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Can	we	develop	learning/estimation	algorithms	that	are	
robust to	a	constant	fraction	of	corruptions in	the	data?

ROBUST	HIGH-DIMENSIONAL	ESTIMATION

Contamination	Model:
Let					be	a	family	of	high-dimensional	distributions.
We	say	that	a	distribution									is					- corrupted	with	
respect	to							if	there	exists																such	that		
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• Input:	sample	generated	by	model	with	unknown
• Goal:	estimate	parameters				so	that		

THE		UNSUPERVISED	LEARNING	PROBLEM

Question	1:	Is	there	an	efficient learning	algorithm?

Unknown 
θ* samples ✓

✓⇤

✓ ✓ ⇡ ✓⇤

Main performance criteria:
• Sample size
• Running time
• Robustness

Question	2:	Are	there	
tradeoffs between	these	
criteria?



ROBUSTLY	LEARNING	A	GAUSSIAN – PRIORWORK

Basic	Problem:	Given	an					- corrupted	version								of	an	unknown	
d-dimensional	unknown	mean	Gaussian

efficiently compute	a	hypothesis	distribution							such	that

✏

• Extensively	studied	in	robust	statistics	since	the	1960’s.	Till	
recently,	known	efficient	estimators	get	error	

• Recent	Algorithmic	Progress:	
-- [Lai-Rao-Vempala’16]

-- [D-Kamath-Kane-Li-Moitra-Stewart’16]



ROBUSTLY	LEARNING	A	GAUSSIAN

Basic	Problem:	Given	an					- corrupted	version								of	an	unknown	
d-dimensional	unknown	mean	Gaussian

efficiently compute	a	hypothesis	distribution							such	that

✏

error	is	the	information-theoretically	best	possible.



ROBUST	LEARNING	– OPEN	QUESTION

Summary	of	Prior	Work: There	is	a																			time	algorithm	for	
robustly	learning																		within	error	

Open	Question:	Is	there	a																				time	algorithm	for	robustly	
learning																		within	error																														?									
How	about										?
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STATISTICAL	QUERIES	[KEARNS’	93]

𝑥", 𝑥$, … , 𝑥& ∼ 𝐷 over	𝑋



STATISTICAL	QUERIES	[KEARNS’	93]

𝑣" − 𝐄-∼. 𝜙" 𝑥 ≤ 𝜏
𝜏 is	tolerance	of	the	query;	𝜏 = 1/ 𝑚�

𝜙7

𝑣"
𝜙$
𝑣$

𝑣7SQ	algorithm
STAT.(𝜏) oracle

	𝐷

𝜙": 𝑋 → −1,1

Problem	𝑃 ∈ SQCompl 𝑞,𝑚 :	
If	exists	a	SQ	algorithm	that	solves	𝑃 using	𝑞 queries	to	
STAT.(𝜏 = 1/ 𝑚� )



POWER	OF	SQ ALGORITHMS	(?)
Restricted	Model:	Hope	to	prove	unconditional	computational	lower	
bounds.

Powerful	Model:	Wide	range	of	algorithmic	techniques	in	ML	are	
implementable	using	SQs*:

• PAC	Learning:	AC0,	decision	trees,	linear	separators,	boosting.

• Unsupervised	Learning:	stochastic	convex	optimization,	moment-
based	methods,	k-means	clustering,	EM,	…
[Feldman-Grigorescu-Reyzin-Vempala-Xiao/JACM’17]

Only	known	exception:	Gaussian	elimination	over	finite	fields	(e.g.,	
learning	parities).

For	all	problems	in	this	talk,	strongest	known	algorithms	are	SQ.



METHODOLOGY	FOR	SQ LOWER	BOUNDS
Statistical	Query	Dimension:

• Fixed-distribution	PAC	Learning	
[Blum-Furst-Jackson-Kearns-Mansour-Rudich’95;	…]

• General	Statistical	Problems
[Feldman-Grigorescu-Reyzin-Vempala-Xiao’13,	…,	Feldman’16]

Pairwise	correlation	between	D1 and	D2 with	respect	to	D:

Fact:	Suffices	to	construct	a	large	set	of	distributions	that	are	nearly
uncorrelated.	
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STATISTICAL	QUERY	LOWER	BOUND	FOR	
ROBUSTLY	LEARNING	A	GAUSSIAN

Theorem:	Suppose																																					Any	SQ	algorithm	that	
learns		an				- corrupted	Gaussian																	within	statistical	distance	
error

requires	either:
• SQ	queries	of	accuracy	
or
• At	least	

many	SQ	queries.

Take-away: Any	asymptotic	improvement	in	error	guarantee	over	
prior	work	requires	super-polynomial	time.



