A modern maximum-likelihood theory for high-dimensional logistic regression

> Pragya Sur Dept. of Statistics Stanford University

Workshop on Robust and High-Dimensional Statistics Simons Institute for the Theory of Computing 2018

Collaborators

Logistic regression in R: n = 200, p = 60

```
> fit = glm(y ~ X, family = binomial)
> summary(fit)
```

Call: glm(formula = y ~ X, family = binomial)

Deviance Residuals:

Min	1Q	Median	ЗQ	Max
-2.1836	-0.9808	0.3590	0.9770	2.4853

Coefficients:

	E	stimate	Std.	Error	z valu	e Pa	r(> z))				
(Intercep	ot) 0.	3320037	0.20	29364	1.63	6	0.1018	3				
X1	-0.	3080503	0.19	69881	-1.56	4	0.1179	9				
X2	0.	1707889	0.20	96599	0.81	5	0.4153	3				
ХЗ	-0.	1491842	0.18	883217	-0.79	2	0.4283	3				
X4	0.	0346026	0.19	87109	0.17	4	0.8618	3				
Х5	-0.	0962019	0.17	25523	-0.55	8	0.5772	2				
X6	0.	4634118	0.21	.67999	2.13	8	0.0326	5 *				
Signif. d	codes:	0 '***	, 0.00)1 '**'	0.01	·*'	0.05 '	· . '	0.1	,	,	1

Logistic regression in R: n = 200, p = 60

```
> fit = glm(y ~ X, family = binomial)
> summary(fit)
```

Call: glm(formula = y ~ X, family = binomial)

Deviance Residuals:

Min	1Q	Median	ЗQ	Max
-2.1836	-0.9808	0.3590	0.9770	2.4853

Coefficients:

	Est	imate	Std.	Error	z valu	ıe P	r(> z))			L	
(Intercept	.) 0.33	20037	0.20	29364	1.63	86	0.10	18			I	J
X1	-0.30	80503	0.19	969881	-1.56	64	0.11	79				
X2	0.17	07889	0.20	96599	0.81	.5	0.41	53				
ХЗ	-0.14	91842	0.18	383217	-0.79	92	0.428	33				
X4	0.03	46026	0.19	987109	0.17	' 4	0.86	18				
X5	-0.09	62019	0.17	25523	-0.55	8	0.57	72				
X6	0.46	34118	0.21	67999	2.13	88	0.032	26 *				
Signif. co	odes: 0	·***'	0.00)1 '**'	0.01	·*'	0.05	'.'	0.1	,	,	1

Can inference be trusted?

Logistic Regression setting

• Consider n i.i.d. samples (y_i, \boldsymbol{X}_i) , $y_i \in \{0, 1\}$, $\boldsymbol{X}_i \in \mathbb{R}^p$,

$$\mathbb{P}[y_i = 1 | \mathbf{X}_i] = \sigma(\mathbf{X}_i' \boldsymbol{\beta}) := \frac{e^{\mathbf{X}_i' \boldsymbol{\beta}}}{1 + e^{\mathbf{X}_i' \boldsymbol{\beta}}}, \quad \boldsymbol{\beta} \in \mathbb{R}^p$$

MLE and reduced MLE

$$\hat{\boldsymbol{eta}} = rg \min_{\boldsymbol{eta} \in \mathbb{R}^p} \ell(\boldsymbol{eta}) \ \hat{\boldsymbol{eta}}_{(-j)} = rg \min_{\boldsymbol{eta} \in \mathbb{R}^p, \beta_j = 0} \ell(\boldsymbol{eta})$$

$$\ell(\boldsymbol{\beta}) = \sum_{i=1}^{n} \{ \rho(\boldsymbol{X}_{i}^{\prime}\boldsymbol{\beta}) - (\boldsymbol{X}_{i}^{\prime}\boldsymbol{\beta})y_{i} \}, \qquad \rho(t) = \log(1+e^{t}) \quad (\mathsf{link fun.})$$

• For testing $\mathcal{H}_{0,j}: \beta_j = 0$ vs $\mathcal{H}_1: \beta_j \neq 0$

$$\log \text{LRT}_j = \ell(\hat{\boldsymbol{\beta}}) - \ell(\hat{\boldsymbol{\beta}}_{(-j)})$$

Basic staples of classical theory

Theorem (Classical MLE distribution)

Under 'suitable regularity conditions', p fixed, $n \to \infty$, with Fisher information $I_{m eta}$

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{\mathrm{d}}{\rightarrow} \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_{\boldsymbol{\beta}}^{-1}),$$

Theorem (Wilks' theorem)

Under suitable 'regularity conditions', p fixed, $n \to \infty$

$$-2\log \operatorname{LRT} \xrightarrow{d} \chi^2$$
 (under null)

Similar result for testing a group of k variables.

Basic staples of classical theory

Theorem (Classical MLE distribution)

Under 'suitable regularity conditions', p fixed, $n \to \infty$, with Fisher information $I_{m eta}$

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{\mathrm{d}}{\rightarrow} \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_{\boldsymbol{\beta}}^{-1}),$$

Theorem (Wilks' theorem)

Under suitable 'regularity conditions', p fixed, $n \to \infty$

$$-2\log \operatorname{LRT} \xrightarrow{d} \chi^2$$
 (under null)

Similar result for testing a group of k variables.

• Extensions to diverging dimensions—Huber ('73), Portnoy ('88), $p = o(\sqrt{n})$.

Pragya Sur (Stanford)

Classical theory used for inference all the time, and by all software packages.

- **1** The MLE is approximately unbiased.
- **2** Variance of the MLE is approximately given by inverse Fisher information.
- **③** LRT is approximately distributed as a χ^2 .

This talk

Is classical inference accurate in modern settings where n,p are both large $(\to\infty)$ and n/p is 5 or 10?

What do we see in simulation studies?

