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Classical Maximum-Likelihood Theory

Logistic regression in R: n = 200, p = 60

> fit = glm(y ~ X, family = binomial)

> summary(fit)

Call:

glm(formula = y ~ X, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.1836 -0.9808 0.3590 0.9770 2.4853

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.3320037 0.2029364 1.636 0.1018

X1 -0.3080503 0.1969881 -1.564 0.1179

X2 0.1707889 0.2096599 0.815 0.4153

X3 -0.1491842 0.1883217 -0.792 0.4283

X4 0.0346026 0.1987109 0.174 0.8618

X5 -0.0962019 0.1725523 -0.558 0.5772

X6 0.4634118 0.2167999 2.138 0.0326 *

...

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Can inference
be trusted?
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Classical Maximum-Likelihood Theory

Logistic Regression setting

Consider n i.i.d. samples (yi,Xi), yi ∈ {0, 1}, Xi ∈ Rp,

P[yi = 1|Xi] = σ(X ′iβ) :=
eX

′
iβ

1 + eX
′
iβ
, β ∈ Rp

MLE and reduced MLE

β̂ = arg minβ∈Rp `(β)

β̂(−j) = arg minβ∈Rp,βj=0 `(β)

`(β) =

n∑
i=1

{ρ(X ′iβ)− (X ′iβ)yi}, ρ(t) = log(1 + et) (link fun.)

For testing H0,j : βj = 0 vs H1 : βj 6= 0

log LRTj = `(β̂)− `(β̂(−j))
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Classical Maximum-Likelihood Theory

Basic staples of classical theory

Theorem (Classical MLE distribution)

Under ‘suitable regularity conditions’, p fixed, n→∞, with Fisher information Iβ

√
n(β̂ − β)

d→ N (0, I−1
β ),

Theorem (Wilks’ theorem)

Under suitable ‘regularity conditions’, p fixed, n→∞

−2 log LRT
d→ χ2 (under null)

Similar result for testing a group of k variables.

Extensions to diverging dimensions—Huber (’73), Portnoy (’88), p = o(
√
n).
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Classical Maximum-Likelihood Theory

Agenda

Classical theory used for inference all the time, and by all software packages.

1 The MLE is approximately unbiased.

2 Variance of the MLE is approximately given by inverse Fisher information.

3 LRT is approximately distributed as a χ2.

This talk

Is classical inference accurate in modern settings where n, p are both large
(→∞) and n/p is 5 or 10?
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Classical Maximum-Likelihood Theory

What do we see in simulation studies?
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Classical Maximum-Likelihood Theory

Scaling

Simulation settings:

Gaussian covariates
Xi ∼ N (0, I/n)

Coeff. β scaled s.t.

Var(X ′iβ) = γ2 = 5
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Classical Maximum-Likelihood Theory

Unbiasedness of MLE? First Example
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Figure: Signal (black) and MLE (blue), n = 4000, p = 800
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Classical Maximum-Likelihood Theory

Unbiasedness of MLE? First Example
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Figure: Signal (black) and MLE (blue), n = 4000, p = 800
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Classical Maximum-Likelihood Theory

Unbiasedness of MLE? Second example
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Figure: Lines with slope 1 (black) and 1.499 (red). n = 4000, p = 800
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Classical Maximum-Likelihood Theory

Unbiasedness of MLE? Second example
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Figure: Lines with slope 1 (black) and 1.499 (red). n = 4000, p = 800

 MLE seems to be over-biased
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Classical Maximum-Likelihood Theory

Consequence for predicted probabilities

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−20

−10

0

10

20

−10 0 10
True signal

M
LE

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●
●●●●●●
●
●●●●●●●●●●●
●
●

●●●●●●●●●
●

●

●●

●

●●
●
●●●●●●●

●

●

●

●●●
●

●●●●●●●

●

●●●●

●

●●●●

●

●

●●●●
●
●
●

●

●
●●●●●
●●

●

●

●●●●

●

●

●●
●
●

●●

●

●

●●●●
●
●●
●●●●●●●●
●

●

●

●●●●

●

●
●●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●
●
●

●
●

●

●●●●

●

●●

●

●

●
●
●

●
●
●●●

●●

●

●

●

●
●
●
●

●

●●●●●
●●

●
●

●●●
●
●

●
●

●
●

●

●

●

●●●
●●
●●●

●

●

●

●●●●

●

●●●

●

●●●

●

●

●

●

●

●

●●

●

●

●●

●

●
●
●
●

●

●

●

●
●
●

●

●●●●●

●

●

●

●●
●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●●●
●

●

●●

●

●

●

●
●
●●●
●

●
●●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●
●●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●
●●
●●

