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Robustness in Ancient Times 

of Science
• Example 1: Use of least absolute deviations in linear

regression instead of least squares

min
,

instead of

2min
,

y βx c r
i i i

r
iβ c

r
iβ c

  







Robustness from Ancient 

Times of Science
• Example 1: Use of least absolute deviations in linear

regression instead of least squares

Galileo Galilei Boscovich Laplace Edgeworth

• Example 2: Direct rejection of outliers

Bessel B. Peirce W. Chauvenet



Theory of Robustness

• Huber: “Robustness signifies

insensitivity to small deviations

from the assumptions”

• Two influential works from 1960

 J. W. Tukey, “A survey of sampling

from contaminated distributions”

(effect of deviation from model, initial analysis)

 F. J. Anscombe, “Rejection of outliers”

(insurance vs. significance, tradeoff with

performance, computational cost ignored)

• Bickel (1975): Emphasis on computation



• Robust subspace recovery (RSR):

Review and Insights 

• New results on adversarial 

robustness in RSR

• Related problems and all about 

that base…

Outline



The Robust Subspace 

Recovery (RSR) Problem

• Input: Dataset

Xin (inliers) lie near L* a d-dim. subs.

Xout (outliers) from a different distribution

• Desired Output: L*

Review: L & Maunu (2018), Proceedings of the IEEE
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Why should we care about 

RSR?

• We should care about PCA

• PCA subs. L minimizes

• PCA – Basic preprocessing tool

• PCA is not robust to outliers

• Goal: develop an alternative to PCA, which

is robust to outliers with nice properties
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General Approaches to RSR

• Exhaustive subspace search (brute force)

• Rejection of Outliers (filtering)

• Energy minimization
 Least absolute deviation – min.

 L1-PCA

 Projection pursuit

 Robust covariance (Maronna, Tyler…)
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The RSR Formulation 

can be ill-defined



The RSR Formulation 

can be ill-defined

• Example 1: Only inliers at origin

• Example 2: Inliers at low-dim. subs.

• Principle I: Inliers must permeate L*



The RSR Formulation 

can be ill-defined

• Example 1: “Aligned” outliers

• Example 2: Other “aligned” outliers

• Principle II: Restriction of out. alignment



More Clarification for RSR

• Simplifying assumption: L* is linear

• Nonconvex setting: Set of all d-dim. subs.

in (Grassmannian G(D,d)) is nonconvexD



More Clarification for RSR

• Scale might be important

• A scale-invariant method does not weigh

the magnitude of a point

• Scaling data points to the sphere makes

any method scale invariant
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Theoretical Settings for RSR

1. Adversarial outliers, permeated inliers,

lower bound on SNR (signal to noise ratio)
 SNR= fraction of inliers/outliers

 Formulated for scale-invariant algorithms

2. Statistical model with low bound on SNR

3. Inliers & outliers in general position (GP)
(Hardt & Moitra, Zhang, Arias-Castro & Wang)
 GP: Any set of D points are linearly independent

unless it includes at least d+1 points from L∗
 If SNR<d/(D-d), the problem is SSE-hard

 If SNR>d/(D-d), exact recovery by D/RF, TME

 Restricted model, methods and noise analysis



Adversarial Outliers: 

Some Previous Works

• OP (Xu et al., 2012):

Convex method, complexity:

Perturbation to noise (121→1024, large error)

Remark: unless otherwise stated N= O(D)

• TORP (Cherapanamjeri et al., 2017):

Nonconvex, complexity O(NDd)

Small perturbation to noise (large error)

Nice stability with Gaussian noise (128→1024)

Requires knowledge of fraction of outliers

• Related algorithms for a different problem:
 RLG (Diakonikolas et al., 2018)

 RR (Steinhardt et al., 2018)
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Adversarial Outliers

(Joint Work with T. Maunu)



Adversarial Outliers:

Motivating Questions

• What is the lowest SNR with well-defined setting?

• Is there a hardness result for lowest SNR?

• What is the lowest SNR obtained by

a reasonable-time algorithm for exact RSR?

• Any other competitive and flexible algorithm for

adversarial outliers?



Best SNR for

Well-defined Formulation

• Initial setting:

• Recall: Problem is ill-defined for general Xin

• Xu, Caramanis, Sanghavi (2012) explain O(d)

SNR with an example, but the inliers in this

example are not permeated
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Best SNR for

Well-defined Formulation

• Initial setting:

• Recall: Problem is ill-defined for general Xin

• For general position Xin (d points in L* span L*),

well-defined setting if

that is,

• If also Xout is in GP

then the problem is well-defined if Nin >d

(SNR = d/(N-d)=o(1))
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Hardness Result

• Recall Hardt & Moitra (2013):

If SNR<d/(D-d), the problem is SSE-hard

• Thus too small SNR in the case of GP inliers &

outliers results in SSE-hard formulation

• It is also relevant for GP inliers and adversarial

outliers when D-d=O(1) and d/(D-d)=O(d)=O(D)



Best SNR for 

an Algorithm



Best SNR for RANSAC

• RANSAC-type algorithm for RSR



Best SNR for RANSAC

• RANSAC-type algorithm for RSR

• For permeated inliers, SNR>1, and

m ≥ N/2, L* is recovered w.h.p.

• If also SNR ≥ cd, L* recovered w.h.p. when n=O(1)

and the complexity of the algorithm is O(NDd)

1, 1n τ



Another Proposal for 

Adversarial Outliers

• Review of GGD (geodesic gradient descent)

and of the well-tempered landscape (WTL) of

(Maunu, Zhang, L)
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Review of WTL & GGD

• Under a generic “stability” condition, there

exists a neighborhood of L*, where L* is the only

minimizer of and all other

points have a direction of strictly decreasing cost

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Review of WTL & GGD

• Under a generic “stability” condition, there

exists a neighborhood of L*, where L* is the only

minimizer and all other points have a direction

of strictly decreasing cost

• GGD initialized in this neighborhood converges

to L* sufficiently fast

• Under a similar condition, PCA initializes in

this neighborhood



Spherical GGD with 

Adversarial Outliers

• SGGD: spherize data + GGD

• Spherize:

• Spherical condition number of inliers

• Stability condition for SGGD initialized in B(L*,γ):
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Spherical GGD with 

Adversarial Outliers

• Condition for SPCA in B(L*,γ):

• Stability condition for SGGD (+SPCA):

• Condition for linear convergence:

• For isotropic Gaussian distribution of inliers:
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Table of Comparisons



SGGD under 

Statistical Models

• (S)GGD adapts well to other statistical

models with low SNR (Maunu, Zhang, L)

• In the case of the Needle-Haystck Model

(Gaussian inliers & outliers) its lowest

SNR adapts to different sample regimes.

• In particular, it can address any SNR

when

• Complexity under this model: O(NDd)
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Open Directions in RSR

• Robustness to noise or under spiked model

• Large sample & high-dimensional limits for RSR

• Estimation of subspace dimension

• Clarification of tradeoffs

• Case for applications

• Beyond gradient descent?

• Specific issues: affine case, improved guarantees,

missing values, virtue of dimension reduction,

phase transitions



Relevance to Other Problems

• Robust covariance estimation

• Robust subspace/manifold clustering

• Robust synchronization

• Estimation of camera locations from corrupted

pairwise directions

• Robust fundamental/essential camera estimation



Take-Home Message

• RSR is a basic problem that raises interesting questions

• Clean treatment of the case of adversary outliers

• The LAD RSR optimization problem is nonconvex.

The non-convex SGGD is shown to be fast and flexible

• Ideas seem to extend to other problems
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