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False discovery rate (FDR)

FDP =
#false discoveries

#discoveries
=

200

100 + 200

FDR = EFDP

true model

estimated model

100 200300

• FDP: false discovery proportion

• Want to control FDR ≤ q (e.g. q = 0.05, 0.1)

• Proposed by Benjamini and Hochberg ’95
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The Benjamini-Hochberg (BH) procedure

Given p-values p1, . . . , pm corresponding to m hypotheses

BH procedure the “great”

• Let R be the largest such that at least R of p1, . . . , pm are ≤ qR
m• Reject the R smallest p-values

• A p-value is a measure of how extreme the observation is when the null
hypothesis is true

• E.g., observe y ∼ N (µ, 1) and decide between H0 : µ = 0 vs H1 : µ 6= 0

• We call a p-value {
null if H0 is true

non-null if H0 is false
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The BH procedure

Let p1, p2, . . . , pm be p-values of m hypotheses
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FDR control

Theorem (Benjamini and Hochberg ’95)

The BH procedure controls FDR if

• the nulls are jointly independent,

• and the nulls are independent of the non-nulls

• Recall that FDR controls means

FDR = E
[

#rejected null p-values
#rejected p-values

]
≤ q

• Replaced by “positive” dependence (Benjamini and Yekutieli ’01)

• Arguably, conditions are very strigent for provable FDR control
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Impact

• Perhaps the most popular error rate in genomics

• 49,443 citations as of October 29, 2018

• In summer 2014, two computer scientists became interested in FDR
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Collaborators

Cynthia Dwork (Harvard) Li Zhang (Google)
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Summer 2014

I spent a wonderful summer at MSR Silicon Valley
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What I was doing at MSR Silicon Valley

Prove FDR control of a differentially private version of BH

Challenging because

smallest p-values may not be selected

• FDR proof techniques: martingale technique (Storey et al ’04) and
“leave-one-out” technique (Benjamini and Yekutieli ’01)

• Existing approaches do not explore the robustness
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Theory vs practice

• Provable FDR control rests
on very stringent
conditions

• In practice, works so well.
Even very difficult to lose
FDR control (Guo and Rao
’08)

Why?
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This talk: it’s the robustness, stxpid! (sorry ¨̂ )

• BH is a robust procedure

• FDR is a robust criterion

• Robust to even adversary dependence between nulls and non-nulls

• Null distribution matters most

• A new relaxed criterion: FDR consistency
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Outline

1 How does robustness arise?

2 From independence to PRDN

3 FDR consistency: the nulls matter
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An observation

Definition (Compliance)

A procedure is called compliant if any rejected p-value satisfies

pi ≤
qR

m

• R = #discoveries = #rejected p-values

• Related to self-consistency condition (Blanchard and Roquain ’08)

• BH is compliant

• So are the generalized step-up-step-down procedures (Tamhane, Liu, and
Dunnett ’98; Sarkar 02’)
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Compliances helps bound FDP

Compliance implies

FDP ≤ max
1≤j≤m0

qj

mp0(j)

p0(1) ≤ p
0
(2) ≤ · · · ≤ p

0
(m0)

are the ordered m0 null p-values

Denote by V the number of false discoveries

• The largest rejected null p-value is at least p0(V )

• By compliance, p0(V ) ≤
qR
m . Thus, R ≥ mp0(V )/q

• Finally,

FDP =
V

R
≤ V

mp0(V )/q
≤ max

1≤j≤m0

qj

mp0(j)
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More comments

• Compliance implies

FDP ≤ max
1≤j≤m0

qj

mp0(j)

• Define FDRk = E
[
V
R ;V ≥ k

]
. Then

FDPk ≤ max
k≤j≤m0

qj

mp0(j)

• Hold regardless of the non-null p-values

• Non-null p-values can be adversary after looking at nulls!
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What can compliance do for us?
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Compliance plus IWN implies FDR control

Definition (IWN)
A set of p-values are said to satisfy independence within the null (IWN) if the
null p-values are jointly independent

Theorem (Dwork, S., and Zhang)

For k ≥ 2, any compliant procedure applied to IWN p-values satisfies

FDRk ≤ Ckq

• Applies to BH and many variants

• C2 ≈ 2.41, C3 ≈ 1.85, C10 ≈ 1.32

• Dependence between nulls and non-nulls can be adversarial!

