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ROBUST HIGH-DIMENSIONAL ESTIMATION

- )
Can we develop learning/estimation algorithms that are

robust to a constant fraction of corruptions in the data?
- /

/Contamination Model: \
Let F be a family of high-dimensional distributions.

We say that a distribution F’ is ¢ - corrupted with
respect to f if there exists I’ € F such that

dTv(F,,F) S €.
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THE UNSUPERVISED LEARNING PROBLEM

Unknown R
o* samples

* Input: sample generated by model with unknown ¢*
* Goal: estimate parameters 0 so that 6 = 0~

Question 1: Is there an efficient learning algorithm?

Main performance criteria:  question 2: Are there

‘ Sample Slz€ tradeoffs between these
* Running time criteria?

« Robustness



ROBUSTLY LEARNING A GAUSSIAN — PRIOR WORK

Basic Problem: Given an ¢ - corrupted version F’ of an unknown
d-dimensional unknown mean Gaussian

N (p, I)
efficiently compute a hypothesis distribution H such that
drv(H,N(p,I)) < O(e) .

* Extensively studied in robust statistics since the 1960’s. Till
recently, known efficient estimators get error Q(e - Vd) .
* Recent Algorithmic Progress:

-- [Lai-Rao-Vempala’16] ( \/log 1/6 «/log )

-- [D-Kamath-Kane-Li-Moitra-Stewart’16] O (6 \/ log(l / 6)) .




ROBUSTLY LEARNING A GAUSSIAN

Basic Problem: Given an ¢ - corrupted version F’ of an unknown
d-dimensional unknown mean Gaussian

N (p, I)
efficiently compute a hypothesis distribution H such that
drv(H,N(p,I)) < O(e) .

O(e) error is the information-theoretically best possible.



ROBUST LEARNING — OPEN QUESTION

Summary of Prior Work: There is a poly(d/e) time algorithm for
robustly learning N (y, I) within error O (ey/log(1/€)) .

Open Question: Is there a poly(d/e) time algorithm for robustly
learning N (u, I) within error o(e4/log(1/¢€))?
How about O(e) ?
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STATISTICAL QUERIES [KEARNS’ 93]

X1, X2, «e, Xm ~ D over X

e
J




STATISTICAL QUERIES [KEARNS’ 93]

SQ algorithm Vq
< STATp (t) oracle

¢p1: X > [-1,1] |vy —Eyrplos)]l =7
T is tolerance of the query; T = 1/\/m

Problem P € SQCompl(g, m):
If exists a SQ algorithm that solves P using g queries to

STAT, (t = 1/\ym)




POWER OF SQ ALGORITHMS

Restricted Model: Hope to prove unconditional computational lower
bounds.

Powerful Model: Wide range of algorithmic techniques in ML are
implementable using SQs”:

* PAC Learning: ACY decision trees, linear separators, boosting.
* Unsupervised Learning: stochastic convex optimization, moment-
based methods, k~-means clustering, EM, ...

[Feldman-Grigorescu-Reyzin-Vempala-Xiao/JACM’17]

Only known exception: Gaussian elimination over finite fields (e.g.,
learning parities).

For all problems in this talk, strongest known algorithms are SQ.



METHODOLOGY FOR SQ LOWER BOUNDS

Statistical Query Dimension:

* Fixed-distribution PAC Learning
[Blum-Furst-Jackson-Kearns-Mansour-Rudich’95; ...]

* General Statistical Problems
[Feldman-Grigorescu-Reyzin-Vempala-Xiao’13, ..., Feldman’16]

Pairwise correlation between D, and D, with respect to D:

XD (D1, D2) := y D1(z)Dy(z)/D(z)dx — 1

Fact: Suffices to construct a large set of distributions that are nearly
uncorrelated.
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STATISTICAL QUERY LOWER BOUND FOR
ROBUSTLY LEARNING A GAUSSIAN

Theorem: Suppose d > polylog(1/€). Any SQ algorithm that
learns an € - corrupted Gaussian N (u, I) within statistical distance

Srror O(e+/log(1/€) /M)

requires either:

* SQ queries of accuracy d—M/6
or

e Atleast

dQ(M1/2)
\\many SQ queries. /

Take-away: Any asymptotic improvement in error guarantee over
prior work requires super-polynomial time.




