Computational-Statistical Tradeoffs in Robust Estimation

Ilias Diakonikolas (USC)

(based on joint work with D. Kane and A. Stewart)

ROBUST HIGH-DIMENSIONAL ESTIMATION

Can we develop learning/estimation algorithms that are **robust** to a constant fraction of **corruptions** in the data?

Contamination Model:

Let $\mathcal F$ be a family of high-dimensional distributions. We say that a distribution F' is ϵ - corrupted with respect to $\mathcal F$ if there exists $F \in \mathcal F$ such that

$$d_{\mathrm{TV}}(F',F) \leq \epsilon$$
.

THE UNSUPERVISED LEARNING PROBLEM

- *Input*: sample generated by model with unknown θ^*
- *Goal*: estimate parameters θ so that $\theta \approx \theta^*$

Question 1: Is there an efficient learning algorithm?

Main performance criteria:

- Sample size
- Running time
- Robustness

Question 2: Are there tradeoffs between these criteria?

ROBUSTLY LEARNING A GAUSSIAN – PRIOR WORK

Basic Problem: Given an ϵ - corrupted version F' of an unknown d-dimensional unknown mean Gaussian

$$\mathcal{N}(\mu, I)$$

efficiently compute a hypothesis distribution H such that

$$d_{\text{TV}}(H, \mathcal{N}(\mu, I)) \leq O(\epsilon)$$
.

- Extensively studied in robust statistics since the 1960's. Till recently, known efficient estimators get error $\Omega(\epsilon \cdot \sqrt{d})$.
- Recent Algorithmic Progress:
 - -- [Lai-Rao-Vempala'16] $O\left(\epsilon\sqrt{\log(1/\epsilon)}\cdot\sqrt{\log d}
 ight)$.
 - -- [D-Kamath-Kane-Li-Moitra-Stewart'16] $O\!\left(\epsilon\sqrt{\log(1/\epsilon)}
 ight)$.

ROBUSTLY LEARNING A GAUSSIAN

Basic Problem: Given an ϵ - corrupted version F' of an unknown d-dimensional unknown mean Gaussian

$$\mathcal{N}(\mu, I)$$

efficiently compute a hypothesis distribution H such that

$$d_{\text{TV}}(H, \mathcal{N}(\mu, I)) \leq O(\epsilon)$$
.

 $O(\epsilon)$ error is the information-theoretically best possible.

ROBUST LEARNING – OPEN QUESTION

Summary of Prior Work: There is a $\operatorname{poly}(d/\epsilon)$ time algorithm for robustly learning $\mathcal{N}(\mu,I)$ within error $O\left(\epsilon\sqrt{\log(1/\epsilon)}\right)$.

Open Question: Is there a $\operatorname{poly}(d/\epsilon)$ time algorithm for robustly learning $\mathcal{N}(\mu,I)$ within error $o(\epsilon\sqrt{\log(1/\epsilon)})$? How about $O(\epsilon)$?

OUTLINE

Part I: Introduction

- Unsupervised Learning in High Dimension
- Statistical Query (SQ) Learning Model
- Our Results

Part II: Computational SQ Lower Bounds

- Generic SQ Lower Bound Technique
- Two Applications: Learning GMMs,
 Robustly Learning a Gaussian

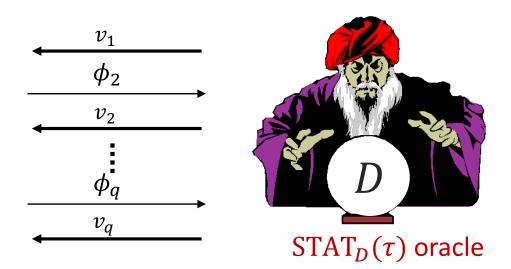
Part III: Extensions

Part IV: Summary and Conclusions

STATISTICAL QUERIES [KEARNS' 93]

$$x_1, x_2, \dots, x_m \sim D \text{ over } X$$

STATISTICAL QUERIES [KEARNS' 93]



$$\phi_1: X \to [-1,1] \quad |v_1 - \mathbf{E}_{x \sim D}[\phi_1(x)]| \le \tau$$
 τ is tolerance of the query; $\tau = 1/\sqrt{m}$

Problem $P \in SQCompl(q, m)$:

If exists a SQ algorithm that solves P using q queries to $STAT_D(\tau=1/\sqrt{m})$

POWER OF SQ ALGORITHMS (?)