●

●

●
●●●

●

●

●
●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●
●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●
●
●

●

●

●

●

●

●
●
●●●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●

●

●●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●
●●●●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●

●

●●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●
●

●

●

●
●
●

●●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●
●●●●●●

●●

●

●

●●

●

●●
●
●

●

●

●●●

●

●
●
●

●

●
●●●●
●

●

●

●

●●

●

●

●●●●

●

●

●

●

●●●●●
●

●
●

●

●

●

●

●

●●●●●●●●●●
●

●
●

●

●●
●●
●

●

●

●
●

●

●

●●

●

●

●

●●

●

●●

●

●●
●

●

●
●●

●

●●

●

●

●
●

●

●

●

●●●

●

●
●

●

●●●

●

●

●

●
●●
●●●●●●
●

●

●

●

●
●●
●

●

●

●
●
●

●●
●
●
●
●

●

●

●

●●●

●

●●●●●●●

●

●

●

●

●

●

●●●●●●●●●
●●
●

●

●●●

●

●●

●

●

●

●●
●●●●
●
●
●
●●●

●●
●
●
●●●●●●●●●●●

●

●
●●
●
●●●
●
●●●●●●●

●

●●●●●●

●

●

●

●●●
●●
●
●
●
●●●●●

●
●●●●●●
●●
●●●●●●●
●
●●
●

●●●●

●

●●●

●

●●●●
●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
ie

s 
(T

ru
e 

an
d 

pr
ed

ic
te

d)

Figure: (Left) Scatterplot of β̂j vs. βj . (Right) True and predicted probabilities.

 Predictions biased towards the extremes
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Classical Maximum-Likelihood Theory

Accuracy of standard errors?
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Figure: SEs of null coeff. estimates obtained via MC simulations (red) and
classical value (blue)

 MLE exhibits variance inflation in high dimensions
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Classical Maximum-Likelihood Theory

Accuracy of Wilks’ theorem?
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Figure: P-values (under the null) based on χ2 approximation.

Observed earlier in Candès et al. (’16)
Studied under β = 0, S., Chen and Candès (’17)
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Figure: P-values (under the null) based on χ2 approximation.

 P-values far from uniform. Note, LRT distribution here is continuous.

Observed earlier in Candès et al. (’16)
Studied under β = 0, S., Chen and Candès (’17)
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Classical Maximum-Likelihood Theory

Merely a finite sample effect?

Historically known

MLE exhibits bias in small samples.

LLR performs poorly in small samples.

Several correction methods: Bartlett, Schaefer, Cordeiro, McCullagh, Firth...

Central theme (under classical asymptotics):

E [−2 log LRT] = 1 +
α

n
+O

(
1

n2

)

Plug in estimator αn for α. Corrected statistic:

−2 log LRT

1 + αn

n

Bartlett correction—specific choice for αn.
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Classical Maximum-Likelihood Theory

Bartlett corrected p-values
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Traditional finite sample corrections do not suffice in high dimensions
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Classical Maximum-Likelihood Theory

Failures of Classical Theory

1 MLE over-estimates effect magnitudes
 Predictions for risk of a disease shrunk to 0 or 1.

2 Variability of MLE is underestimated
 invalid confidence intervals.

3 P-values based on LRT far from uniform under the null
 Entirely unreliable inference.

Serious need for a modern maximum-likelihood theory in high dimensions!
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Modern Maximum-Likelihood Theory

A Modern Maximum-Likelihood Theory for High Dimensions
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Modern Maximum-Likelihood Theory

Asymptotic Setting

Sequence of problems with n, p→∞ and covariates
√
nXi ∼ N (0, Ip×p)

Dimensionality κ:
p/n→ κ ∈ (0, 1)

Signal strength (SNR):
Var(X ′iβ)→ γ2

Conditions on the signal:

1

p

p∑
i=1

δβi

d→ Π, EΠ2 <∞, 1

p

p∑
i=1

β2
j → EΠ(β2)
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Modern Maximum-Likelihood Theory Crucial Building Blocks

When does the MLE exist?