Scaling

Unbiasedness of MLE? First Example

Figure: Signal (black) and MLE (blue), n = 4000, p = 800

Unbiasedness of MLE? First Example

Figure: Signal (black) and MLE (blue), n = 4000, p = 800

Unbiasedness of MLE? Second example

Figure: Lines with slope 1 (black) and 1.499 (red). n = 4000, p = 800

Unbiasedness of MLE? Second example

Figure: Lines with slope 1 (black) and 1.499 (red). n = 4000, p = 800

\rightsquigarrow MLE seems to be over-biased

Pragya Sur (Stanford)

Modern Likelihood Theory

Consequence for predicted probabilities

Figure: (Left) Scatterplot of $\hat{\beta}_j$ vs. β_j . (Right) True and predicted probabilities.

~ Predictions biased towards the extremes

Pragya Sur (Stanford)

Accuracy of standard errors?

Figure: SEs of null coeff. estimates obtained via MC simulations (red) and classical value (blue)

\rightsquigarrow MLE exhibits variance inflation in high dimensions

Pragya Sur (Stanford)

Accuracy of Wilks' theorem?

Figure: P-values (under the null) based on χ^2 approximation.

Observed earlier in Candès et al. ('16) Studied under $\beta = 0$, S., Chen and Candès ('17)

Accuracy of Wilks' theorem?

Figure: P-values (under the null) based on χ^2 approximation.

 \rightsquigarrow P-values far from uniform. Note, LRT distribution here is continuous.

Observed earlier in Candès et al. ('16) Studied under $\beta = 0$, S., Chen and Candès ('17)

Merely a finite sample effect?

Historically known

- MLE exhibits bias in small samples.
- LLR performs poorly in small samples.

Merely a finite sample effect?

Historically known

- MLE exhibits bias in small samples.
- LLR performs poorly in small samples.
- Several correction methods: Bartlett, Schaefer, Cordeiro, McCullagh, Firth...
- Central theme (under classical asymptotics):

$$\mathbb{E}\left[-2\log\mathsf{LRT}\right] = 1 + \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right)$$

Merely a finite sample effect?

Historically known

- MLE exhibits bias in small samples.
- LLR performs poorly in small samples.
- Several correction methods: Bartlett, Schaefer, Cordeiro, McCullagh, Firth...
- Central theme (under classical asymptotics):

$$\mathbb{E}\left[-2\log\mathsf{LRT}\right] = 1 + \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right)$$

• Plug in estimator α_n for α . Corrected statistic:

$$\frac{-2\log \mathsf{LRT}}{1 + \frac{\alpha_n}{n}}$$

• Bartlett correction—specific choice for α_n .

Pragya Sur (Stanford)

Bartlett corrected p-values

Traditional finite sample corrections do not suffice in high dimensions

Pragya Sur (Stanford)

Failures of Classical Theory

- MLE over-estimates effect magnitudes ~ Predictions for risk of a disease shrunk to 0 or 1.
- Variability of MLE is underestimated ~ invalid confidence intervals.
- P-values based on LRT far from uniform under the null ~> Entirely unreliable inference.

Failures of Classical Theory

- MLE over-estimates effect magnitudes ~ Predictions for risk of a disease shrunk to 0 or 1.
- Variability of MLE is underestimated ~ invalid confidence intervals.
- P-values based on LRT far from uniform under the null ~> Entirely unreliable inference.

Serious need for a modern maximum-likelihood theory in high dimensions!

A Modern Maximum-Likelihood Theory for High Dimensions

Asymptotic Setting

Sequence of problems with $n,p o \infty$ and covariates $\sqrt{n} \bm{X}_i \sim \mathcal{N}(\bm{0}, \bm{I}_{p imes p})$

• Dimensionality κ :

$$p/n \to \kappa \in (0,1)$$

• Signal strength (SNR):

$$\mathsf{Var}(oldsymbol{X}'_ioldsymbol{eta}) o \gamma^2$$

• Conditions on the signal:

$$\frac{1}{p}\sum_{i=1}^{p}\delta_{\beta_{i}} \stackrel{\mathrm{d}}{\to} \Pi, \quad \mathbb{E}\,\Pi^{2} < \infty, \quad \frac{1}{p}\sum_{i=1}^{p}\beta_{j}^{2} \to \mathbb{E}_{\Pi}(\beta^{2})$$

When does the MLE exist?

Albert and Anderson (1984)

The MLE does not exist if a hyperplane separates the two groups, and exists otherwise.

Analytical characterization

Cover (1964)

If X_i i.i.d. from continuous distribution F and $\beta = 0$, MLE does not exist (asymp.) if $\kappa > 1/2$.

Modern Maximum-Likelihood Theory

Crucial Building Blocks

Analytical characterization

Theorem (Candès and S.('18))

• $V \stackrel{d}{=} YX$, $X \sim \mathcal{N}(0,1)$, and $Y = \pm 1$, $\mathbb{P}(Y = 1|X) = 1/(1 + \exp(-\gamma X))$ • $Z \sim \mathcal{N}(0,1) \perp V$, $h_{\mathsf{MLE}}(\gamma) = \min_{t \in \mathbb{R}} \{\mathbb{E}(tV - Z)^2_+\}$

$$\begin{array}{ll} \kappa > h_{\mathsf{MLE}}(\gamma) & \Longrightarrow & \lim_{n,p\to\infty} \mathbb{P}\{\mathsf{MLE}\;\mathsf{exists}\} = 0\\ \kappa < h_{\mathsf{MLE}}(\gamma) & \Longrightarrow & \lim_{n,p\to\infty} \mathbb{P}\{\mathsf{MLE}\;\mathsf{exists}\} = 1 \end{array}$$

Pragya Sur (Stanford)

Modern Likelihood Theory

Modern Maximum-Likelihood Theory Crucial Building Blocks

A nonlinear system of equations

Equation system (S) in 3 unknowns $(\alpha, \sigma, \lambda)$, parametrized by (κ, γ)

$$(S) \begin{cases} \sigma^2 = \frac{1}{\kappa^2} \mathbb{E} \left[2\rho'(Q_1) \left(\lambda \rho'(\operatorname{prox}_{\lambda \rho}(Q_2)) \right)^2 \right] & (Q_1, Q_2) \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}(\alpha, \sigma)) \\ 0 = \mathbb{E} \left[\rho'(Q_1) Q_1 \lambda \rho'(\operatorname{prox}_{\lambda \rho}(Q_2)) \right] \\ 1 - \kappa = \mathbb{E} \left[\frac{2\rho'(Q_1)}{1 + \lambda \rho''(\operatorname{prox}_{\lambda \rho}(Q_2))} \right] & \mathbf{\Sigma} = \begin{bmatrix} \gamma^2 & -\alpha \gamma^2 \\ -\alpha \gamma^2 & \alpha^2 \gamma^2 + \kappa \sigma^2 \end{bmatrix} \end{cases}$$

This system holds lots of keys...

