(a) — $$;1is close to S, elementwise as needed
for earlier proofs.

Boaz Nadler Sparse PCA k1)



Computational Complexity

Can one compute regularized TME in polynomial time ?
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Computational Complexity

Can one compute regularized TME in polynomial time ?

Define C(X) = ||£ S0, (v/pxi/[1xill) (v/Pxi/ | xill) T
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Computational Complexity

Can one compute regularized TME in polynomial time ?
Define C(X) = || 327y (vxi/ I xill) (v/pxi/ |1xil) Tl

Lemma if 1 + a > 5C(X) then regularized TME iterations
converge linearly

. 1.
k1 = 2] < Sk = Z(a)]

Each iteration O(p®) operations due to matrix inversion. For
accuracy € need only O(log(1/€)) iterations.
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Computational Complexity

Can one compute regularized TME in polynomial time ?
Define C(X) = || Y211 (vxi/ [Ixil) (v/pxi/ i) Tl
Lemma if 1 + a > 5C(X) then regularized TME iterations
converge linearly

. 1.
k1 = 2] < Sk = Z(a)]

Each iteration O(p®) operations due to matrix inversion. For
accuracy € need only O(log(1/€)) iterations.

Regularized TME requires polynomial number of operations
practical: few seconds on standard PC for p, n ~ 1000.
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Simulation Results

Took approximately sparse matrix
(Sp)y = (0.77)

Three choices for U:

- U=1, Gaussian data
- U~ Laplace, heavy tailed but all moments exist

- U ~ Cauchy, no moments exist
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Simulation Results

Took approximately sparse matrix
(Sp)y = (0.77)

Three choices for U:

- U=1, Gaussian data
- U~ Laplace, heavy tailed but all moments exist

- U ~ Cauchy, no moments exist

p/n=~=1/2,10r2
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Compare 4 estimators:

- Scaled sample covariance pS/ TH(%)

- Thresholding it

- Scaled Regularized TME ¥ (o) — 1251
- Thresholding regularized TME
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Compare 4 estimators:

- Scaled sample covariance pS/ TH(%)

- Thresholding it

- Scaled Regularized TME ¥ (o) — 1251
- Thresholding regularized TME

Accuracy Measure: Log relative ratio

LRE = log (E[||7f5_||5p||]> :
p
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Simulation Results

u~ Laplace(0,1) U~ Cauchy(0,1)
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Open Questions

- Estimate optimal threshold in data-driven manner
-What if p=nP for §>17
- e-contamination model ?

Chen,Gao, Ren [15'] proved minimax optimality for estimator
based on Tukey's depth function. But NP-hard to compute.
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Open Questions

- Estimate optimal threshold in data-driven manner
-What if p=nP for §>17
- e-contamination model ?

Chen,Gao, Ren [15'] proved minimax optimality for estimator
based on Tukey's depth function. But NP-hard to compute.

Is there computationally efficient / practical robust estimator ?
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- Various contemporary applications involve ‘large p — small n’
data.

- Minimax Rates for Sparse - PCA with ¢, approximate sparsity.

- Computationally efficient algorithm achieves minimax rate in /4.
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- Various contemporary applications involve ‘large p — small n’
data.

- Minimax Rates for Sparse - PCA with ¢, approximate sparsity.
- Computationally efficient algorithm achieves minimax rate in /4.

- Sparse covariance estimation for heavy tailed elliptical data
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- Various contemporary applications involve ‘large p — small n’
data.

- Minimax Rates for Sparse - PCA with ¢, approximate sparsity.
- Computationally efficient algorithm achieves minimax rate in /4.
- Sparse covariance estimation for heavy tailed elliptical data

- Is there a computationally efficient method up to information
limit for detection / estimation in £y case ?
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- Various contemporary applications involve ‘large p — small n’
data.

- Minimax Rates for Sparse - PCA with ¢, approximate sparsity.
- Computationally efficient algorithm achieves minimax rate in /4.
- Sparse covariance estimation for heavy tailed elliptical data

- Is there a computationally efficient method up to information
limit for detection / estimation in £y case ?

- Is there computiationally efficient method to handle arbitrary
outliers ?

www.weizmann.ac.il/math /nadler
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- Various contemporary applications involve ‘large p — small n’
data.

- Minimax Rates for Sparse - PCA with ¢, approximate sparsity.
- Computationally efficient algorithm achieves minimax rate in /4.
- Sparse covariance estimation for heavy tailed elliptical data

- Is there a computationally efficient method up to information
limit for detection / estimation in £y case ?

- Is there computiationally efficient method to handle arbitrary
outliers ?
www.weizmann.ac.il/math /nadler

THE END / THANK YOU !
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