Robustness of Controlling the False Discovery Rate

Weijie J. Su

University of Pennsylvania

Robust and High-Dimensional Statistics, Simons Institute, October 31, 2018

False discovery rate (FDR)

FDP =
$$
\frac{\# \text{false discoveries}}{\# \text{discovering}} = \frac{200}{100 + 200}
$$

FDR = E FDP

- FDP: false discovery proportion
- Want to control FDR $\leq q$ (e.g. $q = 0.05, 0.1$)
- Proposed by Benjamini and Hochberg '95

The Benjamini-Hochberg (BH) procedure

Given *p*-values p_1, \ldots, p_m corresponding to m hypotheses

BH procedure the "great"

- Let R be the largest such that at least R of p_1,\ldots,p_m are $\leq \frac{qR}{m}$
- Reject the R smallest p -values

The Benjamini-Hochberg (BH) procedure

Given *p*-values p_1, \ldots, p_m corresponding to m hypotheses

BH procedure the "great"

- Let R be the largest such that at least R of p_1,\ldots,p_m are $\leq \frac{qR}{m}$
- Reject the R smallest p -values
- A $p\text{-}$ value is a measure of how extreme the observation is when the null hypothesis is true
- E.g., observe $y \sim \mathcal{N}(\mu, 1)$ and decide between $H_0: \mu = 0$ vs $H_1: \mu \neq 0$
- We call a p -value

 \int null if H_0 is true non-null if H_0 is false

The BH procedure

Let p_1, p_2, \ldots, p_m be p -values of m hypotheses

The BH procedure

Let p_1, p_2, \ldots, p_m be p -values of m hypotheses

The BH procedure

Let p_1, p_2, \ldots, p_m be p -values of m hypotheses

Weijie Su@Wharton 4/47

FDR control

Theorem (Benjamini and Hochberg '95)

The BH procedure controls FDR if

- *the nulls are jointly independent,*
- *and the nulls are independent of the non-nulls*
- Recall that FDR controls means

$$
\mathsf{FDR} = \mathbb{E}\left[\frac{\# \text{rejected null } p\text{-values}}{\# \text{rejected } p\text{-values}}\right] \leq q
$$

- Replaced by "positive" dependence (Benjamini and Yekutieli '01)
- Arguably, conditions are very strigent for *provable* FDR control

Impact

- Perhaps the most popular error rate in genomics
- 49,443 citations as of October 29, 2018

Impact

- Perhaps the most popular error rate in genomics
- 49,443 citations as of October 29, 2018
- In summer 2014, two computer scientists became interested in FDR

Collaborators

Cynthia Dwork (Harvard) Li Zhang (Google)

Summer 2014

I spent a wonderful summer at MSR Silicon Valley

What I was doing at MSR Silicon Valley

Prove FDR control of a differentially private version of BH

What I was doing at MSR Silicon Valley

Prove FDR control of a differentially private version of BH

Challenging because

smallest p -values may not be selected

- FDR proof techniques: martingale technique (Storey et al '04) and "leave-one-out" technique (Benjamini and Yekutieli '01)
- Existing approaches do not explore the *robustness*

Theory vs practice

- Provable FDR control rests on very stringent conditions
- In practice, works so well. Even very difficult to lose FDR control (Guo and Rao '08)

Theory vs practice

- Provable FDR control rests on very stringent conditions
- In practice, works so well. Even very difficult to lose FDR control (Guo and Rao '08)

Why?

This talk: it's the *robustness*, stxpid! (sorry $\ddot{\circ}$)

- BH is a *robust* procedure
- FDR is a *robust* criterion

This talk: it's the *robustness*, stxpid! (sorry $\ddot{\circ}$)

- BH is a *robust* procedure
- FDR is a *robust* criterion

- Robust to even *adversary* dependence between nulls and non-nulls
- Null distribution matters most
- A new relaxed criterion: FDR consistency

Outline

2 [From independence to PRDN](#page-39-0)

³ [FDR consistency: the nulls matter](#page-56-0)

An observation

Definition (Compliance)

A procedure is called compliant if any *rejected* p-value satisfies

$$
p_i \leq \frac{qR}{m}
$$

• $R = \text{\#}$ discoveries = \# rejected p-values

An observation

Definition (Compliance)

A procedure is called compliant if any *rejected* p-value satisfies

$$
p_i \leq \frac{qR}{m}
$$

- $R = \text{\#discoversies} = \text{\#rejected } p\text{-values}$
- Related to self-consistency condition (Blanchard and Roquain '08)
- BH is compliant
- So are the generalized step-up-step-down procedures (Tamhane, Liu, and Dunnett '98; Sarkar 02')