Pragya Sur (Stanford)

A nonlinear system of equations

Recall

- Signal strength: $\gamma^2 := \lim \operatorname{Var}(X'_i\beta)$.
- Dimensionality: $\kappa = \lim p/n$.
- Link function: $\rho(t) = \log(1 + e^t)$.
- Proximal mapping operator: $\operatorname{prox}_{\lambda\rho}(z) = \arg\min_{t\in\mathbb{R}} \left\{ \lambda\rho(t) + \frac{1}{2}(t-z)^2 \right\}$

Equation system (S) in 3 unknowns $(\alpha, \sigma, \lambda)$, parametrized by (κ, γ)

$$(S) \begin{cases} \sigma^2 = \frac{1}{\kappa^2} \mathbb{E} \left[2\rho'(Q_1) \left(\lambda \rho'(\operatorname{prox}_{\lambda \rho}(Q_2)) \right)^2 \right] & (Q_1, Q_2) \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}(\alpha, \sigma)) \\ 0 = \mathbb{E} \left[\rho'(Q_1) Q_1 \lambda \rho'(\operatorname{prox}_{\lambda \rho}(Q_2)) \right] \\ 1 - \kappa = \mathbb{E} \left[\frac{2\rho'(Q_1)}{1 + \lambda \rho''(\operatorname{prox}_{\lambda \rho}(Q_2))} \right] & \mathbf{\Sigma} = \begin{bmatrix} \gamma^2 & -\alpha \gamma^2 \\ -\alpha \gamma^2 & \alpha^2 \gamma^2 + \kappa \sigma^2 \end{bmatrix} \end{cases}$$

This system holds lots of keys...

Modern Maximum-Likelihood Theory C

Crucial Building Blocks

Existence of MLE and system (S)

MLE exists (asymp.) iff (S) has a unique solution

'Average' MLE behavior

Assume MLE exists asymp. ((S) has unique solution $(\alpha_*, \sigma_*, \lambda_*)$).

Roughly
$$\frac{\hat{\beta}_j - \alpha_* \beta_j}{\sigma_\star} \sim \mathcal{N}(0, 1)$$

'Average' MLE behavior

Assume MLE exists asymp. ((S) has unique solution $(\alpha_*, \sigma_*, \lambda_*)$).

$$\label{eq:Roughly} \begin{array}{c} \frac{\hat{\beta}_j - \alpha_* \beta_j}{\sigma_\star} \sim \mathcal{N}(0,1) \end{array}$$

Theorem (S. and Candès '18)

For any bivariate pseudo-Lipschitz function ψ of order 2,

$$\frac{1}{p}\sum_{j=1}^{p}\psi(\hat{\beta}_{j}-\alpha_{*}\beta_{j},\beta_{j})\xrightarrow{\text{a.s.}}\mathbb{E}[\psi(\sigma_{*}Z,\beta)]$$

where $Z \sim \mathcal{N}(0,1)$ and $\beta \sim \Pi \perp Z$. Recall Π is weak limit of $\frac{1}{n} \sum_{i=1}^{p} \delta_{\beta_i}$.

Consequence 1: Bias

Bias $\alpha_* = 1.499$
Consequence 2: Variance

Consequence 3: confidence intervals

$$\begin{split} \psi(t,u) &= 1\{-1.96 \le t/\sigma_* \le 1.96\} \\ \implies \quad \frac{1}{p} \sum_{j=1}^p 1\{-1.96 \le (\hat{\beta}_j - \alpha_*\beta_j)/\sigma_* \le 1.96\} \xrightarrow{\text{a.s.}} 0.95 \\ \\ & \mathsf{Cl}_j = \left[\frac{\hat{\beta}_j \pm 1.96\sigma_*}{\alpha_*}\right] \end{split}$$

Modern Maximum-Likelihood Theory On the MLE

Consequence 3: confidence intervals

Modern Maximum-Likelihood Theory On the MLE

Consequence 3: confidence intervals

$$\begin{split} \psi(t,u) &= 1\{-1.96 \leq t/\sigma_* \leq 1.96\} \\ \implies \quad \frac{1}{p} \sum_{j=1}^p 1\{-1.96 \leq (\hat{\beta}_j - \alpha_*\beta_j)/\sigma_* \leq 1.96\} \xrightarrow{\text{a.s.}} 0.95 \\ & \text{Cl}_j = \left[\frac{\hat{\beta}_j \pm 1.96\sigma_*}{\alpha_*}\right] \\ \end{split}$$

Pragya Sur (Stanford)

Modern Likelihood Theory

Modern Maximum-Likelihood Theory On the MLE

Consequence 4: confidence intervals for which $\beta_i \neq 0$

$$\psi(t, u) = 1\{-1.96 \le t/\sigma_* \le 1.96\} \mathbf{1}\{u \ne 0\}$$

 $\Rightarrow \quad \operatorname{Ave}_{j:\beta_j \neq 0} \{\beta_j \in \mathsf{Cl}_j\} \xrightarrow{\mathsf{a.s.}} 0.95$

Nominal	Average coverage
95%	94.11 (0.12)
90%	88.89 (0.16)

all $\beta_j \neq 0$ (200 replicates)

Distribution of nulls

Theorem (S. and Candès, '18)

For any null variable $\beta_i = 0$,

 $\hat{\beta}_i \stackrel{\mathrm{d}}{\to} \mathcal{N}(0, \sigma_*^2).$

For any k null variables i_1, \ldots, i_k , $(\hat{\beta}_{i_1}, \ldots, \hat{\beta}_{i_k})$ is jointly asymp. independent.