GENERAL	LOWER	BOUND	CONSTRUCTION

General	Technique	for	SQ	Lower	Bounds:
Leads	to	Tight	Lower	Bounds	

for	a	range	of	High-dimensional	Estimation	Tasks

Concrete	Applications	of	our	Technique:

• Robustly	Learning	the	Mean	and	Covariance

• Learning	Gaussian	Mixture	Models	(GMMs)

• Statistical-Computational	Tradeoffs

• Robustly	Testing	a	Gaussian



APPLICATIONS:	CONCRETE	SQ LOWER	BOUNDS
Unified	technique	yielding	a	range	of	applications

Learning	Problem Upper	Bound SQ	Lower	Bound

Robust	Gaussian	Mean
Estimation

Error:

[DKKLMS’16]

Runtime	Lower	Bound:

for	factor	M improvement	in	
error.

Robust	Gaussian	
Covariance	Estimation

Error:

[DKKLMS’16]

Learning	k-GMMs	
(without	noise)

Runtime:

[MV’10,	 BS’10]

Runtime Lower	Bound:

Robust	k-Sparse	Mean	
Estimation

Sample	size:

[Li’17,	DBS’17]

If sample	size	is	
runtime	lower	bound:

Robust	Covariance
Estimation	in	Spectral	

Norm

Sample	size:	

[DKKLMS’16]

If sample	size	is	
runtime	lower	bound:



GAUSSIAN	MIXTURE	MODEL	(GMM)

• GMM:	Distribution	on								with	probability	density	function

• Extensively	studied	in	statistics	and	TCS

Karl	Pearson	(1894)



GAUSSIAN	MIXTURE	MODEL	(GMM)

• GMM:	Distribution	on								with	probability	density	function

• Extensively	studied	in	statistics	and	TCS

Karl	Pearson	(1894)



LEARNING	GMMS	- PRIOR	WORK	(I)

Two	Related	Learning	Problems
Parameter	Estimation:	Recover	model	parameters.

• Separation	Assumptions:	Clustering-based	Techniques
[Dasgupta’99,	Dasgupta-Schulman’00,	Arora-Kanan’01,	
Vempala-Wang’02,	Achlioptas-McSherry’05,	
Brubaker-Vempala’08]

Sample	Complexity:
(Best	Known)	Runtime:		

• No	Separation:	Moment	Method
[Kalai-Moitra-Valiant’10,	Moitra-Valiant’10,	
Belkin-Sinha’10,	Hardt-Price’15]

Sample	Complexity:		
(Best	Known)	Runtime:



SEPARATION	ASSUMPTIONS

• Clustering	is	possible	only	when	the	components	have	very	
little	overlap.

• Formally,	we	want	the	total	variation	distance	
between	components	to	be	close	to	1.

• Algorithms	for	learning	spherical	GMMS
work	under	this	assumption.

• For	non-spherical	GMMs,	known	algorithms	require
stronger	assumptions.



LEARNING	GMMS	- PRIOR	WORK	(II)

Density	Estimation:	Recover	underlying	distribution
(within	statistical	distance			).

[Feldman-O’Donnell-Servedio’05,	Moitra-Valiant’10,	Suresh-Orlitsky-Acharya-
Jafarpour’14,	Hardt-Price’15,	Li-Schmidt’15]

Sample	Complexity:

(Best	Known)	Runtime:		

Fact:	For	separated	GMMs,	density	estimation	and	parameter	
estimation	are	equivalent.	



LEARNING	GMMS	– OPEN	QUESTION

Summary:	The	sample	complexity	of	density	estimation	for	
k-GMMs	is																				.	The	sample	complexity	of	parameter	
estimation	for	separated k-GMMs	is																					.

Question:	Is	there	a																						time learning	algorithm?	



STATISTICAL	QUERY	LOWER	BOUND	FOR	
LEARNING	GMMS

Theorem: Suppose	that																								.	Any	SQ	algorithm	that	learns	
separated	k-GMMs	over							to	constant	error	requires	either:
• SQ	queries	of	accuracy

or
• At	least																												

many	SQ	queries.	

Take-away: Computational	complexity	of	learning	GMMs	is	
inherently	exponential	in	number	of	components.
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GENERAL	RECIPE	FOR	(SQ)	LOWER	BOUNDS

Our	generic	technique	for	proving	SQ	Lower	Bounds:	

� Step	#1:	Construct	distribution							that	is	standard	Gaussian	
in	all	directions	except			.			

� Step	#2:	Construct	the	univariate	projection	in	the				direction
so	that	it	matches	the	first	m moments	of	

� Step	#3:	Consider	the	family	of	instances	

Non-Gaussian	Component	Analysis [Blanchard	et	al.	2006]



HIDDEN	DIRECTION	DISTRIBUTION

Definition: For	a	unit	vector	v and	a	univariate	distribution	with	
density	A,	consider	the	high-dimensional	distribution	

Example:



GENERIC	SQ	LOWER	BOUND

Definition: For	a	unit	vector	v and	a	univariate	distribution	with	
density	A,	consider	the	high-dimensional	distribution	

Proposition:	Suppose	that:	
• A matches	the	first	m moments	of		
• We	have																																						as	long	as	v, v’ are	nearly

orthogonal.