GENERAL LOWER BOUND CONSTRUCTION

General Technique for SQ Lower Bounds:
Leads to Tight Lower Bounds
for a range of High-dimensional Estimation Tasks

Concrete Applications of our Technique:

Robustly Learning the Mean and Covariance

* Learning Gaussian Mixture Models (GMMs)

Statistical-Computational Tradeoffs

Robustly Testing a Gaussian




APPLICATIONS: CONCRETE SQ LOWER BOUNDS

Unified technique yielding a range of applications

Learning Problem Upper Bound SQ Lower Bound

Robust Gaussian Mean Error: 1/2 Runtime Lower Bound:
Estimation O(elog™“(1/¢))
[DKKLMS’16] gpoly(M)
Robust Gaussian Error: _ _
Covariance Estimation O(elog(1/€)) for factor M improvement in
[DKKLMS’16] error.
Learning k-GMMs Runtime: Runtime Lower Bound:
(without noise) 482 (k)
[MV’10, BS’10]
Robust A-Sparse Mean Sample size: If sample size is O(kl'gg)
Estimation O(k;2 log d) runtime lower I%O}md:
[Li’'17, DBS'17] L
Robust Covariance Sample size:_ If sample size is O(dl'gg)
Estimation in Spectral O(dz) runtime lower bound:

Norm [DKKLMS’16] 9d?M)



GAUSSIAN MIXTURE MODEL (GMM)

« GMM: Distribution on R? with probability density function
k
i=1

* Extensively studied in statistics and TCS

Karl Pearson (1894)



GAUSSIAN MIXTURE MODEL (GMM)

« GMM: Distribution on R? with probability density function
k
i=1

* Extensively studied in statistics and TCS
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Karl Pearson (1894)



LEARNING GMMS - PRIOR WORK (I)

Two Related Learning Problems
[ Parameter Estimation: Recover model parameters. ]

e Separation Assumptions: Clustering-based Techniques

[Dasgupta’99, Dasgupta-Schulman’00, Arora-Kanan’01,
Vempala-Wang’02, Achlioptas-McSherry’05,
Brubaker-Vempala’08]

Sample Complexity:  poly(d, k)
(Best Known) Runtime: poly(d, k)
* No Separation: Moment Method

[Kalai-Moitra-Valiant’10, Moitra-Valiant’10,
Belkin-Sinha’10, Hardt-Price’15]

Sample Complexity:  poly(d) - (1/7)°®
(Best Known) Runtime: (d/~)(¥)



SEPARATION ASSUMPTIONS

Clustering is possible only when the components have very
little overlap.

 Formally, we want the total variation distance
between components to be close to 1.

e Algorithms for learning spherical GMMS
work under this assumption.

* For non-spherical GMMs, known algorithms require
stronger assumptions.




LEARNING GMMS - PRIOR WORK (l1)

Density Estimation: Recover underlying distribution
(within statistical distance €).

[Feldman-O’Donnell-Servedio’05, Moitra-Valiant’10, Suresh-Orlitsky-Acharya-
Jafarpour’14, Hardt-Price’15, Li-Schmidt’15]

Sample Complexity: poly(d, k,1/¢)

(Best Known) Runtime: (d/¢)*(®)

Fact: For separated GMMs, density estimation and parameter
estimation are equivalent.




LEARNING GMMS — OPEN QUESTION

/
Summary: The sample complexity of density estimation for

k-GMMs is poly(d, k). The sample complexity of parameter
L estimation for separated k-GMMs is poly(d, k) .

[ Question: Is there a poly(d, k) time learning algorithm?




STATISTICAL QUERY LOWER BOUND FOR
LEARNING GMMS

/Theorem Suppose that d > poly(k). Any SQ algorithm that Iearn\
separated ~~-GMMs over R? to constant error requires either:
* SQ queries of accuracy
d—k/6
or

e At least s
9Q(d'/®) > 2k

\many SQ queries. /

Take-away: Computational complexity of learning GMMs is
inherently exponential in number of components.
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GENERAL RECIPE FOR (SQ) LOWER BOUNDS

Our generic technique for proving SQ Lower Bounds:

* Step #1: Construct distribution P, that is standard Gaussian
in all directions except v.

* Step #2: Construct the univariate projection in the v direction
so that it matches the first m moments of A (0,1)

4

* Step #3: Consider the family of instances D = {P,},

Non-Gaussian Component Analysis [Blanchard et al. 2006]



HIDDEN DIRECTION DISTRIBUTION
4 . L L a
Definition: For a unit vector v and a univariate distribution with
density A4, consider the high-dimensional distribution

L P,(z) = A(v- z)exp (~[lz — (v- z)v[|3/2) /(2m) 47D/, )

Example:

A P, ()

+

|




GENERIC SQ LOWER BOUND
; Y

Definition: For a unit vector v and a univariate distribution with
density 4, consider the high-dimensional distribution

P,(z) = A(v- @) exp (~[lz — (v- z)v||3/2) /(2m) 7D/,

/Proposition: Suppose that: \

* A matches the first m moments of N'(0,1)
* We havedyy(P,,P,) > 26 aslongasv, v’are nearly
orthogonal.

Then any SQ algorithm that learns an unknown P, within error ¢
. . . Q(1 )
requires either queries of accuracy d—" or 2¢ o many queries.

€ 4




WHY IS FINDING A HIDDEN DIRECTION HARD?

[ Observation: Low-Degree Moments do not help.

