Computational-Statistical Tradeoffs in Robust Estimation

Ilias Diakonikolas (USC)

(based on joint work with D. Kane and A. Stewart)

ROBUST HIGH-DIMENSIONAL ESTIMATION

Can we develop learning/estimation algorithms that are *robust* to a constant fraction of *corruptions* in the data?

Contamination Model:

Let $\mathcal F$ be a family of high-dimensional distributions. We say that a distribution F' is ϵ - corrupted with respect to $\mathcal F$ if there exists $F \in \mathcal F$ such that *F*

THE UNSUPERVISED LEARNING PROBLEM

- *Input*: sample generated by model with unknown θ^*
- *Goal*: estimate parameters θ so that $\theta \approx \theta^*$

Question 1: Is there an *efficient* **learning algorithm?**

Main performance criteria:

- Sample size
- Running time
- Robustness

Question 2: Are there *tradeoffs* between these **criteria?**

ROBUSTLY LEARNING A GAUSSIAN – PRIOR WORK

Basic Problem: Given an ϵ - corrupted version F' of an unknown d-dimensional unknown mean Gaussian

 $\mathcal{N}(\mu, I)$

efficiently compute a hypothesis distribution H such that

 $d_{\text{TV}}(H, \mathcal{N}(\mu, I)) \leq O(\epsilon)$.

Extensively studied in robust statistics since the 1960's. Till recently, known efficient estimators get error $\Omega(\epsilon\cdot\sqrt{d})$.

 $O(\epsilon \sqrt{\log(1/\epsilon)})$.

- Recent Algorithmic Progress:
	- $O(\epsilon \sqrt{\log(1/\epsilon)} \cdot \sqrt{\log d})$. -- **[Lai-Rao-Vempala'16]**

-- **[D-Kamath-Kane-Li-Moitra-Stewart'16]**

ROBUSTLY LEARNING A GAUSSIAN

Basic Problem: Given an ϵ - corrupted version F' of an unknown d-dimensional unknown mean Gaussian

 $\mathcal{N}(\mu, I)$

efficiently compute a hypothesis distribution H such that

 $d_{\text{TV}}(H, \mathcal{N}(\mu, I)) \leq O(\epsilon)$.

 $O(\epsilon)$ error is the information-theoretically best possible.

ROBUST LEARNING – OPEN QUESTION

Summary of Prior Work: There is a $\text{poly}(d/\epsilon)$ time algorithm for robustly learning $\mathcal{N}(\mu, I)$ within error $O(\epsilon \sqrt{\log(1/\epsilon)})$.

Open Question: Is there a $\text{poly}(d/\epsilon)$ time algorithm for robustly learning $\mathcal{N}(\mu, I)$ within error $o(\epsilon \sqrt{\log(1/\epsilon)})$? How about $O(\epsilon)$?

OUTLINE

Part I: Introduction

- Unsupervised Learning in High Dimension
- **Statistical Query (SQ) Learning Model**
- Our Results

Part II: Computational SQ Lower Bounds

- Generic SQ Lower Bound Technique
- Two Applications: Learning GMMs, Robustly Learning a Gaussian

Part III: Extensions

Part IV: Summary and Conclusions

STATISTICAL QUERIES [KEARNS' 93]

 $\frac{1}{2}$ $x_1, x_2, ..., x_m \sim D$ over X

STATISTICAL QUERIES [KEARNS' 93]

$$
\phi_1: X \to [-1, 1] \qquad |v_1 - \mathbf{E}_{x \sim D}[\phi_1(x)]| \le \tau
$$

$$
\tau \text{ is tolerance of the query; } \tau = 1/\sqrt{m}
$$

Problem $P \in \text{SQCompl}(q, m)$: If exists a SQ algorithm that solves P using q queries to $\text{STAT}_D(\tau = 1/\sqrt{m})$

POWER OF SQ ALGORITHMS (?)

Restricted Model: Hope to prove unconditional computational lower bounds.

Powerful Model: Wide range of algorithmic techniques in ML are implementable using SQs^{*}:

- PAC Learning: AC⁰, decision trees, linear separators, boosting.
- Unsupervised Learning: stochastic convex optimization, momentbased methods, k-means clustering, EM, ... [Feldman-Grigorescu-Reyzin-Vempala-Xiao/JACM'17]

Only known exception: Gaussian elimination over finite fields (e.g., learning parities).

For all problems in this talk, strongest known algorithms are SQ.