Then	any	SQ	algorithm	that	learns	an	unknown	 within	error				
requires	either	queries	of	accuracy											or												many	queries.



WHY	IS	FINDING	A	HIDDEN	DIRECTION	HARD?

Observation:	Low-Degree	Moments	do	not	help.

• A matches	the	first	m moments	of
• The	first	m moments	of									are	identical	to	those	of
• Degree-(m+1) moment tensor has              entries. 

Claim:	Random	projections	do	not	help.

• To	distinguish	between							and																,	would	need	
exponentially	many	random	projections.		



ONE-DIMENSIONAL	PROJECTIONS	ARE	ALMOST	GAUSSIAN

Key	Lemma:	Let	Q be	the	distribution	of												,	where																.
Then,	we	have	that:



PROOF	OF	KEY	LEMMA	(I)



PROOF	OF	KEY	LEMMA	(I)



PROOF	OF	KEY	LEMMA	(II)

where is	the	operator	over																							

Gaussian	Noise	(Ornstein-Uhlenbeck)
Operator



EIGENFUNCTIONS OF	ORNSTEIN-UHLENBECK OPERATOR

Linear	Operator acting	on	functions

Fact	(Mehler’66):

• denotes	the	degree-i Hermite polynomial.
• Note	that																																													are	orthonormal	with	respect	

to	the	inner	product



GENERIC	SQ	LOWER	BOUND

Definition: For	a	unit	vector	v and	a	univariate	distribution	with	
density	A,	consider	the	high-dimensional	distribution	

Proposition:	Suppose	that:	
• A matches	the	first	m moments	of		
• We	have																																						as	long	as	v, v’ are	nearly

orthogonal.

Then	any	SQ	algorithm	that	learns	an	unknown	 within	error				
requires	either	queries	of	accuracy										or												many	queries.
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Theorem: Any	SQ	algorithm	that	learns	separated	k-GMMs	over							
to	constant	error	requires	either	SQ	queries	of	accuracy
or	at	least																																many	SQ	queries.	

APPLICATION:	SQ LOWER	BOUND	FOR	GMMS (I)

Want	to	show:

by	using	our	generic	proposition:

Proposition:	Suppose	that:	
• A matches	the	first	m moments	of		
• We	have																																						as	long	as	v, v’ are	nearly

orthogonal.

Then	any	SQ	algorithm	that	learns	an	unknown							within	error				
requires	either	queries	of	accuracy										or												many	queries.



APPLICATION:	SQ LOWER	BOUND	FOR	GMMS (II)

Proposition:	Suppose	that:	
• A matches	the	first	m moments	of		
• We	have																																						as	long	as	v, v’ are	nearly

orthogonal.

Then	any	SQ	algorithm	that	learns	an	unknown							within	error				
requires	either	queries	of	accuracy										or												many	queries.

Lemma:	There	exists	a	univariate	distribution	A that	is	a	k-GMM	
with	components	Ai such that:
• A agrees	with															on	the	first	2k-1 moments.
• Each	pair	of	components	are	separated.
• Whenever	v and	v’ are	nearly	orthogonal	



APPLICATION:	SQ LOWER	BOUND	FOR	GMMS (III)
Lemma:	There	exists	a	univariate	distribution	A that	is	a	k-GMM	
with	components	Ai such that:
• A agrees	with															on	the	first	2k-1 moments.
• Each	pair	of	components	are	separated.
• Whenever	v and	v’ are	nearly	orthogonal	



APPLICATION:	SQ LOWER	BOUND	FOR	GMMS (III)
High-Dimensional	Distributions							look	like	“parallel	pancakes”:		

Efficiently	learnable	for	k=2. [Brubaker-Vempala’08]



Part	I:	Introduction

� Unsupervised	Learning	in	High	Dimension
� Statistical	Query	(SQ)	Learning	Model
� Our	Results

Part	II:	Computational	SQ	Lower	Bounds

� Generic	SQ	Lower	Bound	Technique
� Two	Applications:	Learning	GMMs,	
Robustly	Learning	a	Gaussian

OUTLINE

Part	III:	Summary	and	Conclusions



SUMMARY	AND	FUTURE	DIRECTIONS

• General	Technique	to	Prove	SQ	Lower	Bounds
• Robustness	can	make	high-dimensional	estimation	harder	
computationally	and	information-theoretically.

Future	Directions:

• Further	Applications	of	our	Framework	
List-Decodable	Mean	Estimation	[D-Kane-Stewart’18]
Discrete	Product	Distributions	[D-Kane-Stewart’18]
Robust	Regression	[D-Kong-Stewart’18]	
Adversarial	Examples	[Bubeck-Price- Razenshteyn’18]

• Alternative	Evidence	of	Computational	Hardness?

Thanks!	Any	Questions?


