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Causality – Robustness

we have been working on the former “exotic” problem for a while

but it turns out that there are connections to the latter



a nutshell view of Robust Optimization

distributionally robust optimization
(Ben-Tal, El Ghaoui & Nemirovski, 2009; ...

e.g. Sinha, Namkoong & Duchi, 2017)

argminβ max
P∈P

EP [`(X ,Y ;β)]︸ ︷︷ ︸
e.g. EP |Y−X Tβ|2

good performance under adversarial distributions

typically

P = {P; d(P,P0)︸ ︷︷ ︸
e.g. Wasserstein distance

≤ ρ}

often P0 = P̂ (= empirical dist.)
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e.g. Sinha, Namkoong & Duchi, 2017)

argminβ max
P∈P

EP [`(X ,Y ;β)]︸ ︷︷ ︸
e.g. EP |Y−X Tβ|2

good performance under adversarial test sample distributions

typically

P = {P; d(P,P0)︸ ︷︷ ︸
e.g. Wasserstein distance

≤ ρ}

often P0 = P̂ (= empirical dist.)



Robust Statistics

Huber’s (1964) celebrated minimax result (for location)
“... there is a saddle point... ”

minβ̂∈M sup
P∈P

EP [(Yout − β̂)2]

is achieved by the Huber estimator
; it is an estimator with another loss function ρHuber

replacing the worst case L2-loss
good performance under contaminated distributions

P is a neighborhood of a Gaussian reference distribution P0
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Huber’s (1964) celebrated minimax result (for location)
“... there is a saddle point... ”

minβ̂∈M sup
P∈P

EP [(Yout − β̂)2]

is achieved by the Huber estimator
; it is an estimator with another loss function ρHuber

replacing the worst case L2-loss
good performance under contaminated training sample distr.

P is a neighborhood of a Gaussian reference distribution P0



A “general” robustness view

achieve stability (or “near invariance”, see later)
for a class of “meaningful/interesting” distributions P

P is not necessarily a
– “neighborhood”
– “ball of a certain radius”

try to capture the “interesting directions” for which we want to
achieve stability (perhaps specific to different data analysis problems)

as in classical statistical robustness, robust optimization,
adversarial training,...

but also Causality can be looked at from this viewpoint!

of course, such “general robustness” is not new:
Tukey (1960), Hodges& Lehmann (1963), Huber (1964), Bickel (1964),
Hampel (1968), ... , Soyster (1973), ..., Haavelmo (1943), ...



Causality

the word “causal” is very ambitious...

perhaps too ambitious...
but we aim at least at doing something “ more suitable” than
standard regression or classification



The gold standard

a randomized control trial (RCT)



What can we say without RCTs? −→ Prediction!

causality is about giving a quantitative answer to a
I “what if I do question”
I a “what if I perturb question”

but without having data on such a question

Predicting
the outcome of an unobserved manipulation

(and it is also about predictive robustness)



many modern applications are faced with such prediction tasks:

I genomics: what would be the effect of knocking down (the
activity of) a gene on the growth rate of a plant?

we want to predict this without any data on such a gene
knock-out (e.g. no data for this particular perturbation)

I E-commerce: what would be the effect of showing
person “XYZ ” an advertisement on social media?
no data on such an advertisement campaign for “XYZ ” or
persons being similar to “XYZ ”

I etc.



Predicting a potential outcome (synthetic data)

manipulate x = −8

●

●

●
●● ●●

●

●
●

●

●
●

●
●

● ●

●

●

●
●

●
●●
● ●

●●

●

●

●

●
●●●

●

●
●

●
●

● ●
● ●●

●

●●

●

●

−10 −5 0 5 10

−
10

−
5

0
5

10

x

y



Predicting a potential outcome (synthetic data)

manipulate x = −8

●

●

●
●● ●●

●

●
●

●

●
●

●
●

● ●

●

●

●
●

●
●●
● ●

●●

●

●

●

●
●●●

●

●
●

●
●

● ●
● ●●

●

●●

●

●

−10 −5 0 5 10

−
10

−
5

0
5

10

x

y



Predicting a potential outcome (synthetic data)