METHODOLOGY FOR SQ LOWER BOUNDS

Statistical Query Dimension:

- Fixed-distribution PAC Learning [Blum-Furst-Jackson-Kearns-Mansour-Rudich'95; …]
- General Statistical Problems [Feldman-Grigorescu-Reyzin-Vempala-Xiao'13, ..., Feldman'16]

Pairwise correlation between D_1 and D_2 with respect to D :

$$
\chi_D(D_1, D_2) := \int_{\mathbb{R}^d} D_1(x) D_2(x) / D(x) dx - 1
$$

Fact: Suffices to construct a large set of distributions that are *nearly* uncorrelated.

OUTLINE

Part I: Introduction

- Unsupervised Learning in High Dimension
- Statistical Query (SQ) Learning Model
- **Our Results**

Part II: Computational SQ Lower Bounds

- Generic SQ Lower Bound Technique
- Two Applications: Learning GMMs, Robustly Learning a Gaussian

Part III: Summary and Conclusions

STATISTICAL QUERY LOWER BOUND FOR **ROBUSTLY LEARNING A GAUSSIAN**

Theorem: Suppose $d \geq \text{polylog}(1/\epsilon)$. Any SQ algorithm that learns an ϵ - corrupted Gaussian $\mathcal{N}(\mu, I)$ within statistical distance error $O(\epsilon \sqrt{\log(1/\epsilon)/M})$

requires either:

SQ queries of accuracy $d^{-M/6}$

or

At least

$$
d^{\Omega(M^{1/2})}
$$

many SQ queries.

Take-away: Any asymptotic improvement in error guarantee over prior work requires super-polynomial time.

GENERAL LOWER BOUND CONSTRUCTION

General Technique for SQ Lower Bounds: Leads to Tight Lower Bounds for a range of High-dimensional Estimation Tasks

Concrete Applications of our Technique:

- Robustly Learning the Mean and Covariance
- Learning Gaussian Mixture Models (GMMs)
- Statistical-Computational Tradeoffs
- Robustly Testing a Gaussian

APPLICATIONS: CONCRETE SQ LOWER BOUNDS

Unified technique yielding a range of applications

GAUSSIAN MIXTURE MODEL (GMM)

• GMM: Distribution on \mathbb{R}^d with probability density function

$$
F = \sum_{i=1}^{k} w_i \mathcal{N}(\mu_i, \Sigma_i)
$$

• Extensively studied in statistics and TCS

Karl Pearson (1894)

GAUSSIAN MIXTURE MODEL (GMM)

• GMM: Distribution on \mathbb{R}^d with probability density function

$$
F = \sum_{i=1}^{k} w_i \mathcal{N}(\mu_i, \Sigma_i)
$$

• Extensively studied in statistics and TCS

Karl Pearson (1894)

LEARNING GMMS - PRIOR WORK (I)

Two Related Learning Problems

Parameter Estimation: Recover model parameters.

Separation Assumptions: Clustering-based Techniques

[Dasgupta'99, Dasgupta-Schulman'00, Arora-Kanan'01,

Vempala-Wang'02, Achlioptas-McSherry'05,
 Brubaker-Vempala'08]
 Sample Complexity:

(**Rocctering)** [Dasgupta'99, Dasgupta-Schulman'00, Arora-Kanan'01, Vempala-Wang'02, Achlioptas-McSherry'05, **Brubaker-Vempala'08**]

Sample Complexity: $\text{poly}(d, k)$ **(Best Known) Runtime**: $\text{poly}(d, k)$

• **No Separation**: Moment Method

[Kalai-Moitra-Valiant'10, Moitra-Valiant'10, Belkin-Sinha'10, Hardt-Price'15]

Sample Complexity: (Best Known) Runtime:

SEPARATION ASSUMPTIONS

- Clustering is possible only when the components have very little overlap.
- Formally, we want the total variation distance between components to be close to 1.
- Algorithms for learning spherical GMMS work under this assumption.
- stronger assumptions.

LEARNING GMMS - PRIOR WORK (II)

Density Estimation: Recover underlying distribution (within statistical distance ϵ).

[Feldman-O'Donnell-Servedio'05, Moitra-Valiant'10, Suresh-Orlitsky-Acharya-Jafarpour'14, Hardt-Price'15, Li-Schmidt'15]

Sample Complexity: $\text{poly}(d, k, 1/\epsilon)$

(Best Known) Runtime: $(d/\epsilon)^{\Omega(k)}$

Fact: For separated GMMs, density estimation and parameter estimation are equivalent.

LEARNING GMMS - OPEN QUESTION

Summary: The sample complexity of density estimation for k -GMMs is $\text{poly}(d, k)$. The sample complexity of parameter estimation for *separated k*-GMMs is $\text{poly}(d, k)$.

Question: Is there a $\text{poly}(d, k)$ time learning algorithm?