Compliances helps bound FDP

Compliances helps bound FDP

Completing the following equations:

\n
$$
\mathsf{FDP} \le \max_{1 \le j \le m_0} \frac{qj}{mp_{(j)}^0}
$$
\n
$$
p_{(1)}^0 \le p_{(2)}^0 \le \cdots \le p_{(m_0)}^0 \text{ are the ordered } m_0 \text{ null } p\text{-values}
$$

Denote by V the number of false discoveries

- •
•
• The largest rejected null $p\text{-value}$ is at least $p^0_{(V)}$
- •
•
• By compliance, $p_{(V)}^0 \leq \frac{qR}{m}.$ Thus, $R \geq mp_{(V)}^0/q$
- Finally,

$$
\textsf{FDP} = \frac{V}{R} \leq \frac{V}{mp_{(V)}^0/q} \leq \max_{1 \leq j \leq m_0} \frac{qj}{mp_{(j)}^0}
$$

More comments

• Compliance implies

$$
\textsf{FDP} \leq \max_{1 \leq j \leq m_0} \frac{qj}{mp_{(j)}^0}
$$

• Define FDR $_k = \mathbb{E}\left[\frac{V}{R}; V \geq k\right]$. Then

$$
\mathsf{FDP}_k \le \max_{k \le j \le m_0} \frac{qj}{mp_{(j)}^0}
$$

- Hold *regardless* of the non-null p-values
- Non-null p-values can be *adversary* after looking at nulls!

What can compliance do for us?

Compliance plus IWN implies FDR control

Definition (IWN)

A set of p-values are said to satisfy *independence within the null* (IWN) if the null p -values are jointly independent

Compliance plus IWN implies FDR control

Definition (IWN)

A set of p-values are said to satisfy *independence within the null* (IWN) if the null p -values are jointly independent

Theorem (Dwork, S., and Zhang)

For k ≥ 2*, any compliant procedure applied to IWN* p*-values satisfies*

 $FDR_k \leq C_kq$

- Applies to BH and many variants
- $C_2 \approx 2.41, C_3 \approx 1.85, C_{10} \approx 1.32$
- Dependence between nulls and non-nulls can be adversarial!
- Explains partially why BH is so robust

Optimality of C_k

Theorem (Dwork, S., and Zhang)

For any C < Ck*, if* q *is sufficiently small and* m *is sufficiently large, there exists a compliant procedure applied to IWN* p*-values such that*

 $FDR_k > Cq$

Connection with the literature

- State-of-art FDR control requires certain positive dependence between nulls and non-nulls (Benjamini and Yekutieli '01)
- Arbitrary dependence, FDR is controlled at (Benjamini and Yekutieli '01)

$$
\left(1 + \frac{1}{2} + \dots + \frac{1}{m}\right)q \approx (\log m)q
$$

• Robustness in uniform FDP bounds (Katsevich and Ramdas '18)

Let's prove it

Proof I

Let p_{i_1},\ldots,p_{i_R} be rejected p -values

Complete implies

\n
$$
\mathsf{FDP}_k \leq \max_{k \leq j \leq m_0} \frac{qj}{mp_{(j)}^0}
$$

- Replacing the ordered null $p\text{-}$ values by the uniform order statistics $U_{(1)} \leq U_{(2)} \leq \cdots \leq U_{(m_0)}$
- Then

$$
\mathsf{FDR}_k \leq \mathbb{E}\left[\max_{k \leq j \leq m_0} \frac{qj}{mU_{(j)}} \right] = q \frac{m_0}{m} \mathbb{E}\left[\max_{k \leq j \leq m_0} \frac{j}{m_0U_{(j)}} \right]
$$

Proof II

Thus, it suffices to prove

$$
\mathbb{E}\left[\max_{k\leq j\leq n}\frac{j}{nU_{(j)}}\right]\leq C_k
$$

Lemma *Define for* $n \geq k \geq 2$ $C_k^{(n)} = \mathbb{E} \left[\max_{k \leq j \leq n} \right]$ j $nU_{(j)}$ 1 Then $C_k^{(n)} \leq C_k^{(n+1)}$ k

The constant C_k

Controlling \textsf{FDR}^k

A variant of the FDR defined as

$$
\textsf{FDR}^k = \mathbb{E}\left[\frac{V}{R};R\geq k\right]
$$

Theorem (Dwork, S., and Zhang)