Distribution of nulls

Theorem (S. and Candès, '18)

For any null variable $\beta_i = 0$,

$$\hat{\beta}_j \stackrel{\mathrm{d}}{\to} \mathcal{N}(0, \sigma_*^2).$$

For any k null variables i_1, \ldots, i_k , $(\hat{\beta}_{i_1}, \ldots, \hat{\beta}_{i_k})$ is jointly asymp. independent.

Figure: Empirical cdf of $\Phi(\hat{\beta}_i/\sigma_*)$; n = 4000, p = 400, $\gamma^2 = 5$

Distribution of the LRT

Theorem (S. and Candès '18)

Assume MLE exists asymp. ((S) has unique solution $(\alpha_*, \sigma_*, \lambda_*)$). For a null j, $\beta_j = 0$, $-2\log(LRT_j) \stackrel{\mathrm{d}}{\to} \frac{\kappa\sigma_*^2}{\lambda}\chi_1^2.$

Similar extension to groups of k variables.

Distribution of the LRT

Theorem (S. and Candès '18)

Assume MLE exists asymp. ((S) has unique solution $(\alpha_*, \sigma_*, \lambda_*)$). For a null j, $\beta_i = 0$, $-2\log(\textit{LRT}_j) \stackrel{\mathrm{d}}{\to} \frac{\kappa\sigma_*^2}{\lambda}\chi_1^2.$

Similar extension to groups of k variables.

Pragya Sur (Stanford)

Modern Maximum-Likelihood Theory On the LRT

Bulk and tail asymptotics using our correction

Modern Maximum-Likelihood Theory On the LRT

Bulk and tail asymptotics using our correction

Figure: Histogram and empirical cdfs of p-values under the null

Pragya Sur (Stanford)

Non-Gaussian covariates

$$\mathbb{P}(X_j = 0) = p_j^2 \quad \mathbb{P}(X_j = 1) = 2p_j(1 - p_j) \quad \mathbb{P}(X_j = 2) = (1 - p_j)^2$$
(SNPs in Hardy-Weinberg equilibrium)

Non-Gaussian covariates

(b) P-vals from LLR approx. for this null

(c) Empirical dist. of p-vals from (b) (d) Tail behavior of (c)

Pragya Sur (Stanford)

Modern Likelihood Theory

Main Mathematical Ideas

Tools and Inspiration

• MLE phase transition

 $\mathbb{P}\{\mathsf{MLE exists}\} \longrightarrow 0/1$

• Convex geometry—Cover('65), Amelunxen et al.('13)

Tools and Inspiration

• MLE phase transition

 $\mathbb{P}\{\mathsf{MLE \ exists}\} \ \longrightarrow \ 0/1$

• Average behavior

Ave
$$\psi(\hat{\beta}_j - \alpha_* \beta_j, \beta_j) \xrightarrow{a.s.} \mathbb{E}[\psi(\sigma_* Z, \beta)]$$

• Convex geometry—Cover('65), Amelunxen et al.('13)

 Generalized Approximate Message Passing, robust M-estimation (G-AMP)—Rangan ('10), Javanmard and Montanari ('12), Donoho and Montanari('13)

Tools and Inspiration

• MLE phase transition

 $\mathbb{P}\{\mathsf{MLE \ exists}\} \longrightarrow 0/1$

• Average behavior

Ave
$$\psi(\hat{\beta}_j - \alpha_* \beta_j, \beta_j) \xrightarrow{a.s.} \mathbb{E}[\psi(\sigma_* Z, \beta)]$$

• Null dist. & LRT

$$\hat{\beta}_j \stackrel{\mathrm{d}}{\to} \mathcal{N}(0, \sigma_*^2)$$

$$-2\log(\mathsf{LRT}_j) \stackrel{\mathrm{d}}{\to} \frac{\kappa\sigma_*^2}{\lambda_*}\chi_1^2$$

• Convex geometry—Cover('65), Amelunxen et al.('13)

- Generalized Approximate Message Passing, robust M-estimation (G-AMP)—Rangan ('10), Javanmard and Montanari ('12), Donoho and Montanari('13)
- Leave-one-out arguments (robust M-estimation), non-asymptotic RMT—El Karoui('13), El Karoui, Bean, Bickel, Lim, Yu('13)

Approximate message passing (AMP) for the MLE

- ullet Consider an iterative algorithm with \hat{eta} as fixed point
- Track iterates $\hat{\beta}^t$ at each stage via state evolution (SE)
- Show $\hat{oldsymbol{eta}}^t$ converges to $\hat{oldsymbol{eta}}$ in an appropriate sense

DMM ('09), BM ('11), JM ('13), BLM ('15)

Approximate message passing (AMP) for the MLE

- ullet Consider an iterative algorithm with $\hat{oldsymbol{\beta}}$ as fixed point
- Track iterates $\hat{oldsymbol{\beta}}^t$ at each stage via state evolution (SE)
- Show $\hat{oldsymbol{eta}}^t$ converges to $\hat{oldsymbol{eta}}$ in an appropriate sense

The algorithm

Update $\{\hat{m{eta}}^t, m{S}^t\}$ iteratively (from init. cond. $(\hat{m{eta}}^0, m{S}^0 = m{X} m{m{eta}}^0)$

$$\hat{\boldsymbol{\beta}}^{t} = \hat{\boldsymbol{\beta}}^{t-1} + \kappa^{-1} \boldsymbol{X}' \Psi_{t}(\boldsymbol{y}, \boldsymbol{S}^{t-1})$$

$$\boldsymbol{S}^{t} = \boldsymbol{X} \hat{\boldsymbol{\beta}}^{t} - \Psi_{t-1}(\boldsymbol{y}, \boldsymbol{S}^{t-1})$$

$$(1)$$

 Ψ_t (applied element-wise) depends on scalars $\{\lambda_t\}_{t\geq 0}$

$$\Psi_t(y,s) = \lambda_t r_t \qquad r_t = y - \rho'(\operatorname{prox}_{\lambda_t \rho}(\lambda_t y + s)) \tag{2}$$

Can be interpreted as scaled residuals

Why this algorithm?

