Robust List Decoding of Spherical Gaussians

Ilias Diakonikolas ¹ Daniel M. Kane ² Alistair Stewart ³

¹Department of Computer Science University of Southern California diakonik@usc.edu

²Departments of CS/Math University of California, San Diego dakane@ucsd.edu

³Department of Computer Science University of Southern California stewart.al@gmail.com

October 29th, 2018

DKS (UCSD/USC)

Robust List Decoding

October, 2018 1 / 52

- A 13 N - A 13

Outline

- Problem Setup
- Information Theoretic Bounds
- Basic Multifilters
- Higher Degree Tests
- Learning Mixtures

• Gaussian
$$G = N(\mu, I) \subset \mathbb{R}^n$$

DKS (UCSD/USC)

▶ ▲ ≧ ▶ ≧ ∽ ९ (~
October, 2018 3 / 52

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- Given m independent samples x_i from G

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- Given m independent samples x_i from G
- \bullet Learn approximation to μ

• Classic statistics problem

• Classic statistics problem

• Use
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Classic statistics problem
- Use $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Error $O(\sqrt{n/m}) \to 0$

► < Ξ ►</p>

• Gaussian
$$G = N(\mu, I) \subset \mathbb{R}^n$$

DKS (UCSD/USC)

▶ ▲ ≧ ▶ ≧ ∽ ९ (~
October, 2018 5 / 52

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = (1 \epsilon)G + \epsilon E$ for small ϵ

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = (1 \epsilon)G + \epsilon E$ for small ϵ
- Given m independent samples x_i of X

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = (1 \epsilon)G + \epsilon E$ for small ϵ
- Given m independent samples x_i of X
- Learn Approximation to μ

 [Tukey] gave exponential time algorithm to attain O(ε) error (information theoretically optimal).

A E A

- [Tukey] gave exponential time algorithm to attain O(ε) error (information theoretically optimal).
- Various polynomial time algorithms giving error $O(\epsilon \sqrt{n})$.

- [Tukey] gave exponential time algorithm to attain $O(\epsilon)$ error (information theoretically optimal).
- Various polynomial time algorithms giving error $O(\epsilon \sqrt{n})$.
- [D-Kamath-K-Li-Moitra-S '16] gave polynomial time algorithm with $O(\epsilon \sqrt{\log(1/\epsilon)})$ error (against stronger error model).

- [Tukey] gave exponential time algorithm to attain $O(\epsilon)$ error (information theoretically optimal).
- Various polynomial time algorithms giving error $O(\epsilon \sqrt{n})$.
- [D-Kamath-K-Li-Moitra-S '16] gave polynomial time algorithm with $O(\epsilon \sqrt{\log(1/\epsilon)})$ error (against stronger error model).
- [D-Kamath-K-Li-Moitra-S '18] gave polynomial time algorithm for $O(\epsilon)$ error

- [Tukey] gave exponential time algorithm to attain $O(\epsilon)$ error (information theoretically optimal).
- Various polynomial time algorithms giving error $O(\epsilon \sqrt{n})$.
- [D-Kamath-K-Li-Moitra-S '16] gave polynomial time algorithm with $O(\epsilon \sqrt{\log(1/\epsilon)})$ error (against stronger error model).
- [D-Kamath-K-Li-Moitra-S '18] gave polynomial time algorithm for $O(\epsilon)$ error
- Substantial recent work on similar robust statistics problems

• Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$

DKS (UCSD/USC)

 Image: Image:

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = \alpha G + (1 \alpha)E$ for small α

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = \alpha G + (1 \alpha)E$ for small α
- Given m independent samples x_i of X

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = \alpha G + (1 \alpha)E$ for small α
- Given m independent samples x_i of X
- Learn Approximation to μ

Problem

What if $X = \sum_{i} \alpha_i G_i$? Which is the "real" G?

DKS (UCSD/USC)

Robust List Decoding

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problem

What if $X = \sum_{i} \alpha_i G_i$? Which is the "real" G?

List decoding: return several hypotheses h_i with guarantee that at least one is close.

DKS (UCSD/USC)

Robust List Decoding

► < ∃ ►</p>

Robust List Decoding

- [Steinhardt-Charikar-Valiant '17] first to study problem
 - Polynomial time (convex programming)
 - $O(1/\alpha)$ hypotheses
 - $\tilde{O}(\alpha^{-1/2})$ error

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Information Theoretic Bounds

Before we begin, we should determine what errors are information-theoretically possible.