For any k ≥ 1*, any compliant procedure applied to IWN* p*-values satisfies*

$$
\textsf{FDR}^k \leq \left(1+\frac{2}{\sqrt{qk}}\right)q
$$

• Proof based on a backward martingale *Numerical examples of FDR control of BH*

Multivariate normal

 $X \sim \mathcal{N}(\mu, \Sigma)$

- Σ of size 1000×1000 ; m_1 the number of true effects; $m_0 = 1000 - m_1$
- Σ has ones on the diagonal, $\Sigma(ij) = -1/\sqrt{m_0 m_1}$ for $1 \leq i \leq m_0$ and $m_1 + 1 \leq j \leq m$, otherwise 0
- $\mu=2$ for $1\leq i\leq m_1$, otherwise 0
- $q = 0.1$

Multivariate normal

Multivariate t-distribution

 $X^{(1)}, \ldots, X^{(n)} \sim \mathcal{N}(\mu, \Sigma)$. To test $\mu_i = 0$ vs $\mu_i > 0$, use

$$
t_i = \frac{\sqrt{n}\bar{X}_i}{\sqrt{\frac{1}{n-1}\sum_{l=1}^n (X_i^{(l)} - \bar{X}_i)^2}}
$$

- $n=10$
- All the others the same as the previous example

Multivariate t-distribution

Outline

1 [How does robustness arise?](#page-18-0)

² [From independence to PRDN](#page-39-0)

³ [FDR consistency: the nulls matter](#page-56-0)

BH controls FDR under *IWN*

Positive regression dependence

Definition (Benjamini and Yekutieli '01; Sarkar '02)

 $X = (X_1, \ldots, X_m)$ is said to satisfy the property of positive regression dependence on a subset I_0 (PRDS), if for any increasing set D and each $i \in I_0$

$$
\mathbb{P}((X_1,\ldots,X_m)\in D|X_i=x)
$$

is increasing in x .

Theorem (Benjamini and Yekutieli '01)

If the the test statistics are PRDS on the set of nulls, then BH gives

$$
\text{FDR} \leq \frac{qm_0}{m} \leq q
$$

BH controls FDR under *PRDS*

The current *provable* FDR control world

Recall compliance

Compliance implies

$$
\begin{aligned} \textsf{FDP} &\leq \min\left\{\max_{1\leq j\leq m_0}\frac{qj}{mp_{(j)}^0},1\right\} \\ &\leq \min\left\{\frac{qm_0/m}{\min_{1\leq j\leq m_0}\frac{m_0p_{(j)}^0}{j}},1\right\} \\ &\leq \min\left\{\frac{q}{\min_{1\leq j\leq m_0}\frac{m_0p_{(j)}^0}{j}},1\right\} \end{aligned}
$$

Recall compliance

Compliance implies

$$
\begin{aligned} \textsf{FDP} &\leq \min\left\{\max_{1\leq j\leq m_0}\frac{qj}{mp_{(j)}^0},1\right\} \\ &\leq \min\left\{\frac{qm_0/m}{\min_{1\leq j\leq m_0}\frac{m_0p_{(j)}^0}{j}},1\right\} \\ &\leq \min\left\{\frac{q}{\min_{1\leq j\leq m_0}\frac{m_0p_{(j)}^0}{j}},1\right\} \end{aligned}
$$

What's the distribution of

$$
\min_{1 \le j \le m_0} \frac{m_0 p_{(j)}^0}{j}?
$$

Weijie Su@Wharton 33 / 47

A new dependence structure: PRDN

Definition (S.)

A set of p-values are said to satisfy the *positive regression dependence within nulls* (PRDN) if the nulls satisfy PRDS

A new dependence structure: PRDN

Definition (S.)

A set of p-values are said to satisfy the *positive regression dependence within nulls* (PRDN) if the nulls satisfy PRDS

- Includes PRDS and IWN as special cases
- No assumption regarding the non-nulls
- Under PRDN, one can show that

$$
\min_{1 \le j \le m_0} \frac{m_0 p_{(j)}^0}{j}
$$

is stochastically larger than or equal to $U[0, 1]$

• Connection with the Simes method

FDR control under PRDN

Theorem (S.)

Any compliant procedure applied to PRDN p*-values satisfies*

 $\mathsf{FDR} \leq q + q \log \frac{1}{q}$

FDR control under PRDN

Theorem (S.)

Any compliant procedure applied to PRDN p*-values satisfies*

$$
\textsf{FDR} \leq q + q \log \frac{1}{q}
$$

$$
\begin{aligned} \text{FDR} &\leq \mathbb{E}\left[\min\left\{\frac{q}{\min_{1\leq j\leq m_0}\frac{m_0p_{(j)}^0}{j}},1\right\}\right] \\ &\leq \mathbb{E}\left[\min\left\{\frac{q}{U[0,1]},1\right\}\right] \\ &=\mathbb{P}(U[0,1]\leq q)+\int_q^1\frac{q}{x}\,\mathrm{d}x \\ &=q+q\log\frac{1}{q} \end{aligned}
$$

Optimality

Theorem (S.)