Albert and Anderson (1984)

The MLE does not exist if a hyperplane separates the two groups, and exists
otherwise.

Pragya Sur (Stanford) Modern Likelihood Theory



Modern Maximum-Likelihood Theory Crucial Building Blocks

Analytical characterization

Cover (1964)

If Xi i.i.d. from continuous distribution
F and β = 0, MLE does not exist
(asymp.) if κ > 1/2.

Theorem (Candès and S.(’18))

V
d
= Y X , X ∼ N (0, 1), and Y = ±1, P(Y = 1|X) = 1/(1 + exp(−γX))

Z ∼ N (0, 1) ⊥⊥ V, hMLE(γ) = mint∈R
{
E(tV − Z)2

+

}
κ > hMLE(γ) =⇒ limn,p→∞ P{MLE exists} = 0
κ < hMLE(γ) =⇒ limn,p→∞ P{MLE exists} = 1

Pragya Sur (Stanford) Modern Likelihood Theory



Modern Maximum-Likelihood Theory Crucial Building Blocks

Analytical characterization

Cover (1964)

If Xi i.i.d. from continuous distribution
F and β = 0, MLE does not exist
(asymp.) if κ > 1/2.

Theorem (Candès and S.(’18))

V
d
= Y X , X ∼ N (0, 1), and Y = ±1, P(Y = 1|X) = 1/(1 + exp(−γX))

Z ∼ N (0, 1) ⊥⊥ V, hMLE(γ) = mint∈R
{
E(tV − Z)2

+

}
κ > hMLE(γ) =⇒ limn,p→∞ P{MLE exists} = 0
κ < hMLE(γ) =⇒ limn,p→∞ P{MLE exists} = 1

Pragya Sur (Stanford) Modern Likelihood Theory



Modern Maximum-Likelihood Theory Crucial Building Blocks

A nonlinear system of equations

Recall

Signal strength: γ2 := lim Var(X ′iβ).

Dimensionality: κ = lim p/n.

Link function: ρ(t) = log(1 + et).

Proximal mapping operator: proxλρ(z) = arg mint∈R
{
λρ(t) + 1

2 (t− z)2
}

Equation system (S) in 3 unknowns (α, σ, λ), parametrized by (κ, γ)

(S)


σ2 =

1

κ2
E
[
2ρ′(Q1)

(
λρ′(proxλρ(Q2))

)2]
0 = E

[
ρ′(Q1)Q1λρ

′(proxλρ(Q2))
]

1− κ = E
[

2ρ′(Q1)

1 + λρ′′(proxλρ(Q2))

]
(Q1, Q2) ∼ N (0,Σ(α, σ))

Σ =

[
γ2 −αγ2

−αγ2 α2γ2 + κσ2

]

This system holds lots of keys...

Pragya Sur (Stanford) Modern Likelihood Theory
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Modern Maximum-Likelihood Theory Crucial Building Blocks

Existence of MLE and system (S)

MLE exists (asymp.) iff (S) has a unique solution
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Modern Maximum-Likelihood Theory On the MLE

‘Average’ MLE behavior

Assume MLE exists asymp. ((S) has unique solution (α∗, σ∗, λ∗)).

Roughly
β̂j − α∗βj

σ?
∼ N (0, 1)

Theorem (S. and Candès ’18)

For any bivariate pseudo-Lipschitz function ψ of order 2,

1

p

p∑
j=1

ψ(β̂j − α∗βj , βj)
a.s.−→ E[ψ(σ?Z, β)]

where Z ∼ N (0, 1) and β ∼ Π ⊥⊥ Z. Recall Π is weak limit of 1
p

∑p
j=1 δβj .