DKS (UCSD/USC)

October, 2018 11 / 52

- Suppose X = N(0, I).
- Any $\alpha N(\mu, I)$ with $|\mu| \leq \sqrt{\log(1/\alpha)}/C$ nearly hides under X (up to $\alpha^{\Omega(C)}$ error).

- Suppose X = N(0, I).
- Any $\alpha N(\mu, I)$ with $|\mu| \leq \sqrt{\log(1/\alpha)}/C$ nearly hides under X (up to $\alpha^{\Omega(C)}$ error).
- Adding a bit to X, can hide $\alpha^{-\Omega(C)}$ such Gaussians.

Proposition

There is no algorithm that returns $poly(1/\alpha)$ many hypothesis so that with at least 2/3 probability, at least one is within $o(\sqrt{\log(1/\alpha)})$ of the true mean.

- Let X be the slightly modified Gaussian.
- There are $\alpha^{-\Omega(C)}$ possibilities, no two within $\sqrt{\log(1/\alpha)}/C$.
- Algorithm cannot tell which possibility is correct, and must return a hypothesis for each.

Upper Bounds

Proposition

There is an (inefficient) algorithm that returns $O(1/\alpha)$ hypotheses so that with at least 2/3 probability, at least one of the hypotheses is within $O(\sqrt{\log(1/\alpha)})$ of the true mean.

/□ ▶ 《 ⋽ ▶ 《 ⋽

Hypotheses

Let *H* be the set of points *x* for which there is a set S_x of samples so that:

- S_x is large: it contains at least an $\alpha/2$ -fraction of the samples.
- S_x is concentrated about x: in any direction, at most a α/10-fraction of the points S_x are further than 2√log(1/α) from x in that direction.

Hypotheses

Let *H* be the set of points *x* for which there is a set S_x of samples so that:

- S_x is large: it contains at least an $\alpha/2$ -fraction of the samples.
- S_x is concentrated about x: in any direction, at most a α/10-fraction of the points S_x are further than 2√log(1/α) from x in that direction.

Note that with high probability $\mu \in H$ with S_{μ} = the good samples.

Hypotheses

Let *H* be the set of points *x* for which there is a set S_x of samples so that:

- S_x is large: it contains at least an $\alpha/2$ -fraction of the samples.
- S_x is concentrated about x: in any direction, at most a $\alpha/10$ -fraction of the points S_x are further than $2\sqrt{\log(1/\alpha)}$ from x in that direction.

Note that with high probability $\mu \in H$ with S_{μ} = the good samples.

Problem: Too many hypotheses.

Idea

Cover H with a small number of balls.

Lemma

There is no set of $5/\alpha$ elements of H that are pairwise separated by at least $4\sqrt{\log(1/\alpha)}$.

3

□ ▶ ▲ □ ▶ ▲ □

Idea

Cover H with a small number of balls.

Lemma

There is no set of $5/\alpha$ elements of H that are pairwise separated by at least $4\sqrt{\log(1/\alpha)}$.

Take a maximal set of $4\sqrt{\log(1/\alpha)}$ -separated hypotheses.

- Size at most $5/\alpha$.
- Every element of H (including μ) within $4\sqrt{\log(1/\alpha)}$ of one.

Overlaps

Idea: If x and y far away, then S_x and S_y have little overlap. If many separated x's, then too many points.

3

(日) (同) (三) (三)

Overlaps

Idea: If x and y far away, then S_x and S_y have little overlap. If many separated x's, then too many points.

Lemma

If $x, y \in H$ with $|x - y| \ge 4\sqrt{\log(1/\epsilon)}$, then $|S_x \cap S_y| \le \alpha/10(|S_x| + |S_y|)$.

Overlaps

Idea: If x and y far away, then S_x and S_y have little overlap. If many separated x's, then too many points.

Lemma

If $x, y \in H$ with $|x - y| \ge 4\sqrt{\log(1/\epsilon)}$, then $|S_x \cap S_y| \le \alpha/10(|S_x| + |S_y|)$.

Proof.

DKS (UCSD/USC)

- Project onto the line between x and y.
- At most $\alpha |S_x|/10$ items from S_x closer to y than x.
- At most $\alpha |S_y|/10$ items from S_y closer to x than y.