manipulate x = −8

●

●

●
●● ●●

●

●
●

●

●
●

●
●

● ●

●

●

●
●

●
●●
● ●

●●

●

●

●

●
●●●

●

●
●

●
●

● ●
● ●●

●

●●

●

●

−10 −5 0 5 10

−
10

−
5

0
5

10

x

y

●
X Y



Predicting a potential outcome (synthetic data)

manipulate x = −8

●

●

●
●● ●●

●

●
●

●

●
●

●
●

● ●

●

●

●
●

●
●●
● ●

●●

●

●

●

●
●●●

●

●
●

●
●

● ●
● ●●

●

●●

●

●

−10 −5 0 5 10

−
10

−
5

0
5

10

x

y ●

X Y



Predicting a potential outcome: real gene expression data

Challenge:
how to predict/make the correct extrapolation?
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How to predict a potential outcome?
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“borrow strength from other perturbations”

I knowing the probability distribution of the “steady state”
(observational regime) is not sufficient

I it is not just regression or nonlinear deep neural nets
I the problem is the directionality! (besides the hidden

confounders)

we need “some” perturbations/heterogeneities in the data
(and perturbations are often crucial for scientific discoveries)
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“Some references” for causal inference

I Potential outcome model
Neyman, Holland, Rubin, Rosenbaum, ...

I Graphical and structural equation models
Pearl, Spirtes–Glymour–Scheines, Bollen, ...

I Dawid, Robins, Richardson, Didelez, ..., Janzing–Schölkopf,
Mooij, ...

we propose something “rather different”: namely
exploit unspecific heterogeneities

or
learn from “perturbations”

(in contrast to “downweighting outliers/perturbations”)



Heterogeneous data: quite common in large-scale problems

data from different known observed
environments or experimental conditions or

perturbations or sub-populations e ∈ E :

(X e,Y e) ∼ F e, e ∈ E
with response variables Y e and predictor variables X e

examples:
• data from 10 different countries
• data from different econ. scenarios (from diff. “time blocks”)

immigration in the UK



consider “many possible” but mostly non-observed
environments/perturbations F ⊃ E︸︷︷︸

observed

examples for F :
• 10 countries and many other than the 10 countries
• scenarios until today and new unseen scenarios in the future

immigration in the UK

the unseen future
problem:
predict Y given X such that the prediction works well
(is “robust”) for “many possible” environments e ∈ F
based on data from much fewer environments from E



a pragmatic prediction problem:
predict Y given X such that the prediction works well
(is “robust”) for “many possible” environments e ∈ F
based on data from much fewer environments from E

for example with linear models: find

argminβ max
e∈F

E|Y e − (X e)Tβ|2

it is “robustness”

and remember:
causality is predicting an answer to a

“what if I do/perturb question”!
that is: prediction for new unseen scenarios/environments
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a pragmatic prediction problem:
predict Y given X such that the prediction works well
(is “robust”) for “many possible” environments e ∈ F
based on data from much fewer environments from E

for example with linear models: find

argminβ max
e∈F

E|Y e − (X e)Tβ|2

it is “robustness” and also about causality

and remember:
causality is predicting an answer to a

“what if I do/perturb question”!
that is: prediction for new unseen scenarios/environments



Prediction and causality

indeed, for linear models: in a nutshell

for F = {all perturbations “not acting on Y directly”},
argminβ max

e∈F
E|Y e − (X e)Tβ|2 = causal parameter

that is:
causal parameter optimizes
worst case loss w.r.t. “very many” unseen (“future”) scenarios

later:
we will discuss models for F and E which make these relations
more precise
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How to exploit heterogeneity/learn from perturbations?

a key conceptual Invariance Assumption (w.r.t. E) :

there exists S∗ ⊆ {1, . . . ,d} such that

L(Y e|X e
S∗) is invariant across e ∈ E

for linear model setting:
there exists a vector γ∗ with supp(γ∗) = S∗ = {j ; γ∗j 6= 0}
such that:

∀e ∈ E : Y e = X eγ∗ + εe, εe ⊥ X e
S∗

εe ∼ Fε the same for all e
X e has an arbitrary distribution, different across e

γ∗, S∗ is interesting in its own right!