Restricted Model: Hope to prove unconditional computational lower bounds.

Powerful Model: Wide range of algorithmic techniques in ML are implementable using SQs*:

- PAC Learning: AC⁰, decision trees, linear separators, boosting.
- Unsupervised Learning: stochastic convex optimization, moment-based methods, k-means clustering, EM, ... [Feldman-Grigorescu-Reyzin-Vempala-Xiao/JACM'17]

Only known exception: Gaussian elimination over finite fields (e.g., learning parities).

For all problems in this talk, strongest known algorithms are SQ.

METHODOLOGY FOR SQ LOWER BOUNDS

Statistical Query Dimension:

- Fixed-distribution PAC Learning
 [Blum-Furst-Jackson-Kearns-Mansour-Rudich'95; ...]
- General Statistical Problems
 [Feldman-Grigorescu-Reyzin-Vempala-Xiao'13, ..., Feldman'16]

Pairwise correlation between D_1 and D_2 with respect to D:

$$\chi_D(D_1, D_2) := \int_{\mathbb{R}^d} D_1(x) D_2(x) / D(x) dx - 1$$

Fact: Suffices to construct a large set of distributions that are *nearly* uncorrelated.

OUTLINE

Part I: Introduction

- Unsupervised Learning in High Dimension
- Statistical Query (SQ) Learning Model
- Our Results

Part II: Computational SQ Lower Bounds

- Generic SQ Lower Bound Technique
- Two Applications: Learning GMMs,
 Robustly Learning a Gaussian

Part III: Summary and Conclusions

STATISTICAL QUERY LOWER BOUND FOR ROBUSTLY LEARNING A GAUSSIAN

Theorem: Suppose $d \geq \operatorname{polylog}(1/\epsilon)$. Any SQ algorithm that learns an ϵ - corrupted Gaussian $\mathcal{N}(\mu, I)$ within statistical distance error $O(\epsilon \sqrt{\log(1/\epsilon)}/M)$

requires either:

• SQ queries of accuracy $d^{-M/6}$

or

At least

$$d^{\Omega(M^{1/2})}$$

many SQ queries.

Take-away: Any asymptotic improvement in error guarantee over prior work requires super-polynomial time.

GENERAL LOWER BOUND CONSTRUCTION

General Technique for SQ Lower Bounds:

Leads to Tight Lower Bounds
for a range of High-dimensional Estimation Tasks

Concrete Applications of our Technique:

- Robustly Learning the Mean and Covariance
- Learning Gaussian Mixture Models (GMMs)
- Statistical-Computational Tradeoffs
- Robustly Testing a Gaussian

APPLICATIONS: CONCRETE SQ LOWER BOUNDS

Unified technique yielding a range of applications

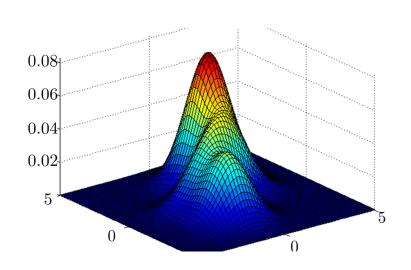
Learning Problem	Upper Bound	SQ Lower Bound
Robust Gaussian Mean Estimation	Error: $O(\epsilon \log^{1/2}(1/\epsilon))$ [DKKLMS'16]	Runtime Lower Bound: $d^{\mathrm{poly}(M)}$
Robust Gaussian Covariance Estimation	Error: $O(\epsilon \log(1/\epsilon))$ [DKKLMS'16]	for factor M improvement in error.
Learning k -GMMs (without noise)	Runtime: $d^{g(k)}$ [MV'10, BS'10]	Runtime Lower Bound: $d^{\Omega(k)}$
Robust k -Sparse Mean Estimation	Sample size: $ \tilde{O}(k^2 \log d) \\ \text{[Li'17, DBS'17]} $	If sample size is $O(k^{1.99})$ runtime lower bound: $d^{k^{\Omega(1)}}$
Robust Covariance Estimation in Spectral Norm	Sample size: $ \tilde{O}(d^2) \\ [{\rm DKKLMS'16}] $	If sample size is $O(d^{1.99})$ runtime lower bound: $2^{d^{\Omega(1)}}$