16 / 52

Counting

If $x_1, x_2, \ldots, x_m \in H$ pairwise far, then

$$\begin{aligned} |S_{x_1} \cup S_{x_2} \cup \ldots \cup S_{x_m}| &\geq \sum_{i=1}^m |S_{x_i}| - \sum_{1 \leq i < j \leq m} \alpha/10(|S_{x_i}| + |S_{x_j}|) \\ &= \sum_{i=1}^m |S_{x_i}|(1 - m\alpha/10) \\ &\geq m\alpha/2|S|(1 - m\alpha/10). \end{aligned}$$

DKS (UCSD/USC)

- ∢ ≣ →

э

Counting

If $x_1, x_2, \ldots, x_m \in H$ pairwise far, then

$$\begin{aligned} |S_{x_1} \cup S_{x_2} \cup \ldots \cup S_{x_m}| &\geq \sum_{i=1}^m |S_{x_i}| - \sum_{1 \leq i < j \leq m} \alpha/10(|S_{x_i}| + |S_{x_j}|) \\ &= \sum_{i=1}^m |S_{x_i}|(1 - m\alpha/10) \\ &\geq m\alpha/2|S|(1 - m\alpha/10). \end{aligned}$$

If $m = 5/\alpha$, this is more than the total number of samples.

• If the good samples have all but $\alpha/10$ -fraction within t of the mean in any direction, can get $O(1/\alpha)$ hypotheses with error O(t).

Notes

- If the good samples have all but $\alpha/10$ -fraction within t of the mean in any direction, can get $O(1/\alpha)$ hypotheses with error O(t).
- Given a set H of hypotheses at least one within r of true mean, can in poly-time reduce to a set of O(1/α) with error O(r + √log(1/α)).

Notes

- If the good samples have all but $\alpha/10$ -fraction within t of the mean in any direction, can get $O(1/\alpha)$ hypotheses with error O(t).
- Given a set H of hypotheses at least one within r of true mean, can in poly-time reduce to a set of O(1/α) with error O(r + √log(1/α)).
 - ► Use LP to determine if there is a set S_x with concentration about x in the directions x y.
 - Cover remaining x's with balls.

Summary

- [Steinhardt-Charikar-Valiant '17] gives an algorithm that attains $\tilde{O}(\alpha^{-1/2})$ error.
- Information-theoretically can achieve $O(\sqrt{\log(1/\alpha)})$ error.

Summary

- [Steinhardt-Charikar-Valiant '17] gives an algorithm that attains $\tilde{O}(\alpha^{-1/2})$ error.
- Information-theoretically can achieve $O(\sqrt{\log(1/\alpha)})$ error.

Question: What is achievable efficiently?

Algorithms

- Filters and Multifilters
- Obstacle at $\alpha^{-1/2}$.
- Higher Degree Idea
- Variance Control

Sample Mean

• For non-robust algorithm use sample mean $\hat{\mu}$.

DKS (UCSD/USC)

October, 2018 21 / 52

Sample Mean

- For non-robust algorithm use sample mean $\hat{\mu}$.
- For moderately-robust problem would like to use $\hat{\mu}$.

DKS (UCSD/USC)

Sample Mean

- For non-robust algorithm use sample mean $\hat{\mu}$.
- For moderately-robust problem would like to use $\hat{\mu}$.
- **Problem:** A few bad samples can seriously change the sample mean.

DKS (UCSD/USC)

Identifying Errors

Want to certify $\mu_X \approx \mu$.

3

(日) (同) (三) (三)

Identifying Errors

Want to certify $\mu_X \approx \mu$.

• Otherwise, some unit vector v so that $v \cdot (\mu_X - \mu)$ is large.

3

(日) (周) (三) (三)

Identifying Errors

Want to certify $\mu_X \approx \mu$.

- Otherwise, some unit vector v so that $v \cdot (\mu_X \mu)$ is large.
- Requires $Var(v \cdot X)$ is large.
- Can detect this.

E Sac

(日) (周) (三) (三)

Filters

If $Var(v \cdot X)$ large, must be some outliers for $v \cdot X$.

DKS (UCSD/USC)

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Filters

If $Var(v \cdot X)$ large, must be some outliers for $v \cdot X$. Can create a filter that throws away mostly bad samples.

DKS (UCSD/USC)

▶ **4 3** ►

Moderately Robust Algorithm

- 2 Compute empirical covariance matrix $\hat{\Sigma}$
- If largest eigenvalue is small
 - Return sample mean μ_S
- 4 Else
 - Create filter
 - Apply to S
 - Go to step 2.

Moderately Robust Algorithm

- Take set S of samples
- 2 Compute empirical covariance matrix $\hat{\Sigma}$
- If largest eigenvalue is small
 - Return sample mean μ_S
- 4 Else
 - Create filter
 - Apply to S
 - Go to step 2.