namely the parameter and structure which remain invariant across experimental settings, or heterogeneous groups
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How to exploit heterogeneity/learn from perturbations?

a key conceptual Invariance Assumption (w.r.t. F) :

there exists S∗ ⊆ {1, . . . ,d} such that

L(Y e|X e
S∗) is invariant across e ∈ F

for linear model setting:
there exists a vector γ∗ with supp(γ∗) = S∗ = {j ; γ∗j 6= 0}
such that:

∀e ∈ F : Y e = X eγ∗ + εe, εe ⊥ X e
S∗

εe ∼ Fε the same for all e
X e has an arbitrary distribution, different across e

γ∗, S∗ even more interesting
since it says something about unseen new environments!



any subset S∗ of covariates satisfying the invariance ass. is

I stabilizing
I “robustifying”

the “stabilizing with invariance” will be the basis for a
robustifying “procedure” (for some rather general distributional
robustness)



Link to causality

mathematical formulation with structural equation models:

Y ← f (Xpa(Y ), ε),

Xj ← fj(Xpa(j), εj) (j = 1, . . . ,p)

ε, ε1, . . . , εp independent

X5

Y

X11

X10

X3

X8X7

X2

(direct) causal variables for Y : the parental variables of Y



Link to causality

problem:
under what model for the environments/perturbations e can we
have an interesting description of the invariant sets S∗?

loosely speaking: assume that the perturbations e
I do not directly act on Y
I do not change the relation between X and Y

but may act arbitrarily on X (arbitrary shifts, scalings, etc.)

graphical description: E is random with realizations e

X Y

E

not depending on E
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Link to causality

easy to derive the following:

Proposition
• structural equation model for (Y ,X );
• model for F of perturbations: every e ∈ F

I do not directly act on Y
I do not change the relation between X and Y

but may act arbitrarily on X (arbitrary shifts, scalings, etc.)

Then: the causal variables pa(Y ) satisfy the invariance
assumption with respect to F

causal variables lead to invariance under arbitrarily strong
perturbations from F as described above



Proposition
• structural equation model for (Y ,X );
• model for F of perturbations: every e ∈ F

I does not directly act on Y
I does not change the relation between X and Y

but may act arbitrarily on X (arbitrary shifts, scalings, etc.)
Then: the causal variables pa(Y ) satisfy the invariance assumption with
respect to F

as a consequence: for linear structural equation models

for F as above,
argminβ max

e∈F
E|Y e − (X e)Tβ|2 = β0

pa(Y )︸ ︷︷ ︸
causal parameter

if the perturbations in F would not be arbitrarily strong
; the worst-case optimizer is different! (see later)
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A real-world example and the assumptions

Y : growth rate of the plant
X : high-dim. covariates of gene expressions

perturbations e: different gene knock-out experiments
; e changes the expressions of some components of X

it’s plausible that perturbations e
I do not directly act on Y

√

I do not change the relation between X and Y ?
but act strongly on X (arbitrary shifts, scalings, etc.)
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Causality⇐⇒ Invariance

we just argued: causal variables =⇒ invariance

known since a long time:
Haavelmo (1943)

Trygve Haavelmo
Nobel Prize in Economics 1989

(...; Goldberger, 1964; Aldrich, 1989;... ; Dawid and Didelez, 2010)

more novel: the reverse relation

causal structure, predictive robustness ⇐= invariance
(Peters, PB & Meinshausen, 2016

Rothenhäusler, Meinshausen, PB & Peters, 2018)
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The search for invariance and causality (Peters, PB & Meinshausen, 2016)

causal structure/variables ⇐= invariance
X5

Y

X11

X10

X3

X8X7

X2

severe issues of identifiability !