GAUSSIAN MIXTURE MODEL (GMM)

• GMM: Distribution on \mathbb{R}^d with probability density function

$$F = \sum_{i=1}^{k} w_i \mathcal{N}(\mu_i, \Sigma_i)$$

Extensively studied in statistics and TCS



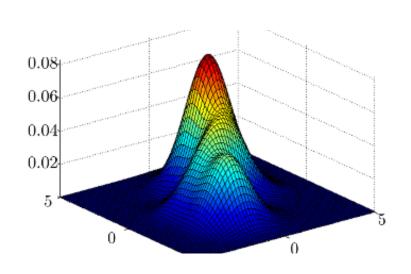
Karl Pearson (1894)

GAUSSIAN MIXTURE MODEL (GMM)

• GMM: Distribution on \mathbb{R}^d with probability density function

$$F = \sum_{i=1}^{k} w_i \mathcal{N}(\mu_i, \Sigma_i)$$

Extensively studied in statistics and TCS



Karl Pearson (1894)

LEARNING GMMS - PRIOR WORK (I)

Two Related Learning Problems

Parameter Estimation: Recover model parameters.

Separation Assumptions: Clustering-based Techniques

[Dasgupta'99, Dasgupta-Schulman'00, Arora-Kanan'01, Vempala-Wang'02, Achlioptas-McSherry'05, **Brubaker-Vempala'08**

Sample Complexity: poly(d, k)(Best Known) Runtime: poly(d, k)

No Separation: Moment Method

[Kalai-Moitra-Valiant'10, Moitra-Valiant'10, Belkin-Sinha'10, Hardt-Price'15]

Sample Complexity: $\operatorname{poly}(d) \cdot (1/\gamma)^{\Theta(k)}$ (Best Known) Runtime: $(d/\gamma)^{\Omega(k)}$

SEPARATION ASSUMPTIONS

- Clustering is possible only when the components have very little overlap.
- Formally, we want the total variation distance between components to be close to 1.
- Algorithms for learning spherical GMMS work under this assumption.
- For non-spherical GMMs, known algorithms require stronger assumptions.

LEARNING GMMS - PRIOR WORK (II)

Density Estimation: Recover underlying distribution (within statistical distance ϵ).

[Feldman-O'Donnell-Servedio'05, Moitra-Valiant'10, Suresh-Orlitsky-Acharya-Jafarpour'14, Hardt-Price'15, Li-Schmidt'15]

Sample Complexity: $poly(d, k, 1/\epsilon)$

(Best Known) Runtime: $(d/\epsilon)^{\Omega(k)}$

Fact: For separated GMMs, density estimation and parameter estimation are equivalent.

LEARNING GMMS – OPEN QUESTION

Summary: The sample complexity of density estimation for k-GMMs is $\operatorname{poly}(d,k)$. The sample complexity of parameter estimation for $separated\ k$ -GMMs is $\operatorname{poly}(d,k)$.

Question: Is there a poly(d, k) **time** learning algorithm?

STATISTICAL QUERY LOWER BOUND FOR LEARNING GMMS

Theorem: Suppose that $d \ge \operatorname{poly}(k)$. Any SQ algorithm that learns separated k-GMMs over \mathbb{R}^d to constant error requires either:

SQ queries of accuracy

$$d^{-k/6}$$

or

At least

$$2^{\Omega(d^{1/8})} > d^{2k}$$

many SQ queries.