Let $c < q + q \log \frac{1}{q}$ for sufficiently small $q.$ If m is sufficiently large, BH applied to *certain PRDN* p*-values gives*

 $FDR > c$

Possible to get rid of the logarithmic factor log(1/q)?

Bounded adversariness

Theorem (S.)

If the null p*-values are iid uniform and the adversary only has access to all (sorted)* p*-values but the smallest one. Then any compliant procedure satisfies*

FDR $\leq 3.41q$

FDR control under *PRDN*

The *new* provable FDR control world

Outline

1 [How does robustness arise?](#page-18-0)

2 [From independence to PRDN](#page-39-0)

³ [FDR consistency: the nulls matter](#page-56-0)

This rate is "consistent"

An observation

$$
\lim_{q \to 0} q + q \log \frac{1}{q} = 0
$$

independent of the dimension m

This rate is "consistent"

An observation

$$
\lim_{q \to 0} q + q \log \frac{1}{q} = 0
$$

independent of the dimension m

• But the rate

$$
\left(1 + \frac{1}{2} + \dots + \frac{1}{m}\right)q \approx (\log m)q
$$

does *not* tend to zero uniformly

A weak version of FDR control

Definition (FDR consistency)

A dependence structure (indexed by the dimension m) of p -values is said to be FDR-consistent if the FDR of BH satisfies

 $FDR < f(q)$,

where $f(q) \rightarrow 0$ as $q \rightarrow 0$ uniformly over all m

A weak version of FDR control

Definition (FDR consistency)

A dependence structure (indexed by the dimension m) of p -values is said to be FDR-consistent if the FDR of BH satisfies

 $FDR < f(q)$,

where $f(q) \rightarrow 0$ as $q \rightarrow 0$ uniformly over all m

- If dependence of nulls is "positive," then $f(q) = q + q \log(1/q)$ is FDR-consistent
- For the most *adversary* dependence, $f(q) = (1 + 1/2 + \cdots + 1/m)q$. FDR consistency not satisfied (Benjamini and Yekutieli '01)!

It's the nulls that matter for FDR consistency

Theorem (S.)

If the null dependence structure is FDR-consistent, then the (full) dependence structure is FDR-consistent

It's the nulls that matter for FDR consistency

Theorem (S.)

If the null dependence structure is FDR-consistent, then the (full) dependence structure is FDR-consistent

- FDR consistency is robust to adversary non-nulls
- Future theoretical FDR research: focus on the nulls!

Proof

Lemma (S.)

Let a compliant procedure applied to the nulls control the FDR at $FDR₀(q)$ *. Then, the procedure applied to all* p*-values satisfies*

$$
\textsf{FDR} \leq q + q \int_q^1 \frac{\textsf{FDR}_0(x)}{x^2} \text{d}x
$$

Proof

Lemma (S.)

Let a compliant procedure applied to the nulls control the FDR at $FDR₀(q)$ *. Then, the procedure applied to all* p*-values satisfies*

$$
\mathsf{FDR} \le q + q \int_q^1 \frac{\mathsf{FDR}_0(x)}{x^2} \mathrm{d}x
$$

• Step 1:

$$
\mathsf{FDP} \leq \min\left\{\frac{q}{\min_{1 \leq j \leq m_0} \frac{m_0 p_{(j)}^0}{j}}, 1\right\}
$$

• Step 2: the CDF of $\min_{1\leq j\leq m_0}\frac{m_0p_{(j)}^0}{j}$ is $\leq \mathsf{FDR}_0(q)$

• Step 3: $q + q \int_q^1$ $\frac{f(x)}{x^2} {\rm d} x \to 0$ if $f(x) \to 0$ as $x \to 0$

Weijie Su@Wharton 44 / 47

Extending the provable FDR *consistent* world?

Take-home messages

• Both FDR and BH are robust to adversary dependence between nulls and non-nulls

Take-home messages

- Both FDR and BH are robust to adversary dependence between nulls and non-nulls
- The joint distribution of nulls matters most

Take-home messages

- Both FDR and BH are robust to adversary dependence between nulls and non-nulls
- The joint distribution of nulls matters most
- If proving FDR control is too difficult, let's consider FDR consistency under global null!

Thank you!

- ¹ *Private False Discovery Rate Control* Cynthia Dwork, Weijie J. Su, and Li Zhang, arXiv:1511.03803 (subsumed)
- ² *Differentially Private False Discovery Rate Control* Cynthia Dwork, Weijie J. Su, and Li Zhang, arXiv:1807.04209
- ³ *The FDR-Linking Theorem* Weijie J. Su, in preparation