; but can come up with a conservative procedure
protecting against false positive causal selection

P[ Ŝ(E)︸ ︷︷ ︸
an algorithm

⊆ Scausal︸ ︷︷ ︸
pa(Y )

] ≥ 1− α

which we applied to a large-scale genomic perturbation study
Meinshausen at al. (2016)



Anchor regression: predictive robustness and causal regularization
(Rothenhäusler, Meinshausen, PB & Peters, 2018)

the environments from before, denoted as e:
they are now outcomes of a variable A︸︷︷︸

anchor
(once before, we denoted it as E)

X Y

H

A

Y ← X Tβ0 + εY

+ Hδ

,

X ← ATα0 + εX

+ Hγ

,

Instrumental variables regression model
(cf. Angrist, Imbens, Lemieux, Newey, Rosenbaum, Rubin,...)

hidden/latent confounders are of major concern!
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(Rothenhäusler, Meinshausen, PB & Peters, 2018)

the environments from before, denoted as e:
they are now outcomes of a variable A︸︷︷︸

anchor
(once before, we denoted it as E)

X Y

H
A

Y ← X Tβ0 + εY + Hδ,

X ← ATα0 + εX + Hγ,

Instrumental variables regression model
(cf. Angrist, Imbens, Lemieux, Newey, Rosenbaum, Rubin,...)

hidden/latent confounders are of major concern!



Anchor regression with hidden confounders

allow that A acts on Y and H
more realistic but has been believed in the past as “ill-posed”

X

Y

H
A

allowing also for feedback loops

A is an “anchor”

X
Y
H

 = B

X
Y
H

+ ε+ MA



IV regression is a special case of anchor regression

IV regression

X

Y

H
A

anchor regression

X

Y

H
A

allowing also for feedback loops



allow that A acts on Y and H

; there is a fundamental identifiability problem
cannot identify
the causal mechanism between X ←→ Y from data
which is the price for more realistic assumptions than IV model



... but “Causal Regularization” offers something

can still achieve “shift invariance” of residuals:
a non-trivial fact is:

(Y − Xb) is “shift-invariant”⇐⇒ A uncorrelated with (Y − Xb)

thus, we want to encourage orthogonality of A with the residuals
something like

β̃ = argminb‖Y − Xb‖22/n + ξ‖AT (Y − Xb)/n‖22



β̃ = argminb‖Y − Xb‖22/n + ξ‖AT (Y − Xb)/n‖22

anchor regression estimator:

β̂ = argminb‖(I − ΠA)(Y − Xb)‖22/n + γ‖ΠA(Y − Xb)‖22/n

+ λ‖b‖1

ΠA = A(AT A)−1AT (projection onto column space of A)

I for γ = 1: ordinary least squares
I for 0 ≤ γ <∞: general causal regularization

+ `1-penalty
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anchor regression estimator:

β̂ = argminb‖(I − ΠA)(Y − Xb)‖22/n + γ‖ΠA(Y − Xb)‖22/n + λ‖b‖1
ΠA = A(AT A)−1AT (projection onto column space of A)

I for γ = 1: least squares + `1-penalty
I for 0 ≤ γ <∞: general causal regularization + `1-penalty



... there is a fundamental identifiability problem...

but causal regularization solves for

argminβ max
e∈F

E|Y e − (X e)Tβ|2

for a certain class of shift perturbations F



Model for F : (new) shifts in the (test) data

model for observed heterogeneous data (“corresponding to E”)X
Y
H

 = B

X
Y
H

+ ε+ MA

model for unobserved perturbations F (in test data)
shift vectors v acting on (components of) X ,Y ,HX v

Y v

Hv

 = B

X v

Y v

Hv

+ ε+ v

v ∈ Cγ ⊂ span(M), γ measuring the size of v

i.e. v ∈ Cγ = {v ; v = Mδ for some δ with E[δδT ] � γE[AAT ]}



A fundamental duality theorem
(Rothenhäusler, Meinshausen, PB & Peters, 2018)

PA the population projection onto A: PA• = E[•|A]

For any b

max
v∈Cγ

E[|Y v − X v b|2] = E
[∣∣(Id− PA)(Y − Xb)

∣∣2]+ γE
[∣∣PA(Y − Xb)

∣∣2]
≈ ‖(I − ΠA)(Y − Xb)‖2

2/n + γ‖ΠA(Y − Xb)‖2
2/n︸ ︷︷ ︸

objective function on data

worst case shift interventions←→ regularization!
the worst case L2-loss is equal to a regularized L2-loss

a new theory for quantitatively relating causality︸ ︷︷ ︸
interventions

to robustness



for any b

argminb

worst case test error︷ ︸︸ ︷
max
v∈Cγ

E
[∣∣Y v − X v b

∣∣2]
=

argminb

E
[∣∣(Id− PA)(Y − Xb)