Each iteration either returns an answer or produces a cleaner sample.

Multifilters

If $\alpha < 1/2,$ might not be able to tell where the real samples are.

DKS (UCSD/USC)

Multifilters

If $\alpha < 1/2,$ might not be able to tell where the real samples are.

Split into several overlapping sets of samples S_i

Multifilters

If $\alpha < 1/2\text{, might not be able to tell where the real samples are.$

Split into several overlapping sets of samples S_i so that:

- At least one S_i has higher fraction of good samples than S
- $\sum |S_i|^2 \leq |S|^2$

Split into cases

- Case 1: Almost all of the samples are in the same small interval.
- Case 2: There are clusters of samples far apart from each other.

Filter Case

Suppose that there is an interval I containing all but an $\alpha/3\mbox{-}{\rm fraction}$ of samples.

Suppose that there is an interval I containing all but an $\alpha/3\mbox{-}{\rm fraction}$ of samples.

• With high probability, true mean in *I*.

Suppose that there is an interval I containing all but an $\alpha/3\mbox{-}{\rm fraction}$ of samples.

- With high probability, true mean in *I*.
- All but a tiny fraction of good samples within $O(\sqrt{\log(1/\alpha)})$ of *I*.

Suppose that there is an interval I containing all but an $\alpha/3\mbox{-}{\rm fraction}$ of samples.

- With high probability, true mean in *I*.
- All but a tiny fraction of good samples within $O(\sqrt{\log(1/\alpha)})$ of *I*.
- Unless variance is $O(|I|^2 + \log(1/\alpha))$, so that at most an α^2 -fraction of removed samples were good.

Suppose that there is an interval I with at least an α /6-fraction of samples on either side of it.

- ∢ ∃ ▶

Suppose that there is an interval I with at least an α /6-fraction of samples on either side of it.

• Find some x, let $S_1 = \{ \text{samples} \le x + 10\sqrt{\log(1/\alpha)} \},$ $S_2 = \{ \text{samples} \ge x - 10\sqrt{\log(1/\alpha)} \}.$

Suppose that there is an interval I with at least an $\alpha/6$ -fraction of samples on either side of it.

- Find some x, let $S_1 = \{ \text{samples} \le x + 10\sqrt{\log(1/\alpha)} \}, S_2 = \{ \text{samples} \ge x 10\sqrt{\log(1/\alpha)} \}.$
- \bullet All but an $\alpha^2\mbox{-}{\rm fraction}$ of removed samples (on the correct side) are bad:
 - If $\mu \ge x$, all but α^3 -fraction of good samples in S_2 .
 - If $\mu \leq x$, all but α^3 -fraction in S_1 .
 - Always throw away at least $\alpha/6$ samples.

Suppose that there is an interval I with at least an $\alpha/6$ -fraction of samples on either side of it.

- Find some x, let $S_1 = \{ \text{samples} \le x + 10\sqrt{\log(1/\alpha)} \}, S_2 = \{ \text{samples} \ge x 10\sqrt{\log(1/\alpha)} \}.$
- \bullet All but an $\alpha^2\mbox{-}{\rm fraction}$ of removed samples (on the correct side) are bad:
 - If $\mu \ge x$, all but α^3 -fraction of good samples in S_2 .
 - If $\mu \leq x$, all but α^3 -fraction in S_1 .
 - Always throw away at least $\alpha/6$ samples.
- Need: $|S_1|^2 + |S_2|^2 \le |S|^2$.

• Let f(x) be the fraction of samples less than x.

-

3

- Let f(x) be the fraction of samples less than x.
- Need $x \in I$ so that $(1 f(x))^2 + f(x + 20\sqrt{\log(1/\alpha)})^2 \le 1$.

→ ★ Ξ:

- Let f(x) be the fraction of samples less than x.
- Need $x \in I$ so that $(1 f(x))^2 + f(x + 20\sqrt{\log(1/\alpha)})^2 \le 1$.
- Happens unless $f(x + 20\sqrt{\log(1/\alpha)}) \gg f(x)^{1/2}$.

- Let f(x) be the fraction of samples less than x.
- Need $x \in I$ so that $(1 f(x))^2 + f(x + 20\sqrt{\log(1/\alpha)})^2 \le 1$.
- Happens unless $f(x + 20\sqrt{\log(1/\alpha)}) \gg f(x)^{1/2}$.
- Good unless $f(x + 20t\sqrt{\log(1/\alpha)}) \gg \alpha^{1/2^t}$, only works for $t \ll \log \log(1/\alpha)$.