Assume $\lambda_t \equiv \lambda$ (constant). If $\{\hat{m{eta}}^\star, m{S}^\star\}$ fixed point

$$\begin{split} & \boldsymbol{X}'\{\boldsymbol{y} - \rho'(\operatorname{prox}_{\lambda\rho}(\lambda\boldsymbol{y} + \boldsymbol{S}))\} = \boldsymbol{0} \\ & (\lambda\boldsymbol{y} + \boldsymbol{S}^{\star}) - \lambda\rho'(\operatorname{prox}_{\lambda\rho}(\lambda\boldsymbol{y} + \boldsymbol{S})) = \boldsymbol{X}\hat{\boldsymbol{\beta}}^{\star} \end{split}$$

Why this algorithm?

Assume $\lambda_t \equiv \lambda$ (constant). If $\{\hat{m{eta}}^\star, m{S}^\star\}$ fixed point

$$\begin{split} & \boldsymbol{X}'\{\boldsymbol{y} - \rho'(\operatorname{prox}_{\lambda\rho}(\lambda\boldsymbol{y} + \boldsymbol{S}))\} = \boldsymbol{0} \\ & (\lambda\boldsymbol{y} + \boldsymbol{S}^{\star}) - \lambda\rho'(\operatorname{prox}_{\lambda\rho}(\lambda\boldsymbol{y} + \boldsymbol{S})) = \boldsymbol{X}\hat{\boldsymbol{\beta}}^{\star} \end{split}$$

Prox properties yield

$$\begin{split} z - \lambda \rho'(\mathrm{prox}_{\lambda\rho}(z)) &= \mathrm{prox}_{\lambda\rho}(z) &\implies \mathrm{prox}_{\lambda\rho}(\lambda \boldsymbol{y} + \boldsymbol{S}) = \boldsymbol{X} \hat{\boldsymbol{\beta}}^{\star} \\ &\implies \boldsymbol{X}' \{ \boldsymbol{y} - \rho'(\boldsymbol{X} \hat{\boldsymbol{\beta}}^{\star}) \} = \boldsymbol{0} \end{split}$$

Why this algorithm?

Assume $\lambda_t \equiv \lambda$ (constant). If $\{\hat{m{eta}}^\star, m{S}^\star\}$ fixed point

$$\begin{split} & \boldsymbol{X}'\{\boldsymbol{y} - \rho'(\operatorname{prox}_{\lambda\rho}(\lambda\boldsymbol{y} + \boldsymbol{S}))\} = \boldsymbol{0} \\ & (\lambda\boldsymbol{y} + \boldsymbol{S}^{\star}) - \lambda\rho'(\operatorname{prox}_{\lambda\rho}(\lambda\boldsymbol{y} + \boldsymbol{S})) = \boldsymbol{X}\hat{\boldsymbol{\beta}}^{\star} \end{split}$$

Prox properties yield

$$\begin{split} z - \lambda \rho'(\operatorname{prox}_{\lambda \rho}(z)) &= \operatorname{prox}_{\lambda \rho}(z) & \Longrightarrow \quad \operatorname{prox}_{\lambda \rho}(\lambda \boldsymbol{y} + \boldsymbol{S}) = \boldsymbol{X} \hat{\boldsymbol{\beta}}^{\star} \\ & \Longrightarrow \quad \boldsymbol{X}' \{ \boldsymbol{y} - \rho'(\boldsymbol{X} \hat{\boldsymbol{\beta}}^{\star}) \} = \boldsymbol{0} \end{split}$$

Fixed point $\hat{oldsymbol{eta}}^\star$ obeys KKT conditions (MLE)

State evolution

Starting from α_0, σ_0 , define for $t = 0, 1, \ldots$

(1) λ_t solution to

$$\mathbb{E}\left[\frac{2\rho'(Q_1^t)}{1+\lambda\rho''(\operatorname{prox}_{\lambda\rho}(Q_2^t))}\right] = 1-\kappa \qquad (Q_1^t, Q_2^t) \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}(\alpha_t, \sigma_t))$$

(2) updates $\alpha_{t+1}, \sigma_{t+1}$

$$\begin{split} \alpha_{t+1} &= \alpha_t + \frac{1}{\kappa \gamma^2} \mathbb{E} \left[2\rho'(Q_1^t) Q_1^t \lambda_t \rho'(\operatorname{prox}_{\lambda_t \rho}(Q_2^t)) \right] \\ \sigma_{t+1}^2 &= \frac{1}{\kappa^2} \mathbb{E} \left[2\rho'(Q_1^t) \left(\lambda_t \rho'(\operatorname{prox}_{\lambda_t \rho}(Q_2^t)) \right)^2 \right] \end{split}$$

• $\{\alpha_t, \sigma_t, \lambda_t\}$ is called the State Evolution sequence.

State evolution

Starting from α_0, σ_0 , define for $t = 0, 1, \ldots$

(1) λ_t solution to

$$\mathbb{E}\left[\frac{2\rho'(Q_1^t)}{1+\lambda\rho''(\operatorname{prox}_{\lambda\rho}(Q_2^t))}\right] = 1-\kappa \qquad (Q_1^t, Q_2^t) \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}(\alpha_t, \sigma_t))$$

(2) updates $\alpha_{t+1}, \sigma_{t+1}$

$$\begin{split} \alpha_{t+1} &= \alpha_t + \frac{1}{\kappa \gamma^2} \mathbb{E} \left[2\rho'(Q_1^t) Q_1^t \lambda_t \rho'(\mathsf{prox}_{\lambda_t \rho}(Q_2^t)) \right] \\ \sigma_{t+1}^2 &= \frac{1}{\kappa^2} \mathbb{E} \left[2\rho'(Q_1^t) \left(\lambda_t \rho'(\mathsf{prox}_{\lambda_t \rho}(Q_2^t)) \right)^2 \right] \end{split}$$

• $\{\alpha_t, \sigma_t, \lambda_t\}$ is called the State Evolution sequence.