STATISTICAL QUERY LOWER BOUND FOR **LEARNING GMMS**

Theorem: Suppose that $d \geq \text{poly}(k)$. Any SQ algorithm that learns separated k -GMMs over \mathbb{R}^d to constant error requires either:

• SQ queries of accuracy

$$
d^{-k/6}
$$

or

At least

$$
2^{\Omega(d^{1/8})}\geq d^{2k}
$$

many SQ queries.

Take-away: Computational complexity of learning GMMs is inherently exponential in **number of components**.

OUTLINE

Part I: Introduction

- Unsupervised Learning in High Dimension
- Statistical Query (SQ) Learning Model
- Our Results

Part II: Computational SQ Lower Bounds

- **Generic SQ Lower Bound Technique**
- Two Applications: Learning GMMs, Robustly Learning a Gaussian

Part III: Summary and Conclusions

GENERAL RECIPE FOR (SQ) LOWER BOUNDS

Our generic technique for proving SQ Lower Bounds:

• **Step #1:** Construct distribution P_v that is standard Gaussian in all directions except v .

• **Step #2:** Construct the univariate projection in the v direction

so that it matches the first *m* moments of $\mathcal{N}(0,1)$

• **Step #3:** Consider the family of instances $\mathcal{D} = {\mathbf{P}_v}_v$

Non-Gaussian Component Analysis [Blanchard et al. 2006]

HIDDEN DIRECTION DISTRIBUTION

Definition: For a unit vector *v* and a univariate distribution with density A, consider the high-dimensional distribution

$$
\mathbf{P}_{v}(x) = A(v \cdot x) \exp(-\|x - (v \cdot x)v\|_{2}^{2}/2) / (2\pi)^{(d-1)/2}
$$

GENERIC SQ LOWER BOUND

Definition: For a unit vector *v* and a univariate distribution with density A, consider the high-dimensional distribution

$$
\mathbf{P}_{v}(x) = A(v \cdot x) \exp(-\|x - (v \cdot x)v\|_{2}^{2}/2) / (2\pi)^{(d-1)/2}
$$

Proposition: Suppose that:

- *A* matches the first *m* moments of $\mathcal{N}(0,1)$
- We have $d_{\text{TV}}(\mathbf{P}_v, \mathbf{P}_{v'}) > 2\delta$ as long as *v*, *v*' are *nearly* orthogonal.

Then any SQ algorithm that learns an unknown P_v within error δ requires either queries of accuracy d^{-m} or $2^{d^{\Omega(1)}}$ many queries.

WHY IS FINDING A HIDDEN DIRECTION HARD?

Observation: Low-Degree Moments do not help.

- *A* matches the first *m* moments of $\mathcal{N}(0,1)$
- The first *m* moments of P_v are identical to those of $\mathcal{N}(0, I)$
- Degree- $(m+1)$ moment tensor has $\Omega(d^m)$ entries.

Claim: Random projections do not help.

• To distinguish between P_v and $\mathcal{N}(0, I)$, would need exponentially many random projections.

ONE-DIMENSIONAL PROJECTIONS ARE ALMOST GAUSSIAN

Key Lemma: Let Q be the distribution of $v' \cdot X$, where $X \sim \mathbf{P}_v$. Then, we have that:

$$
\chi^2(Q, \mathcal{N}(0,1)) \le (v \cdot v')^{2(m+1)} \chi^2\left(A, \mathcal{N}(0,1)\right)
$$

PROOF OF KEY LEMMA (I)

$$
Q(x')=\int_{\mathbb{R}} A(x)G(y)dy'
$$

PROOF OF KEY LEMMA (I)

$$
Q(x') = \int_{\mathbb{R}} A(x)G(y)dy'
$$

=
$$
\int_{\mathbb{R}} A(x' \cos \theta + y' \sin \theta)G(x' \sin \theta - y' \cos \theta)dy'
$$

$$
\sim \mathbf{P}_{x}
$$

PROOF OF KEY LEMMA (II)

$$
Q(x') = \int_{\mathbb{R}} A(x' \cos \theta + y' \sin \theta) G(x' \sin \theta - y' \cos \theta) dy'
$$

= $(U_{\theta}A)(x')$

where U_{θ} is the operator over $f : \mathbb{R} \to \mathbb{R}$

EIGENFUNCTIONS OF ORNSTEIN-UHLENBECK OPERATOR

Linear Operator U_{θ} acting on functions $f : \mathbb{R} \to \mathbb{R}$

$$
U_{\theta}f(x) := \int_{y \in \mathbb{R}} f(x \cos \theta + y \sin \theta) G(x \sin \theta - y \cos \theta) dy
$$