• Explains partially why BH is so robust
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Optimality of Ck

Theorem (Dwork, S., and Zhang)

For any C < Ck, if q is sufficiently small and m is sufficiently large, there exists a
compliant procedure applied to IWN p-values such that

FDRk > Cq

17 / 47Weijie Su@Wharton



Connection with the literature

• State-of-art FDR control requires certain positive dependence between
nulls and non-nulls (Benjamini and Yekutieli ’01)

• Arbitrary dependence, FDR is controlled at (Benjamini and Yekutieli ’01)(
1 +

1

2
+ · · ·+ 1

m

)
q ≈ (logm)q

• Robustness in uniform FDP bounds (Katsevich and Ramdas ’18)
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Let’s prove it
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Proof I

Let pi1 , . . . , piR be rejected p-values

Compliance implies

FDPk ≤ max
k≤j≤m0

qj

mp0(j)

• Replacing the ordered null p-values by the uniform order statistics
U(1) ≤ U(2) ≤ · · · ≤ U(m0)

• Then

FDRk ≤ E
[

max
k≤j≤m0

qj

mU(j)

]
= q

m0

m
E
[

max
k≤j≤m0

j

m0U(j)

]
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Proof II

Thus, it suffices to prove

E
[

max
k≤j≤n

j

nU(j)

]
≤ Ck

Lemma
Define for n ≥ k ≥ 2

C
(n)
k = E

[
max
k≤j≤n

j

nU(j)

]
Then C(n)

k ≤ C(n+1)
k

Writing Tj = ξ1 + · · ·+ ξj for iid exponential rvs ξ1, . . . , ξn+1 with mean 1.
Therefore,

Ck = lim
n→∞

C
(n)
k = lim

n→∞
E
[

max
k≤j≤n

jTn+1

nTj

]
= E

[
max

k≤j<∞

j

Tj

]
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The constant Ck

1.0

1.5

2.0

2.5

5 10 15 20 25
k
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Controlling FDRk

A variant of the FDR defined as

FDRk = E
[
V

R
;R ≥ k

]

Theorem (Dwork, S., and Zhang)

For any k ≥ 1, any compliant procedure applied to IWN p-values satisfies

FDRk ≤
(

1 +
2√
qk

)
q

• Proof based on a backward martingale
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Numerical examples of FDR control of BH
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Multivariate normal

X ∼ N (µ,Σ)

• Σ of size 1000× 1000; m1 the number of true effects; m0 = 1000−m1

• Σ has ones on the diagonal, Σ(ij) = −1/
√
m0m1 for 1 ≤ i ≤ m0 and

m1 + 1 ≤ j ≤ m, otherwise 0

• µ = 2 for 1 ≤ i ≤ m1, otherwise 0

• q = 0.1
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Multivariate normal
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Multivariate t-distribution

X(1), . . . , X(n) ∼ N (µ,Σ). To test µi = 0 vs µi > 0, use

ti =

√
nX̄i√

1
n−1Σn

l=1(X
(l)
i − X̄i)2

• n = 10

• All the others the same as the previous example
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Multivariate t-distribution
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Outline

1 How does robustness arise?

2 From independence to PRDN

3 FDR consistency: the nulls matter
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BH controls FDR under IWN
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Nulls Non-nulls

adversary
independent adversary



Positive regression dependence

Definition (Benjamini and Yekutieli ’01; Sarkar ’02)

X = (X1, . . . , Xm) is said to satisfy the property of positive regression
dependence on a subset I0 (PRDS), if for any increasing set D and each i ∈ I0

P((X1, . . . , Xm) ∈ D|Xi = x)

is increasing in x.

Theorem (Benjamini and Yekutieli ’01)

If the the test statistics are PRDS on the set of nulls, then BH gives

FDR ≤ qm0

m
≤ q
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BH controls FDR under PRDS
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Nulls Non-nulls

positive
positive adversary



The current provable FDR control world
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Can we find a new continent?
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Nulls Non-nulls

adversary
positive adversary

Recap from last session

• At an A/T locus: 

• -What are the genotypes? 

• -What are the alleles? 

• Given the following frequencies at a locus:  

 A/A: N=123   

 A/C: N=134 

 C/C N=52 

Which is the minor allele? 

What are the allele frequencies?