Claim

 $(\kappa,\gamma)\text{-region}$ where MLE exists is where (1)–(2) converge to unique fixed point $(\alpha_*,\sigma_*,\lambda_*)/\text{solution}$ to our system

Pragya Sur (Stanford)

Mathematical Ingredients

Marginals via approximate message passing (AMP)

- ullet Consider an iterative algorithm with $\hat{oldsymbol{\beta}}$ as fixed point
- Track iterates $\hat{\beta}^t$ at each stage via state evolution (SE)
- Show $\hat{oldsymbol{eta}}^t$ converges to $\hat{oldsymbol{eta}}$ in an appropriate sense

Correctness of SE

Set $\alpha_0 = \alpha_*, \sigma_0 = \sigma_* \quad \rightsquigarrow \quad \alpha_t = \alpha_*, \sigma_t = \sigma_*, \lambda_t = \lambda_*$ for all t

Theorem

Assume $\hat{\beta}^0$ is s.t.

$$\lim_{n,p\to\infty} \frac{1}{p} \|\hat{\boldsymbol{\beta}}^0 - \alpha_*\boldsymbol{\beta}\|^2 = \sigma_*^2, \qquad \frac{1}{\gamma^2} \lim_{n\to\infty} \frac{\langle \hat{\boldsymbol{\beta}}^0, \hat{\boldsymbol{\beta}} \rangle}{n} = \alpha_*$$

In region where MLE exists, for any pseudo-Lipschitz ψ , AMP trajectory obeys

$$\frac{1}{p} \sum_{j=1}^{p} \psi(\hat{\beta}_{j}^{t} - \alpha_{*}\beta_{j}, \beta_{j}) \xrightarrow{\text{a.s.}} \mathbb{E}\left[\psi(\sigma_{*}Z, \beta)\right]$$
(3)

 $Z \sim \mathcal{N}(0,1) \perp \beta \sim \Pi$ (recall $\sum_{j=1}^{p} \delta_{\beta_j} / p \stackrel{\mathrm{d}}{\to} \Pi$)

Correctness of SE

Set $\alpha_0 = \alpha_*, \sigma_0 = \sigma_* \quad \rightsquigarrow \quad \alpha_t = \alpha_*, \sigma_t = \sigma_*, \lambda_t = \lambda_*$ for all t

Theorem

Assume $\hat{\beta}^0$ is s.t.

$$\lim_{n,p\to\infty} \frac{1}{p} \|\hat{\boldsymbol{\beta}}^0 - \alpha_*\boldsymbol{\beta}\|^2 = \sigma_*^2, \qquad \frac{1}{\gamma^2} \lim_{n\to\infty} \frac{\langle \hat{\boldsymbol{\beta}}^0, \hat{\boldsymbol{\beta}} \rangle}{n} = \alpha_*$$

In region where MLE exists, for any pseudo-Lipschitz ψ , AMP trajectory obeys

$$\frac{1}{p} \sum_{j=1}^{p} \psi(\hat{\beta}_{j}^{t} - \alpha_{*}\beta_{j}, \beta_{j}) \xrightarrow{\text{a.s.}} \mathbb{E}\left[\psi(\sigma_{*}Z, \beta)\right]$$
(3)

 $Z \sim \mathcal{N}(0,1) \perp \beta \sim \Pi$ (recall $\sum_{j=1}^{p} \delta_{\beta_j} / p \stackrel{\mathrm{d}}{\to} \Pi$)

 \rightarrow Takeaway: { α_*, σ_* } tracks bias and variance of AMP iterates

Pragya Sur (Stanford)

Modern Likelihood Theory

Mathematical Ingredients

Marginals via approximate message passing (AMP)

- ullet Consider an iterative algorithm with $\hat{oldsymbol{\beta}}$ as fixed point
- Track iterates $\hat{\beta}^t$ at each stage via state evolution (SE)
- Show $\hat{oldsymbol{eta}}^t$ converges to $\hat{oldsymbol{eta}}$ in an appropriate sense

Convergence to the MLE

Theorem

Assume $\hat{oldsymbol{eta}}^0$ is s.t.

$$\lim_{n,p\to\infty} \frac{1}{p} \|\hat{\boldsymbol{\beta}}^0 - \alpha_*\boldsymbol{\beta}\|^2 = \sigma_*^2, \qquad \frac{1}{\gamma^2} \lim_{n\to\infty} \frac{\langle \boldsymbol{\beta}^0, \boldsymbol{\beta} \rangle}{n} = \alpha_*$$

In region where MLE exists

$$\lim_{t \to \infty} \lim_{n \to \infty} \frac{1}{p} \sum_{j=1}^{p} \psi(\hat{\beta}_j^t - \alpha_* \beta_j, \beta_j) = \lim_{n \to \infty} \frac{1}{p} \sum_{j=1}^{p} \psi(\hat{\beta}_j - \alpha_* \beta_j, \beta_j)$$

Convergence to the MLE

Theorem

Assume $\hat{oldsymbol{eta}}^0$ is s.t.

$$\lim_{n,p\to\infty} \frac{1}{p} \|\hat{\boldsymbol{\beta}}^0 - \alpha_*\boldsymbol{\beta}\|^2 = \sigma_*^2, \qquad \frac{1}{\gamma^2} \lim_{n\to\infty} \frac{\langle \hat{\boldsymbol{\beta}}^0, \hat{\boldsymbol{\beta}} \rangle}{n} = \alpha_*$$

In region where MLE exists

$$\lim_{t \to \infty} \lim_{n \to \infty} \frac{1}{p} \sum_{j=1}^{p} \psi(\hat{\beta}_j^t - \alpha_* \beta_j, \beta_j) = \lim_{n \to \infty} \frac{1}{p} \sum_{j=1}^{p} \psi(\hat{\beta}_j - \alpha_* \beta_j, \beta_j)$$