Take-away: Computational complexity of learning GMMs is inherently exponential in **number of components**.

OUTLINE

Part I: Introduction

- Unsupervised Learning in High Dimension
- Statistical Query (SQ) Learning Model
- Our Results

Part II: Computational SQ Lower Bounds

- Generic SQ Lower Bound Technique
- Two Applications: Learning GMMs,
 Robustly Learning a Gaussian

Part III: Summary and Conclusions

GENERAL RECIPE FOR (SQ) LOWER BOUNDS

Our generic technique for proving SQ Lower Bounds:

- Step #1: Construct distribution \mathbf{P}_v that is standard Gaussian in all directions except v.
- Step #2: Construct the univariate projection in the v direction so that it matches the first m moments of $\mathcal{N}(0,1)$
- Step #3: Consider the family of instances $\mathcal{D} = \{\mathbf{P}_v\}_v$

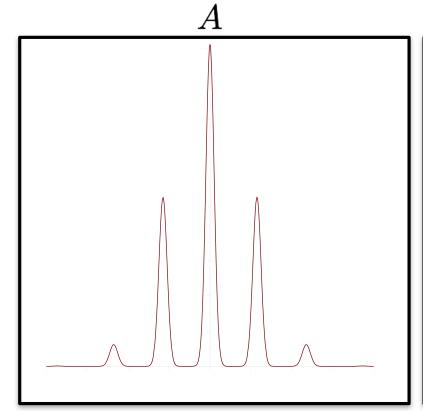
Non-Gaussian Component Analysis [Blanchard et al. 2006]

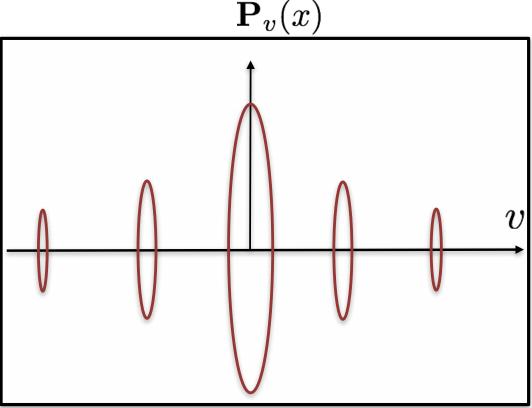
HIDDEN DIRECTION DISTRIBUTION

Definition: For a unit vector v and a univariate distribution with density A, consider the high-dimensional distribution

$$\mathbf{P}_{v}(x) = A(v \cdot x) \exp\left(-\|x - (v \cdot x)v\|_{2}^{2}/2\right) / (2\pi)^{(d-1)/2}.$$

Example:





GENERIC SQ LOWER BOUND

Definition: For a unit vector v and a univariate distribution with density A, consider the high-dimensional distribution

$$\mathbf{P}_v(x) = A(v \cdot x) \exp\left(-\|x - (v \cdot x)v\|_2^2/2\right) / (2\pi)^{(d-1)/2}.$$

Proposition: Suppose that:

- A matches the first m moments of $\mathcal{N}(0,1)$
- We have $d_{\mathrm{TV}}(\mathbf{P}_v,\mathbf{P}_{v'})>2\delta$ as long as v, v are nearly orthogonal.

Then any SQ algorithm that learns an unknown \mathbf{P}_v within error δ requires either queries of accuracy d^{-m} or $2^{d^{\Omega(1)}}$ many queries.

WHY IS FINDING A HIDDEN DIRECTION HARD?

Observation: Low-Degree Moments do not help.

- A matches the first m moments of $\mathcal{N}(0,1)$
- The first m moments of \mathbf{P}_v are identical to those of $\mathcal{N}(0,I)$
- Degree-(m+1) moment tensor has $\Omega(d^m)$ entries.