* A4 matches the first m moments of N'(0, 1)
* The first m moments of P, are identical to those of N'(0, I)
* Degree-(m+1) moment tensor has €2(d™ ) entries.

{ Claim: Random projections do not help.

* To distinguish between P,, and N (0, I), would need
exponentially many random projections.



ONE-DIMENSIONAL PROJECTIONS ARE ALMOST GAUSSIAN

p
Key Lemma: Let O be the distribution of v’ - X, where X ~ P,,.

Then, we have that:

X (Q,N(0,1)) < (v-v')? ™2 (4, N(0,1))

.

X~P,
v X ~Q

.
By
B
-_—,
- ,
.
o




PROOF OF KEY LEMMA (1)
Q') = /R A(z)G(y)dy




PROOF OF KEY LEMMA (1)
Q') = /R A(z)G(y)dy

= / A(z' cos 6 + ' sin0)G(z' sin € — 3y’ cos 0)dy’
R

X ~P,
v X ~Q




PROOF OF KEY LEMMA (I1)
Q(z") = / A(z' cos + v sin6)G(z' sin€ — y' cos 0)dy’
R

— (UsA)(@)

where Uy isthe operatorover f: R — R

{ Ugf(x) := f(xcosf + ysin )G (xsin 6 — y cos 0)dy

y€ER

Gaussian Noise (Ornstein-Uhlenbeck)
Operator




EIGENFUNCTIONS OF ORNSTEIN-UHLENBECK OPERATOR

Linear Operator Uy acting on functions f: R — R

Ugf(x) := f(xcosf + ysinf)G(xsinf — y cos 0)dy

yeR

L Fact (Mehler’'66): Ug(He;G)(x) = cos'(0)He;(x)G(x)

* He;(x) denotes the degree-i Hermite polynomial.
* Note that {He;(x)G(z)/Vi!}i>0 are orthonormal with respect
to the inner product

= Jp f(2)g(2)/G(2)dz



GENERIC SQ LOWER BOUND
s Y

Definition: For a unit vector v and a univariate distribution with
density A, consider the high-dimensional distribution

P,(z) = A(v-z)exp (—[|z — (v- z)v]|3/2) /(2m) 7D/,

/Proposition: Suppose that: \

* A matches the first m moments of N'(0,1)
* We havedyy(P,,P,) > 26 aslongasv, v’are nearly
orthogonal.

Then any SQ algorithm that learns an unknown P, within error ¢
. . . Q(1 :
requires either queries of accuracy d—"or 2¢ ( )many queries.
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APPLICATION: SQ LOWER BOUND FOR GMMS (I)

Want to show:

( Theorem: Any SQ algorithm that learns separated &-GMMs over Re
to constant errolr/srequires either SQ queries of accuracy d—k/6
or at least 29(4"7) > 2k many SQ queries.
\ /
by using our generic proposition:
/Proposition: Suppose that: \

* A matches the first m moments of A (0,1)
* We havedrv(P,,P,) > 20 aslongasv, v’'are nearly
orthogonal.

Then any SQ algorithm that learns an unknow&%’v within error o
krequires either queries of accuracy d—™or 2¢ """ many queries. /




APPLICATION: SQ LOWER BOUND FOR GMMS (1)

/Proposition: Suppose that: \
* A matches the first m moments of A/(0,1)

* We havedrv(P,,P,) > 20 aslongasv, v’'are nearly
orthogonal.

Then any SQ algorithm that learns an unknowsg\(g’v within error o
Krequires either queries of accuracy d—™or 2¢ """ many queries. /

4 Lemma: There exists a univariate distribution 4 that is a &~-GMM O
with components 4; such that:
* A agrees with A'(0,1) on the first 2k-1 moments.
e Each pair of components are separated.

. * Whenever vand v’ are nearly orthogonal drv(Py,Py) >1/2. Y




APPLICATION: SQ LOWER BOUND FOR GMMS (l11)

4 Lemma: There exists a univariate distribution 4 that is a &~-GMM O
with components A4; such that:
* A agrees with N(0, 1) on the first 2k-1 moments.
e Each pair of components are separated.

_° Whenever v and v’ are nearly orthogonal drvy (P,,P,/) > 1/2. Y,

A




APPLICATION: SQ LOWER BOUND FOR GMMS (1)

High-Dimensional Distributions P, look like “parallel pancakes”:

Efficiently learnable for &=2. [Brubaker-Vempala’08]
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SUMMARY AND FUTURE DIRECTIONS

* General Technique to Prove SQ Lower Bounds
* Robustness can make high-dimensional estimation harder

computationally and information-theoretically.

Future Directions:

* Further Applications of our Framework
List-Decodable Mean Estimation [D-Kane-Stewart’18]

Discrete Product Distributions [D-Kane-Stewart’18]

Robust Regression [D-Kong-Stewart’18]
Adversarial Examples [Bubeck-Price- Razenshteyn’18]

e Alternative Evidence of Computational Hardness?

Thanks! Any Questions?