Pragya Sur (Stanford) Modern Likelihood Theory
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Modern Maximum-Likelihood Theory On the MLE

Consequence 1: Bias

ψ(t, u) = t =⇒ 1

p

p∑
j=1

(
β̂j − α∗βj

)
a.s.−→ 0
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Modern Maximum-Likelihood Theory On the MLE

Consequence 2: Variance

ψ(t, u) = t2 =⇒ 1

p

p∑
j=1

(
β̂j − α∗βj

)2 a.s.−→ σ2
∗
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Modern Maximum-Likelihood Theory On the MLE

Consequence 3: confidence intervals

ψ(t, u) = 1{−1.96 ≤ t/σ∗ ≤ 1.96}

=⇒ 1

p

p∑
j=1

1{−1.96 ≤ (β̂j − α∗βj)/σ∗ ≤ 1.96} a.s.−→ 0.95

CIj =

[
β̂j ± 1.96σ∗

α∗

]

Pragya Sur (Stanford) Modern Likelihood Theory
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Modern Maximum-Likelihood Theory On the MLE

Consequence 3: confidence intervals
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Modern Maximum-Likelihood Theory On the MLE

Consequence 4: confidence intervals for which βj 6= 0

ψ(t, u) = 1{−1.96 ≤ t/σ∗ ≤ 1.96}1{u 6= 0}

=⇒ Avej:βj 6=0{βj ∈ CIj}
a.s.−→ 0.95
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Modern Maximum-Likelihood Theory On the MLE

Distribution of nulls

Theorem (S. and Candès, ’18)

For any null variable βj = 0,

β̂j
d→ N (0, σ2

∗).

For any k null variables i1, . . . , ik, (β̂i1 , . . . , β̂ik) is jointly asymp. independent.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
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Figure: Empirical cdf of Φ(β̂j/σ∗); n = 4000, p = 400, γ2 = 5
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Modern Maximum-Likelihood Theory On the LRT

Distribution of the LRT

Theorem (S. and Candès ’18)

Assume MLE exists asymp. ((S) has unique solution (α∗, σ∗, λ∗)).
For a null j, βj = 0,

−2 log(LRTj)
d→ κσ2

∗
λ∗

χ2
1.

Similar extension to groups of k variables.
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Modern Maximum-Likelihood Theory On the LRT

Bulk and tail asymptotics using our correction
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Figure: Histogram and empirical cdfs of p-values under the null
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Modern Maximum-Likelihood Theory Non-Gaussian covariates

Non-Gaussian covariates

P(Xj = 0) = p2
j P(Xj = 1) = 2pj(1− pj) P(Xj = 2) = (1− pj)2

(SNPs in Hardy-Weinberg equilibrium)
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Modern Maximum-Likelihood Theory Non-Gaussian covariates

Non-Gaussian covariates
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(a) Emp. cdf of Φ(β̂j/σ∗) for null βj (b) P-vals from LLR approx. for this null
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(c) Empirical dist. of p-vals from (b) (d) Tail behavior of (c)
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Mathematical Ingredients

Main Mathematical Ideas
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Mathematical Ingredients

Tools and Inspiration

MLE phase transition

P{MLE exists} −→ 0/1

Convex geometry—Cover(’65),
Amelunxen et al.(’13)

Average behavior

Aveψ(β̂j−α∗βj , βj)
a.s.−→ E[ψ(σ?Z, β)]

Generalized Approximate Message
Passing, robust M-estimation
(G-AMP)—Rangan (’10),
Javanmard and Montanari (’12),
Donoho and Montanari(’13)

Null dist. & LRT

β̂j
d→ N (0, σ2

∗)

−2 log(LRTj)
d→ κσ2

∗
λ∗

χ2
1

Leave-one-out arguments (robust
M-estimation), non-asymptotic
RMT—El Karoui(’13), El Karoui,
Bean, Bickel, Lim, Yu(’13)
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Mathematical Ingredients

Approximate message passing (AMP) for the MLE

Consider an iterative algorithm with β̂ as fixed point

Track iterates β̂t at each stage via state evolution (SE)

Show β̂t converges to β̂ in an appropriate sense

DMM (’09), BM (’11), JM (’13), BLM (’15)
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Mathematical Ingredients

The algorithm

Update {β̂t,St} iteratively (from init. cond. (β̂0,S0 = Xβ0)

β̂t = β̂t−1 + κ−1X ′Ψt(y,S
t−1)

St = Xβ̂t −Ψt−1(y,St−1)
(1)

Ψt (applied element-wise) depends on scalars {λt}t≥0

Ψt(y, s) = λtrt rt = y − ρ′(proxλtρ(λty + s)) (2)

Can be interpreted as scaled residuals

Pragya Sur (Stanford) Modern Likelihood Theory



Mathematical Ingredients

Why this algorithm?