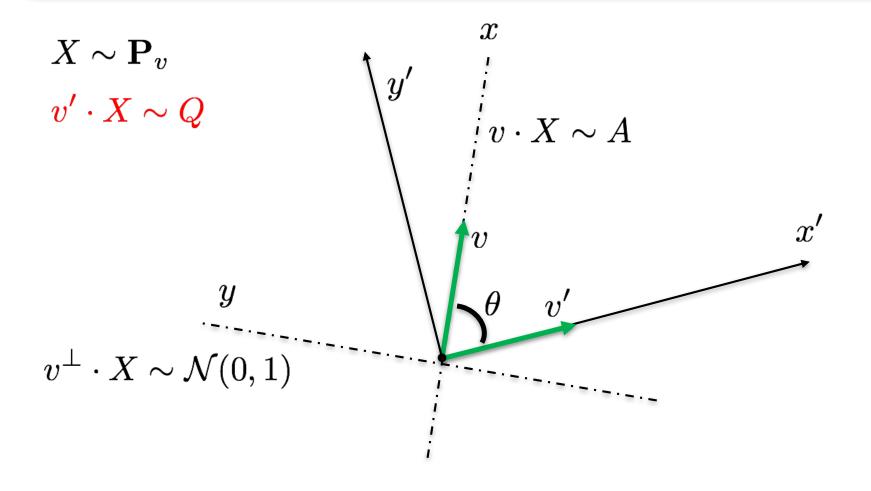
Claim: Random projections do not help.

• To distinguish between \mathbf{P}_v and $\mathcal{N}(0,I)$, would need exponentially many random projections.

ONE-DIMENSIONAL PROJECTIONS ARE ALMOST GAUSSIAN

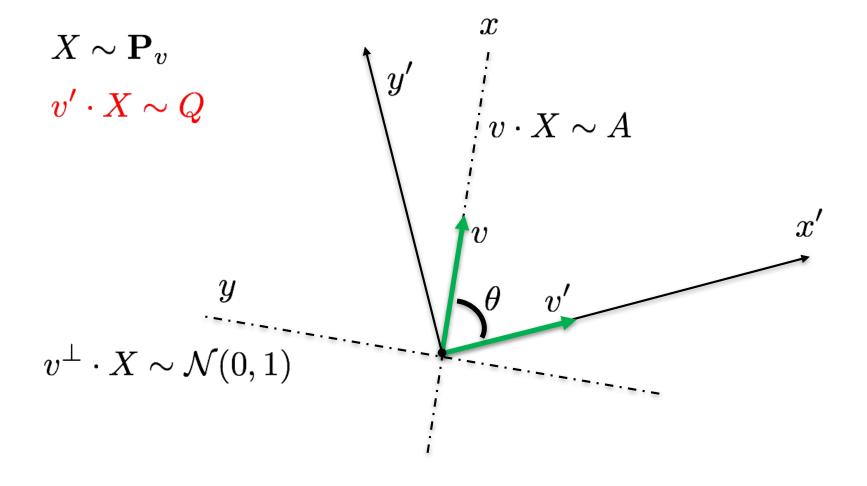
Key Lemma: Let Q be the distribution of $v' \cdot X$, where $X \sim \mathbf{P}_v$. Then, we have that:

$$\chi^2(Q, \mathcal{N}(0,1)) \le (v \cdot v')^{2(m+1)} \chi^2(A, \mathcal{N}(0,1))$$



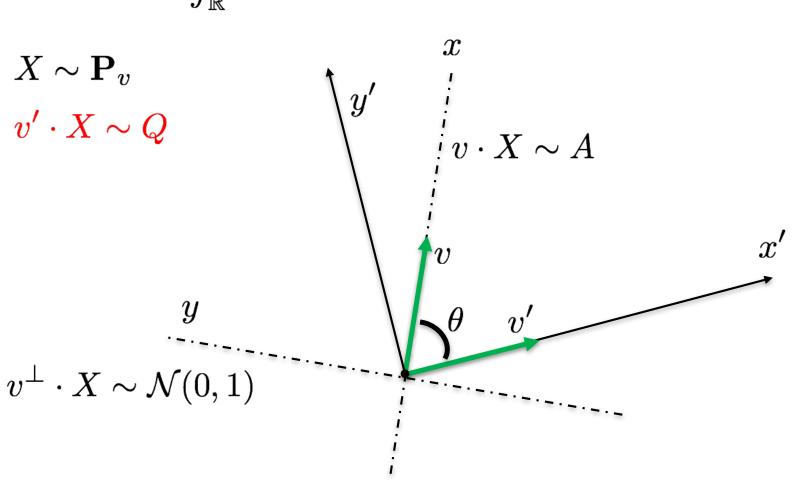
PROOF OF KEY LEMMA (I)