∣∣2]+ γE
[∣∣PA(Y − Xb)

∣∣2]︸ ︷︷ ︸
criterion on training population sample

and “therefore”

β̂ = argminb‖(I − ΠA)(Y − Xb)‖22/n + γ‖ΠA(Y − Xb)‖22 (+λ‖b‖1)

protects against worst case shift intervention scenarios
and leads to

predictive stability (i.e. optimizing a worst case risk)

the word “therefore”
is justified for the high-dimensional sparse scenario
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Theorem (Rothenhäusler, Meinshausen, PB & Peters, 2018)
assume:

I a “causal” compatibility condition on X (weaker than the standard
compatibility condition);

I (sub-) Gaussian error;

I dim(A) ≤ C <∞ for some C;
Then, for Rγ(b) = maxv∈Cγ

E|Y v − X v b|2 and any γ ≥ 0:

Rγ(β̂γ) = min
b

Rγ(b)︸ ︷︷ ︸
optimal

+OP(sγ
√

log(d)/n),

sγ = supp(βγ), βγ = argminbRγ(b)

if dim(A) is large: use `∞-norm causal
I good for identifiability (lots of heterogeneity) regularization
I a statistical price of log(|A|)



Performance in practice
evaluate worst case risk

max
v

E[(Y v − X v β̂)2]

; look at quantiles of {(Yi − Ŷi)
2; i ∈ test sample}

Bike rentals in Washington DC
n = 17′379, d = 4 meteorological covariates, linear model
anchor = “time”

≈ 15-25% gain over standard least squares
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Nonlinear extensions with Random Forests

Simulations: quantiles of {|Yi − Ŷi |; i ∈ test sample}
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blue: Random Forests, black: nonlinear anchor regression with RF

Air pollution in Chinese cities
anchor: “geographical label”
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some first empirical results for macro-economic predictions

- heterogeneity over different European countries
- the model is of state-space form (“state-of-the-art” model)
; improvements with causal regularization (of “anchor-type”)

it’s a new way of thinking about “scenario robustness”!
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It’s a kind of future scenario/test sample robustness

quite different from classical statistical robustness:
I robust stats:

– downweight outliers to “approach” the reference distr.
– aims (primarily) for training sample robustness

I anchor/invariance: make use of/exploit the perturbations to
inspect stability and hence “robustify” against against
adversarial future scenarios/test samples



Connections to robust optimization

distributionally robust optimization
(Ben-Tal, El Ghaoui & Nemirovski, 2009;

e.g. Sinha, Namkoong & Duchi, 2017)

argminβ max
P∈P

EP [`(X ,Y ;β)]︸ ︷︷ ︸
e.g. EP |Y−X Tβ|2

guarantees performance under adversarial test sample distr.

what is P? usually

P = {P; d(P,P0)︸ ︷︷ ︸
e.g. Wasserstein distance

≤ ρ}

often P0 = P̂ (= empirical dist.)



learned

from

data

amplified

     robust optimization

      pre−specified radius
perturbations

P_0

    our approach (anchor regression)

anchor regression:
learn the “structure” of the class F from heterogeneous data in
E ; and F is an amplification of the observed heterogeneity in E

the class is based on a “causal-type” model ; has the potential
for interesting interpretability

(in contrast to just having a “good metric”)



Conclusions

there are surprising connections between

causality⇐⇒ invariance/stability⇐⇒ robustness

I some of them were known (e.g. Haavelmo, 1943)
I some of them are novel and

especially interesting in the advent of large-scale data
where perturbations/heterogeneities are unspecific



make heterogeneity, perturbations, non-stationarity your friend
(rather than your enemy)!
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What have we done to address the “ill-posedness”?

where A is allowed to influence not only X but also Y and H

I still get predictive stability
I causality is impossible

but γ =∞ corresponds to invariance of residuals w.r.t.
arbitrarily strong shift perturbations generated by A

a “diluted form of causality”
still better than ordinary regression framework

; useful for e.g. bio-medical applications
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I : invariant prediction method
H: invariant prediction with some hidden variables