Recall compliance

Compliance implies

FDP ≤ min

{
max

1≤j≤m0

qj

mp0(j)
, 1

}

≤ min

 qm0/m

min1≤j≤m0

m0p0
(j)

j

, 1


≤ min

 q

min1≤j≤m0

m0p0
(j)

j

, 1



What’s the distribution of

min
1≤j≤m0

m0p
0
(j)

j
?
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A new dependence structure: PRDN

Definition (S.)
A set of p-values are said to satisfy the positive regression dependence within
nulls (PRDN) if the nulls satisfy PRDS

• Includes PRDS and IWN as special cases

• No assumption regarding the non-nulls

• Under PRDN, one can show that

min
1≤j≤m0

m0p
0
(j)

j

is stochastically larger than or equal to U [0, 1]

• Connection with the Simes method
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FDR control under PRDN

Theorem (S.)
Any compliant procedure applied to PRDN p-values satisfies

FDR ≤ q + q log
1

q

FDR ≤ E

min

 q

min1≤j≤m0

m0p0
(j)

j

, 1




≤ E
[
min

{
q

U [0, 1]
, 1

}]
= P(U [0, 1] ≤ q) +

∫ 1

q

q

x
dx

= q + q log
1

q
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Optimality

Theorem (S.)
Let c < q + q log 1

q for sufficiently small q. If m is sufficiently large, BH applied to
certain PRDN p-values gives

FDR > c
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Possible to get rid of the logarithmic factor log(1/q)?
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Bounded adversariness

Theorem (S.)
If the null p-values are iid uniform and the adversary only has access to all
(sorted) p-values but the smallest one. Then any compliant procedure satisfies

FDR ≤ 3.41q
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FDR control under PRDN
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Nulls Non-nulls

adversary
positive adversary



The new provable FDR control world
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PRDS IWN

PRDN



Outline

1 How does robustness arise?

2 From independence to PRDN

3 FDR consistency: the nulls matter
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This rate is “consistent”

An observation

lim
q→0

q + q log
1

q
= 0

independent of the dimension m

• But the rate (
1 +

1

2
+ · · ·+ 1

m

)
q ≈ (logm)q

does not tend to zero uniformly
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A weak version of FDR control

Definition (FDR consistency)

A dependence structure (indexed by the dimension m) of p-values is said to be
FDR-consistent if the FDR of BH satisfies

FDR ≤ f(q),

where f(q)→ 0 as q → 0 uniformly over all m

• If dependence of nulls is “positive,” then f(q) = q + q log(1/q) is
FDR-consistent

• For the most adversary dependence, f(q) = (1 + 1/2 + · · ·+ 1/m)q. FDR
consistency not satisfied (Benjamini and Yekutieli ’01)!
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It’s the nulls that matter for FDR consistency

Theorem (S.)
If the null dependence structure is FDR-consistent, then the (full) dependence
structure is FDR-consistent

• FDR consistency is robust to adversary non-nulls

• Future theoretical FDR research: focus on the nulls!
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Proof

Lemma (S.)
Let a compliant procedure applied to the nulls control the FDR at FDR0(q).
Then, the procedure applied to all p-values satisfies

FDR ≤ q + q

∫ 1

q

FDR0(x)

x2
dx

• Step 1:

FDP ≤ min

 q

min1≤j≤m0

m0p0
(j)

j

, 1


• Step 2: the CDF of min1≤j≤m0

m0p
0
(j)

j is ≤ FDR0(q)

• Step 3: q + q
∫ 1

q
f(x)
x2 dx→ 0 if f(x)→ 0 as x→ 0
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Extending the provable FDR consistent world?
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Nulls Non-nulls

adversarya new dependence
structure?

adversary



Summary
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Take-home messages

• Both FDR and BH are robust to adversary dependence between nulls and
non-nulls

• The joint distribution of nulls matters most

• If proving FDR control is too difficult, let’s consider FDR consistency under
global null!
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Thank you!

1 Private False Discovery Rate Control
Cynthia Dwork, Weijie J. Su, and Li Zhang, arXiv:1511.03803 (subsumed)

2 Differentially Private False Discovery Rate Control
Cynthia Dwork, Weijie J. Su, and Li Zhang, arXiv:1807.04209

3 The FDR-Linking Theorem
Weijie J. Su, in preparation
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