$$Q(x') = \int_{\mathbb{R}} A(x)G(y)dy'$$



PROOF OF KEY LEMMA (I)

$$Q(x') = \int_{\mathbb{R}} A(x)G(y)dy'$$
$$= \int_{\mathbb{R}} A(x'\cos\theta + y'\sin\theta)G(x'\sin\theta - y'\cos\theta)dy'$$



PROOF OF KEY LEMMA (II)

$$Q(x') = \int_{\mathbb{R}} A(x'\cos\theta + y'\sin\theta)G(x'\sin\theta - y'\cos\theta)dy'$$
$$= (U_{\theta}A)(x')$$

where U_{θ} is the operator over $f: \mathbb{R} \to \mathbb{R}$

$$U_{\theta}f(x) := \int_{y \in \mathbb{R}} f(x\cos\theta + y\sin\theta)G(x\sin\theta - y\cos\theta)dy$$

Gaussian Noise (Ornstein-Uhlenbeck)
Operator

EIGENFUNCTIONS OF ORNSTEIN-UHLENBECK OPERATOR

Linear Operator $\ U_{ heta}$ acting on functions $\ f: \mathbb{R}
ightarrow \mathbb{R}$

$$U_{\theta}f(x) := \int_{y \in \mathbb{R}} f(x\cos\theta + y\sin\theta)G(x\sin\theta - y\cos\theta)dy$$

Fact (Mehler'66): $U_{\theta}(He_iG)(x) = \cos^i(\theta)He_i(x)G(x)$

- $He_i(x)$ denotes the degree-i Hermite polynomial.
- Note that $\{He_i(x)G(x)/\sqrt{i!}\}_{i\geq 0}$ are orthonormal with respect to the inner product

$$\langle f, g \rangle = \int_{\mathbb{R}} f(x)g(x)/G(x)dx$$

GENERIC SQ LOWER BOUND

Definition: For a unit vector v and a univariate distribution with density A, consider the high-dimensional distribution

$$\mathbf{P}_{v}(x) = A(v \cdot x) \exp\left(-\|x - (v \cdot x)v\|_{2}^{2}/2\right) / (2\pi)^{(d-1)/2}.$$

Proposition: Suppose that:

- A matches the first m moments of $\mathcal{N}(0,1)$
- We have $d_{\mathrm{TV}}(\mathbf{P}_v,\mathbf{P}_{v'})>2\delta$ as long as v, v are nearly orthogonal.

Then any SQ algorithm that learns an unknown \mathbf{P}_v within error δ requires either queries of accuracy d^{-m} or $2^{d^{\Omega(1)}}$ many queries.

OUTLINE

Part I: Introduction

- Unsupervised Learning in High Dimension
- Statistical Query (SQ) Learning Model
- Our Results

Part II: Computational SQ Lower Bounds

- Generic SQ Lower Bound Technique
- Application: Learning GMMs

Part III: Summary and Conclusions

APPLICATION: SQ LOWER BOUND FOR GMMS (I)

Want to show:

Theorem: Any SQ algorithm that learns separated k-GMMs over \mathbb{R}^d to constant error requires either SQ queries of accuracy $d^{-k/6}$ or at least $2^{\Omega(d^{1/8})} \geq d^{2k}$ many SQ queries.

by using our generic proposition:

Proposition: Suppose that:

- A matches the first m moments of $\mathcal{N}(0,1)$
- We have $d_{\mathrm{TV}}(\mathbf{P}_v,\mathbf{P}_{v'})>2\delta$ as long as v, v are nearly orthogonal.