All info. about large sample bias & variance of $\hat{oldsymbol{eta}}^t$ may be transferred to MLE

$$\implies$$
 Bias = α_* Variance = σ_*^2

Analysis of LRT

$$-\log \mathsf{LRT}_j = \ell(\hat{\boldsymbol{\beta}}_{(-j)}) - \ell(\hat{\boldsymbol{\beta}}) =: Q_2 + Q_3.$$

$$Q_{2} = \frac{1}{2} \sum_{i=1}^{n} \rho'' \left(\mathbf{X}_{i}' \hat{\boldsymbol{\beta}} \right) \left(\mathbf{X}_{i,-j}' \hat{\boldsymbol{\beta}}_{-j} - \mathbf{X}_{i}' \hat{\boldsymbol{\beta}} \right)^{2}$$
$$Q_{3} = \frac{1}{6} \sum_{i=1}^{n} \rho'''(\gamma_{i}) \left(\mathbf{X}_{i,-j}' \hat{\boldsymbol{\beta}}_{-j} - \mathbf{X}_{i}' \hat{\boldsymbol{\beta}} \right)^{3} \quad \gamma_{i} \in (\mathbf{X}_{i,-j}' \hat{\boldsymbol{\beta}}_{-j}, \mathbf{X}_{i}' \hat{\boldsymbol{\beta}})$$

Analysis of LRT

$$-\log \mathsf{LRT}_j = \ell(\hat{\boldsymbol{\beta}}_{(-j)}) - \ell(\hat{\boldsymbol{\beta}}) =: Q_2 + Q_3.$$

$$Q_{2} = \frac{1}{2} \sum_{i=1}^{n} \rho'' \left(\mathbf{X}_{i}' \hat{\boldsymbol{\beta}} \right) \left(\mathbf{X}_{i,-j}' \hat{\boldsymbol{\beta}}_{-j} - \mathbf{X}_{i}' \hat{\boldsymbol{\beta}} \right)^{2}$$
$$Q_{3} = \frac{1}{6} \sum_{i=1}^{n} \rho''' (\gamma_{i}) \left(\mathbf{X}_{i,-j}' \hat{\boldsymbol{\beta}}_{-j} - \mathbf{X}_{i}' \hat{\boldsymbol{\beta}} \right)^{3} \quad \gamma_{i} \in (\mathbf{X}_{i,-j}' \hat{\boldsymbol{\beta}}_{-j}, \mathbf{X}_{i}' \hat{\boldsymbol{\beta}})$$

• $\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\beta}}_{-j}$ high-dimensional and dependent.

• How do we track the differences $X_{i,-j}^{\prime}\hat{eta}_{-j}-X_{i}^{\prime}\hat{eta}?$

Pragya Sur (Stanford)

Mathematical Ingredients

Leave-one-out representation

• Replace $\hat{\beta}$ by a surrogate, starting from $\hat{\beta}_{-j}$. For instance, if j = 1 is null,

$$\hat{\boldsymbol{\beta}} \approx \begin{bmatrix} 0\\ \hat{\boldsymbol{\beta}}_{-1} \end{bmatrix} + \begin{bmatrix} b_1\\ \boldsymbol{w} \end{bmatrix}$$

- Call RHS leave-one-out (L-O-O) representation of $\hat{\beta}$.
- Carefully tailored choice of surrogate required—problem specific.

Inspired by El Karoui, Bean, Bickel, Lim and Yu ('13), El Karoui('13) See also cavity method from statistical physics (Zhou's talk)

Pragya Sur (Stanford)

Mathematical Ingredients

Leave-one-out representation

• Replace $\hat{\beta}$ by a surrogate, starting from $\hat{\beta}_{-j}$. For instance, if j = 1 is null,

$$\hat{\boldsymbol{eta}} pprox \begin{bmatrix} 0 \\ \hat{\boldsymbol{eta}}_{-1} \end{bmatrix} + \begin{bmatrix} b_1 \\ \boldsymbol{w} \end{bmatrix}$$

- Call RHS leave-one-out (L-O-O) representation of $\hat{\beta}$.
- Carefully tailored choice of surrogate required—problem specific.

Consequence

If $\beta_j = 0$ and \boldsymbol{b}_{-j} is the L-O-O representation of $\hat{\boldsymbol{\beta}}$, starting from $\hat{\boldsymbol{\beta}}_{-j}$, w.h.p.

$$\begin{aligned} \|\hat{\boldsymbol{\beta}} - \boldsymbol{b}_{-\boldsymbol{j}}\| &\leq C n^{-1/2+o(1)} \\ \sup_{1 \leq i \leq n} |\boldsymbol{X}'_{i,-j} \hat{\boldsymbol{\beta}}_{-j} - \boldsymbol{X}'_i \hat{\boldsymbol{\beta}}| &\leq C n^{-1/2+o(1)} \end{aligned}$$

Inspired by El Karoui, Bean, Bickel, Lim and Yu ('13), El Karoui('13) See also cavity method from statistical physics (Zhou's talk)

Pragya Sur (Stanford)

Modern Likelihood Theory

Main steps: LRT

(1) Recall $-\log \ \text{LRT}_j = Q_2 + Q_3, \ \sup_{1 \le i \le n} |\mathbf{X}'_{i,-j}\hat{\boldsymbol{\beta}}_{-j} - \mathbf{X}'_i\hat{\boldsymbol{\beta}}| \le Cn^{-1/2 + o(1)}$

 $\implies Q_3 = o_P(1)$
(1) Recall $-\log \operatorname{LRT}_{j} = Q_{2} + Q_{3}, \sup_{1 \le i \le n} |\mathbf{X}'_{i,-j}\hat{\boldsymbol{\beta}}_{-j} - \mathbf{X}'_{i}\hat{\boldsymbol{\beta}}| \le Cn^{-1/2 + o(1)}$ $\implies Q_{3} = o_{P}(1)$