Fact (Mehler'66): $U_{\theta}(He_iG)(x) = \cos^i(\theta)He_i(x)G(x)$

- $He_i(x)$ denotes the degree-*i* Hermite polynomial.
- Note that $\{He_i(x)G(x)/\sqrt{i!}\}_{i>0}$ are orthonormal with respect to the inner product

$$
\langle f,g\rangle=\int_{\mathbb{R}}f(x)g(x)/G(x)dx
$$

GENERIC SQ LOWER BOUND

Definition: For a unit vector *v* and a univariate distribution with density A, consider the high-dimensional distribution

$$
\mathbf{P}_{v}(x) = A(v \cdot x) \exp(-\|x - (v \cdot x)v\|_{2}^{2}/2) / (2\pi)^{(d-1)/2}
$$

Proposition: Suppose that:

- *A* matches the first *m* moments of $\mathcal{N}(0,1)$
- We have $d_{\text{TV}}(\mathbf{P}_v, \mathbf{P}_{v'}) > 2\delta$ as long as *v*, *v*' are *nearly* orthogonal.

Then any SQ algorithm that learns an unknown \mathbf{P}_v within error δ requires either queries of accuracy d^{-m} or $2^{d^{\Omega(1)}}$ many queries.

OUTLINE

Part I: Introduction

- Unsupervised Learning in High Dimension
- Statistical Query (SQ) Learning Model
- Our Results

Part II: Computational SQ Lower Bounds

- Generic SQ Lower Bound Technique
- **Application: Learning GMMs**

Part III: Summary and Conclusions

APPLICATION: SQ LOWER BOUND FOR GMMS (I)

Want to show:

Theorem: Any SQ algorithm that learns separated k -GMMs over \mathbb{R}^d to constant error requires either SQ queries of accuracy $d^{-k/6}$ or at least $2^{\Omega(d^{1/8})} > d^{2k}$ many SQ queries.

by using our generic proposition:

Proposition: Suppose that:

- *A* matches the first *m* moments of $\mathcal{N}(0,1)$
- We have $d_{\text{TV}}(\mathbf{P}_v, \mathbf{P}_{v'}) > 2\delta$ as long as *v*, *v*' are *nearly* orthogonal.

Then any SQ algorithm that learns an unknown \mathbf{P}_v within error δ requires either queries of accuracy d^{-m} or $2^{d^{\Omega(1)}}$ many queries.

APPLICATION: SQ LOWER BOUND FOR GMMS (II)

Proposition: Suppose that:

- *A* matches the first *m* moments of $\mathcal{N}(0,1)$
- We have $d_{\text{TV}}(\mathbf{P}_v, \mathbf{P}_{v'}) > 2\delta$ as long as *v*, *v*' are *nearly* orthogonal.

Then any SQ algorithm that learns an unknown ${\bf P}_v$ within error $\,\delta$ requires either queries of accuracy d^{-m} or $2^{d^{(2\lambda+1)}}$ many queries.

Lemma: There exists a univariate distribution A that is a k -GMM with components A_i such that:

- *A* agrees with $\mathcal{N}(0,1)$ on the first $2k-1$ moments.
- Each pair of components are separated.
- Whenever *v* and *v'* are nearly orthogonal $d_{\text{TV}}(\mathbf{P}_v, \mathbf{P}_{v'}) \ge 1/2$.

APPLICATION: SQ LOWER BOUND FOR GMMS (III)

Lemma: There exists a univariate distribution A that is a k -GMM with components A_i such that:

- A agrees with $\mathcal{N}(0,1)$ on the first $2k-1$ moments.
- Each pair of components are separated.
- Whenever *v* and *v'* are nearly orthogonal $d_{\text{TV}}(\mathbf{P}_v, \mathbf{P}_{v'}) \ge 1/2$.

APPLICATION: SQ LOWER BOUND FOR GMMS (III)

High-Dimensional Distributions P_v look like "parallel pancakes":

Efficiently learnable for $k=2$. [Brubaker-Vempala'08]

OUTLINE

Part I: Introduction

- Unsupervised Learning in High Dimension
- Statistical Query (SQ) Learning Model
- Our Results

Part II: Computational SQ Lower Bounds

- Generic SQ Lower Bound Technique
- Two Applications: Learning GMMs, Robustly Learning a Gaussian

Part III: Summary and Conclusions

SUMMARY AND FUTURE DIRECTIONS

- General Technique to Prove SQ Lower Bounds
- Robustness can make high-dimensional estimation harder computationally and information-theoretically.

Future Directions:

- Further Applications of our Framework List-Decodable Mean Estimation [D-Kane-Stewart'18] Discrete Product Distributions [D-Kane-Stewart'18] Robust Regression [D-Kong-Stewart'18] Adversarial Examples [Bubeck-Price- Razenshteyn'18]
- Alternative Evidence of Computational Hardness?

Thanks! Any Questions?