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Robustness in Ancient Times 

of Science
• Example 1: Use of least absolute deviations in linear

regression instead of least squares
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Robustness from Ancient 

Times of Science
• Example 1: Use of least absolute deviations in linear

regression instead of least squares

Galileo Galilei Boscovich Laplace Edgeworth

• Example 2: Direct rejection of outliers

Bessel B. Peirce W. Chauvenet



Theory of Robustness

• Huber: “Robustness signifies

insensitivity to small deviations

from the assumptions”

• Two influential works from 1960

 J. W. Tukey, “A survey of sampling

from contaminated distributions”

(effect of deviation from model, initial analysis)

 F. J. Anscombe, “Rejection of outliers”

(insurance vs. significance, tradeoff with

performance, computational cost ignored)

• Bickel (1975): Emphasis on computation



• Robust subspace recovery (RSR):

Review and Insights 

• New results on adversarial 

robustness in RSR

• Related problems and all about 

that base…

Outline



The Robust Subspace 

Recovery (RSR) Problem

• Input: Dataset

Xin (inliers) lie near L* a d-dim. subs.

Xout (outliers) from a different distribution

• Desired Output: L*

Review: L & Maunu (2018), Proceedings of the IEEE
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Why should we care about 

RSR?

• We should care about PCA

• PCA subs. L minimizes

• PCA – Basic preprocessing tool

• PCA is not robust to outliers

• Goal: develop an alternative to PCA, which

is robust to outliers with nice properties
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General Approaches to RSR

• Exhaustive subspace search (brute force)

• Rejection of Outliers (filtering)

• Energy minimization
 Least absolute deviation – min.

 L1-PCA

 Projection pursuit

 Robust covariance (Maronna, Tyler…)
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The RSR Formulation 

can be ill-defined



The RSR Formulation 

can be ill-defined

• Example 1: Only inliers at origin

• Example 2: Inliers at low-dim. subs.

• Principle I: Inliers must permeate L*



The RSR Formulation 

can be ill-defined

• Example 1: “Aligned” outliers

• Example 2: Other “aligned” outliers

• Principle II: Restriction of out. alignment



More Clarification for RSR

• Simplifying assumption: L* is linear

• Nonconvex setting: Set of all d-dim. subs.

in (Grassmannian G(D,d)) is nonconvexD



More Clarification for RSR

• Scale might be important

• A scale-invariant method does not weigh

the magnitude of a point

• Scaling data points to the sphere makes

any method scale invariant
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Theoretical Settings for RSR

1. Adversarial outliers, permeated inliers,

lower bound on SNR (signal to noise ratio)
 SNR= fraction of inliers/outliers

 Formulated for scale-invariant algorithms

2. Statistical model with low bound on SNR

3. Inliers & outliers in general position (GP)
(Hardt & Moitra, Zhang, Arias-Castro & Wang)
 GP: Any set of D points are linearly independent

unless it includes at least d+1 points from L∗
 If SNR<d/(D-d), the problem is SSE-hard

 If SNR>d/(D-d), exact recovery by D/RF, TME

 Restricted model, methods and noise analysis



Adversarial Outliers: 

Some Previous Works

• OP (Xu et al., 2012):

Convex method, complexity:

Perturbation to noise (121→1024, large error)

Remark: unless otherwise stated N= O(D)

• TORP (Cherapanamjeri et al., 2017):

Nonconvex, complexity O(NDd)

Small perturbation to noise (large error)

Nice stability with Gaussian noise (128→1024)

Requires knowledge of fraction of outliers

• Related algorithms for a different problem:
 RLG (Diakonikolas et al., 2018)

 RR (Steinhardt et al., 2018)

SNR 121/9 , -incoherence parameterd μ μ  

 2 0.5( ),  O TND T O ε

   2SNR 128 d μ



Adversarial Outliers

(Joint Work with T. Maunu)



Adversarial Outliers:

Motivating Questions

• What is the lowest SNR with well-defined setting?

• Is there a hardness result for lowest SNR?