(2) Use L-O-O representation to simplify Q_2

$$2Q_2 := (\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{-j})' \nabla^2 \ell(\hat{\boldsymbol{\beta}}) (\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{-j}) = \frac{\kappa \, \hat{\beta}_j^2}{\lambda_{[-j]}} + o_P(1)$$

(1) Recall $-\log \operatorname{LRT}_{j} = Q_{2} + Q_{3}, \sup_{1 \le i \le n} |\mathbf{X}'_{i,-j}\hat{\boldsymbol{\beta}}_{-j} - \mathbf{X}'_{i}\hat{\boldsymbol{\beta}}| \le Cn^{-1/2 + o(1)}$ $\implies Q_{3} = o_{P}(1)$

(2) Use L-O-O representation to simplify Q_2

$$2Q_2 := (\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{-j})' \nabla^2 \ell(\hat{\boldsymbol{\beta}}) (\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{-j}) = \frac{\kappa \hat{\beta}_j^2}{\lambda_{[-j]}} + o_P(1)$$

(3) Analysis of scaling $\lambda_{[-j]}$

$$\lambda_{[-j]} := \operatorname{Tr}\left[\left(\nabla^2 \ell_{-j}(\hat{\beta}_{-j}) \right)^{-1} \right] \xrightarrow{\mathbb{P}} \lambda_*$$

(1) Recall $-\log \operatorname{LRT}_{j} = Q_{2} + Q_{3}, \sup_{1 \le i \le n} |\mathbf{X}'_{i,-j}\hat{\boldsymbol{\beta}}_{-j} - \mathbf{X}'_{i}\hat{\boldsymbol{\beta}}| \le Cn^{-1/2 + o(1)}$ $\implies Q_{3} = o_{P}(1)$

(2) Use L-O-O representation to simplify Q_2

$$2Q_2 := (\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{-j})' \nabla^2 \ell(\hat{\boldsymbol{\beta}}) (\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{-j}) = \frac{\kappa \hat{\beta}_j^2}{\lambda_{[-j]}} + o_P(1)$$

(3) Analysis of scaling $\lambda_{[-j]}$

$$\lambda_{[-j]} := \mathrm{Tr}\left[\left(\nabla^2 \ell_{-j}(\hat{\beta}_{-j}) \right)^{-1} \right] \stackrel{\mathbb{P}}{\to} \lambda_*$$

(4) Use L-O-O representation to analyze null marginals: $\hat{\beta}_j \xrightarrow{d} \mathcal{N}(0, \sigma_*^2)$

(1) Recall $-\log \operatorname{LRT}_{j} = Q_{2} + Q_{3}, \sup_{1 \le i \le n} |\mathbf{X}_{i,-j}'\hat{\boldsymbol{\beta}}_{-j} - \mathbf{X}_{i}'\hat{\boldsymbol{\beta}}| \le Cn^{-1/2+o(1)}$ $\implies Q_{3} = o_{P}(1)$

(2) Use L-O-O representation to simplify Q_2

$$2Q_2 := (\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{-j})' \nabla^2 \ell(\hat{\boldsymbol{\beta}}) (\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{-j}) = \frac{\kappa \hat{\beta}_j^2}{\lambda_{[-j]}} + o_P(1)$$

(3) Analysis of scaling $\lambda_{[-j]}$

$$\lambda_{[-j]} := \mathrm{Tr}\left[\left(\nabla^2 \ell_{-j}(\hat{\beta}_{-j}) \right)^{-1} \right] \stackrel{\mathbb{P}}{\to} \lambda_*$$

(4) Use L-O-O representation to analyze null marginals: β̂_j → N(0, σ²_{*})
(5) Variance inflation σ²_{*} and spread in eigenvalues of Hessian λ_{*} ~ rescaling factor κσ²_{*}/λ_{*}

Pragya Sur (Stanford)

System solutions interpretations

- Introduced system of equations with solutions $(\alpha_*, \sigma_*, \lambda_*)$
- System was parametrized by κ, γ .
- Bias of MLE: α_*
- Variance of MLE: σ_*
- LRT distribution: (σ_*, λ_*) .

System solutions interpretations

- Introduced system of equations with solutions $(\alpha_*, \sigma_*, \lambda_*)$
- System was parametrized by κ, γ .
- Bias of MLE: α_*
- Variance of MLE: σ_*
- LRT distribution: (σ_*, λ_*) .

But, SNR γ is unknown in applications!

ProbeFrontier: Towards Accurate Inference

Acknowledgement: Discussions between E. Candès, R. Barber and B. Nadler (Oberwolfach, March 2018) ProbeFrontier: Towards Accurate Inference

Empirical performance: null LLR p-values

ProbeFrontier: Towards Accurate Inference

Empirical performance: null LLR p-values

ProbeFrontier: Towards Accurate Inference

Empirical performance: de-biasing the MLE

 $\alpha_* = 1.499$ (red line) and ProbeFrontier gives $\hat{\alpha} = 1.511$ (green line)

Summary and future research

- Asymptotic normality of MLE marginals
- Asymptotically exact quantification of MLE bias and variance
- Asymptotic distribution of the LRT, valid p-values
- Extremely accurate in finite samples
- Estimation of unknown parameters for practical applications

Summary

Summary and future research

- Asymptotic normality of MLE marginals
- Asymptotically exact quantification of MLE bias and variance
- Asymptotic distribution of the LRT, valid p-values
- Extremely accurate in finite samples
- Estimation of unknown parameters for practical applications

Open questions		Decorr.	Corr.
• Penalized estimators? (Ongoing)	<i>a</i> 0 (SCC '17)		
• Correlated covariates?	$\beta = 0 (SCC, 17)$		
• Other GLMs ?	$oldsymbol{eta} eq 0$ (SC, '18)	Ø	

Pragya Sur (Stanford)

Modern Likelihood Theory

Thank You!

All papers available at: https://web.stanford.edu/~pragya/

Pragya Sur (Stanford)