Then any SQ algorithm that learns an unknown \mathbf{P}_v within error δ requires either queries of accuracy d^{-m} or $2^{d^{\Omega(1)}}$ many queries.

APPLICATION: SQ LOWER BOUND FOR GMMS (II)

Proposition: Suppose that:

- A matches the first m moments of $\mathcal{N}(0,1)$
- We have $d_{\mathrm{TV}}(\mathbf{P}_v,\mathbf{P}_{v'})>2\delta$ as long as v, v are nearly orthogonal.

Then any SQ algorithm that learns an unknown \mathbf{P}_v within error δ requires either queries of accuracy d^{-m} or $2^{d^{\Omega(1)}}$ many queries.

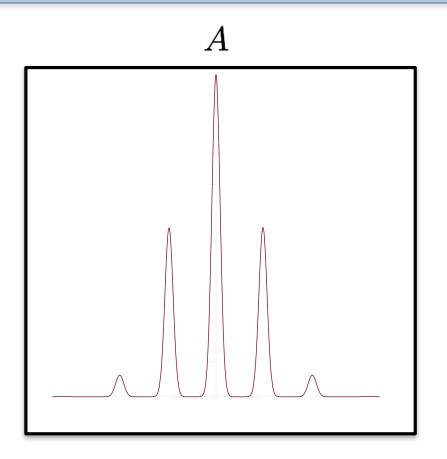
Lemma: There exists a univariate distribution A that is a k-GMM with components A_i such that:

- A agrees with $\mathcal{N}(0,1)$ on the first 2k-1 moments.
- Each pair of components are separated.
- Whenever v and v are nearly orthogonal $d_{\mathrm{TV}}(\mathbf{P}_v,\mathbf{P}_{v'}) \geq 1/2$.

APPLICATION: SQ LOWER BOUND FOR GMMS (III)

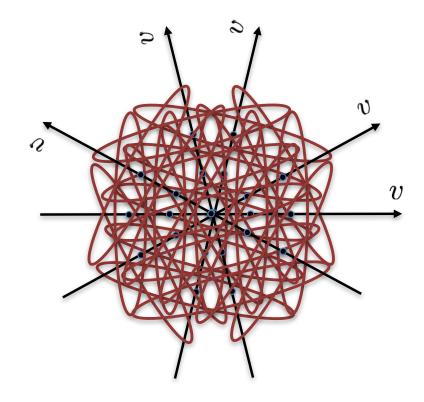
Lemma: There exists a univariate distribution A that is a k-GMM with components A_i such that:

- A agrees with $\mathcal{N}(0,1)$ on the first 2k-1 moments.
- Each pair of components are separated.
- Whenever v and v are nearly orthogonal $d_{\mathrm{TV}}(\mathbf{P}_v,\mathbf{P}_{v'}) \geq 1/2$.



APPLICATION: SQ LOWER BOUND FOR GMMS (III)

High-Dimensional Distributions P_v look like "parallel pancakes":



Efficiently learnable for k=2. [Brubaker-Vempala'08]

OUTLINE

Part I: Introduction

- Unsupervised Learning in High Dimension
- Statistical Query (SQ) Learning Model
- Our Results

Part II: Computational SQ Lower Bounds

- Generic SQ Lower Bound Technique
- Two Applications: Learning GMMs,
 Robustly Learning a Gaussian

Part III: Summary and Conclusions

SUMMARY AND FUTURE DIRECTIONS

- General Technique to Prove SQ Lower Bounds
- Robustness can make high-dimensional estimation harder computationally and information-theoretically.

Future Directions:

Further Applications of our Framework
 List-Decodable Mean Estimation [D-Kane-Stewart'18]
 Discrete Product Distributions [D-Kane-Stewart'18]
 Robust Regression [D-Kong-Stewart'18]
 Adversarial Examples [Bubeck-Price- Razenshteyn'18]

Alternative Evidence of Computational Hardness?

Thanks! Any Questions?