• What is the lowest SNR obtained by

a reasonable-time algorithm for exact RSR?

• Any other competitive and flexible algorithm for

adversarial outliers?



Best SNR for

Well-defined Formulation

• Initial setting:

• Recall: Problem is ill-defined for general Xin

• Xu, Caramanis, Sanghavi (2012) explain O(d)

SNR with an example, but the inliers in this

example are not permeated
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Best SNR for

Well-defined Formulation

• Initial setting:

• Recall: Problem is ill-defined for general Xin

• For general position Xin (d points in L* span L*),

well-defined setting if

that is,

• If also Xout is in GP

then the problem is well-defined if Nin >d

(SNR = d/(N-d)=o(1))

  in * out *,  DX L X X L
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Hardness Result

• Recall Hardt & Moitra (2013):

If SNR<d/(D-d), the problem is SSE-hard

• Thus too small SNR in the case of GP inliers &

outliers results in SSE-hard formulation

• It is also relevant for GP inliers and adversarial

outliers when D-d=O(1) and d/(D-d)=O(d)=O(D)



Best SNR for 

an Algorithm



Best SNR for RANSAC

• RANSAC-type algorithm for RSR



Best SNR for RANSAC

• RANSAC-type algorithm for RSR

• For permeated inliers, SNR>1, and

m ≥ N/2, L* is recovered w.h.p.

• If also SNR ≥ cd, L* recovered w.h.p. when n=O(1)

and the complexity of the algorithm is O(NDd)

1, 1n τ



Another Proposal for 

Adversarial Outliers

• Review of GGD (geodesic gradient descent)

and of the well-tempered landscape (WTL) of

(Maunu, Zhang, L)
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Review of WTL & GGD

• Under a generic “stability” condition, there

exists a neighborhood of L*, where L* is the only

minimizer of and all other

points have a direction of strictly decreasing cost
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Review of WTL & GGD

• Under a generic “stability” condition, there

exists a neighborhood of L*, where L* is the only

minimizer and all other points have a direction

of strictly decreasing cost

• GGD initialized in this neighborhood converges

to L* sufficiently fast

• Under a similar condition, PCA initializes in

this neighborhood



Spherical GGD with 

Adversarial Outliers

• SGGD: spherize data + GGD

• Spherize:

• Spherical condition number of inliers

• Stability condition for SGGD initialized in B(L*,γ):
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Spherical GGD with 

Adversarial Outliers

• Condition for SPCA in B(L*,γ):

• Stability condition for SGGD (+SPCA):

• Condition for linear convergence:

• For isotropic Gaussian distribution of inliers:

2 · ( )
inSNR

sin( )

d κ X
d
γ




 SNR 3 · ( )
in

d κ X
d

 ( ) (1) unlike = max(1,log / )
in

κ X O μ O N d
d

 
    
 out

1
SNR 2 3 · ( )

in
d

d κ X
dN



Table of Comparisons



SGGD under 

Statistical Models

• (S)GGD adapts well to other statistical

models with low SNR (Maunu, Zhang, L)

• In the case of the Needle-Haystck Model

(Gaussian inliers & outliers) its lowest

SNR adapts to different sample regimes.

• In particular, it can address any SNR

when

• Complexity under this model: O(NDd)
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Open Directions in RSR

• Robustness to noise or under spiked model

• Large sample & high-dimensional limits for RSR

• Estimation of subspace dimension

• Clarification of tradeoffs

• Case for applications

• Beyond gradient descent?

• Specific issues: affine case, improved guarantees,

missing values, virtue of dimension reduction,

phase transitions



Relevance to Other Problems

• Robust covariance estimation

• Robust subspace/manifold clustering

• Robust synchronization

• Estimation of camera locations from corrupted

pairwise directions

• Robust fundamental/essential camera estimation



Take-Home Message

• RSR is a basic problem that raises interesting questions

• Clean treatment of the case of adversary outliers

• The LAD RSR optimization problem is nonconvex.

The non-convex SGGD is shown to be fast and flexible

• Ideas seem to extend to other problems
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