Assume λt ≡ λ (constant). If {β̂?,S?} fixed point

X ′{y − ρ′(proxλρ(λy + S))} = 0

(λy + S?)− λρ′(proxλρ(λy + S)) = Xβ̂?

Prox properties yield

z − λρ′(proxλρ(z)) = proxλρ(z) =⇒ proxλρ(λy + S) = Xβ̂?

=⇒ X ′{y − ρ′(Xβ̂?)} = 0

Fixed point β̂? obeys KKT conditions (MLE)

Pragya Sur (Stanford) Modern Likelihood Theory
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Mathematical Ingredients

State evolution

Starting from α0, σ0, define for t = 0, 1, . . .

(1) λt solution to

E
[

2ρ′(Qt1)

1 + λρ′′(proxλρ(Q
t
2))

]
= 1− κ (Qt1, Q

t
2) ∼ N (0,Σ(αt, σt))

(2) updates αt+1, σt+1

αt+1 = αt +
1

κγ2
E
[
2ρ′(Qt1)Qt1λtρ

′(proxλtρ(Q
t
2))
]

σ2
t+1 =

1

κ2
E
[
2ρ′(Qt1)

(
λtρ
′(proxλtρ(Q

t
2))
)2]

{αt, σt, λt} is called the State Evolution sequence.

Claim

(κ, γ)-region where MLE exists is where (1)–(2) converge to unique fixed point
(α∗, σ∗, λ∗)/solution to our system
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Mathematical Ingredients

Marginals via approximate message passing (AMP)

Consider an iterative algorithm with β̂ as fixed point

Track iterates β̂t at each stage via state evolution (SE)

Show β̂t converges to β̂ in an appropriate sense

Pragya Sur (Stanford) Modern Likelihood Theory



Mathematical Ingredients

Correctness of SE

Set α0 = α∗, σ0 = σ∗  αt = α∗, σt = σ∗, λt = λ∗ for all t

Theorem

Assume β̂0 is s.t.

lim
n,p→∞

1

p
‖β̂0 − α∗β‖2 = σ2

∗,
1

γ2
lim
n→∞

〈β̂0, β̂〉
n

= α∗

In region where MLE exists, for any pseudo-Lipschitz ψ, AMP trajectory obeys

1

p

p∑
j=1

ψ(β̂tj − α∗βj , βj)
a.s.−→ E [ψ(σ∗Z, β)] (3)

Z ∼ N (0, 1) ⊥⊥ β ∼ Π (recall
∑p
j=1 δβj

/p
d→ Π)

 Takeaway: {α∗, σ∗} tracks bias and variance of AMP iterates
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Mathematical Ingredients
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Mathematical Ingredients

Convergence to the MLE

Theorem

Assume β̂0 is s.t.

lim
n,p→∞

1

p
‖β̂0 − α∗β‖2 = σ2

∗,
1

γ2
lim
n→∞

〈β̂0, β̂〉
n

= α∗

In region where MLE exists

lim
t→∞

lim
n→∞

1

p

p∑
j=1

ψ(β̂tj − α∗βj , βj) = lim
n→∞

1

p

p∑
j=1

ψ(β̂j − α∗βj , βj)

All info. about large sample bias & variance of β̂t may be transferred to MLE

=⇒ Bias = α∗ Variance = σ2
∗
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Mathematical Ingredients

Analysis of LRT

− log LRTj = `(β̂(−j))− `(β̂) =: Q2 +Q3.

Q2 =
1

2

n∑
i=1

ρ′′
(
X ′iβ̂

)(
X ′i,−jβ̂−j −X ′iβ̂

)2

Q3 =
1

6

n∑
i=1

ρ′′′(γi)
(
X ′i,−jβ̂−j −X ′iβ̂

)3

γi ∈ (X ′i,−jβ̂−j ,X
′
iβ̂)

β̂, β̂−j high-dimensional and dependent.

How do we track the differences X ′i,−jβ̂−j −X ′iβ̂?
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Mathematical Ingredients

Leave-one-out representation

Replace β̂ by a surrogate, starting from β̂−j . For instance, if j = 1 is null,

β̂ ≈
[

0

β̂−1

]
+

[
b1
w

]
Call RHS leave-one-out (L-O-O) representation of β̂.

Carefully tailored choice of surrogate required—problem specific.

Consequence

If βj = 0 and b−j is the L-O-O representation of β̂, starting from β̂−j , w.h.p.

‖β̂ − b−j‖ ≤ Cn−1/2+o(1)

sup
1≤i≤n

|X ′i,−jβ̂−j −X ′iβ̂| ≤ Cn−1/2+o(1)

Inspired by El Karoui, Bean, Bickel, Lim and Yu (’13), El Karoui(’13)
See also cavity method from statistical physics (Zhou’s talk)

Pragya Sur (Stanford) Modern Likelihood Theory



Mathematical Ingredients

Leave-one-out representation

Replace β̂ by a surrogate, starting from β̂−j . For instance, if j = 1 is null,

β̂ ≈
[

0

β̂−1

]
+

[
b1
w

]
Call RHS leave-one-out (L-O-O) representation of β̂.

Carefully tailored choice of surrogate required—problem specific.

Consequence

If βj = 0 and b−j is the L-O-O representation of β̂, starting from β̂−j , w.h.p.

‖β̂ − b−j‖ ≤ Cn−1/2+o(1)

sup
1≤i≤n

|X ′i,−jβ̂−j −X ′iβ̂| ≤ Cn−1/2+o(1)

Inspired by El Karoui, Bean, Bickel, Lim and Yu (’13), El Karoui(’13)
See also cavity method from statistical physics (Zhou’s talk)

Pragya Sur (Stanford) Modern Likelihood Theory



Mathematical Ingredients

Main steps: LRT

(1) Recall − log LRTj = Q2 +Q3, sup1≤i≤n |X ′i,−jβ̂−j −X ′iβ̂| ≤ Cn−1/2+o(1)

=⇒ Q3 = oP (1)

(2) Use L-O-O representation to simplify Q2

2Q2 := (β̂ − β̂−j)′∇2`(β̂)(β̂ − β̂−j) =
κ β̂2

j

λ[−j]
+ oP (1)

(3) Analysis of scaling λ[−j]

λ[−j] := Tr

[(
∇2`−j(β̂−j)

)−1
]

P→ λ∗

(4) Use L-O-O representation to analyze null marginals: β̂j
d→ N (0, σ2

∗)

(5) Variance inflation σ2
∗ and spread in eigenvalues of Hessian λ∗

 rescaling factor κσ2
∗/λ∗
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Mathematical Ingredients

Recap

System solutions interpretations

Introduced system of equations with solutions (α∗, σ∗, λ∗)

System was parametrized by κ, γ.

Bias of MLE: α∗

Variance of MLE: σ∗

LRT distribution: (σ∗, λ∗).

But, SNR γ is unknown in applications!
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ProbeFrontier: Towards Accurate Inference
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ProbeFrontier: Towards Accurate Inference

ProbeFrontier

(1) Subsample

(2) Test whether MLE exists via LP

(3) Record transition point

(4) Read off γ̂

Acknowledgement: Discussions between E. Candès, R. Barber and B. Nadler
(Oberwolfach, March 2018)
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ProbeFrontier: Towards Accurate Inference

Empirical performance: null LLR p-values
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ProbeFrontier: Towards Accurate Inference

Empirical performance: null LLR p-values
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ProbeFrontier: Towards Accurate Inference

Empirical performance: de-biasing the MLE
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α∗ = 1.499 (red line) and ProbeFrontier gives α̂ = 1.511 (green line)
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Summary

Summary and future research

Asymptotic normality of MLE marginals

Asymptotically exact quantification of MLE bias and variance

Asymptotic distribution of the LRT, valid p-values

Extremely accurate in finite samples

Estimation of unknown parameters for practical applications

Open questions

Penalized estimators? (Ongoing)

Correlated covariates?

Other GLMs ?

Decorr. Corr.

β = 0 (SCC, ’17)

β 6= 0 (SC, ’18)
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Thank You!

All papers available at: https://web.stanford.edu/~pragya/
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