- Let f(x) be the fraction of samples less than x.
- Need $x \in I$ so that $(1 f(x))^2 + f(x + 20\sqrt{\log(1/\alpha)})^2 \le 1$.
- Happens unless $f(x + 20\sqrt{\log(1/\alpha)}) \gg f(x)^{1/2}$.
- Good unless $f(x + 20t\sqrt{\log(1/\alpha)}) \gg \alpha^{1/2^t}$, only works for $t \ll \log \log(1/\alpha)$.

Can find such sets unless $|I| = O(\sqrt{\log(1/\alpha)} \log \log(1/\alpha))$.

General Situation

Can create a filter or multifilter if either:

- No interval I of length $O(\sqrt{\log(1/\alpha)} \log \log(1/\alpha))$ contains all but an $\alpha/3$ -fraction of samples.
- An interval I of length $O(\sqrt{\log(1/\alpha)} \log \log(1/\alpha))$ contains all but an $\alpha/3$ -fraction of samples, and the variance is $\Omega(|I|^2)$.

General Situation

Can create a filter or multifilter if either:

- No interval I of length $O(\sqrt{\log(1/\alpha)} \log \log(1/\alpha))$ contains all but an $\alpha/3$ -fraction of samples.
- An interval I of length $O(\sqrt{\log(1/\alpha)} \log \log(1/\alpha))$ contains all but an $\alpha/3$ -fraction of samples, and the variance is $\Omega(|I|^2)$.

Proposition

If the variance in some direction is more than a sufficient multiple of $\log(1/\alpha)$ (with a slight refinement of the argument) then we can find at most two sets of samples S_i so that

- For some *i*, at most an α^2 -fraction of $S \setminus S_i$ is good samples.
- ② $\sum_{i} |S_i|^2 ≤ |S|^2$.

Basic Multifilter Algorithm

- Maintain several sets S_i of samples
- **2** For each *i*, compute empirical covariance matrix $\hat{\Sigma}_i$
- If some $\hat{\Sigma}_i$ has a large eigenvalue
 - Create multifilter
 - Apply to S_i
 - Replace S_i by resulting sets in list
 - ► Go to step 2.
- Return list of all μ_{S_i}

At each step:

- At least one S_i has an α-fraction of good samples (in fact at least half of the total good samples)
- $\sum |S_i|^2 \leq |S|^2$

3

At each step:

- At least one S_i has an α-fraction of good samples (in fact at least half of the total good samples)
- $\sum |S_i|^2 \leq |S|^2$

When return if:

- S_i has α -fraction of good samples AND
- $\hat{\Sigma}_i$ has no large eigenvalues

At each step:

- At least one S_i has an α-fraction of good samples (in fact at least half of the total good samples)
- $\sum |S_i|^2 \leq |S|^2$

When return if:

- S_i has α -fraction of good samples AND
- $\hat{\Sigma}_i$ has no large eigenvalues

Then for all |v| = 1,

$$\log(1/\alpha) \gg \operatorname{Var}(\mathbf{v} \cdot \mathbf{S}_i) \ge \alpha [\mathbf{v} \cdot (\mu_{\mathbf{S}_i} - \mu)]^2,$$

SO

$$|\mu_{\mathcal{S}_i} - \mu| = O(\alpha^{-1/2}\sqrt{\log(1/\alpha)}).$$

Obstacle at $\alpha^{-1/2}$

Unfortunately, the error *can* be as much as $\alpha^{-1/2}$.

DKS (UCSD/USC)

3

Bounds on the second moments are not enough to ensure concentration.

3

• • • • • • • • • • • •

Bounds on the second moments are not enough to ensure concentration. **Fix:** use higher moments.

→ < Ξ > <</p>

If for all unit vectors v,

$$\mathbb{E}[|\mathbf{v}\cdot(\mathbf{X}-\mu_{\mathbf{X}})|^{2d}]=O(1),$$

then

$$1 \gg \alpha |\mathbf{v} \cdot (\boldsymbol{\mu} - \boldsymbol{\mu}_{\mathbf{X}})|^{2d},$$

SO

$$|\mu - \mu_X| = O(\alpha^{-1/2d}).$$

DKS (UCSD/USC)

∃ →

・ロト ・回ト ・ヨト

æ

Computational Difficulty

It is computationally intractable to determine whether or not there is a unit vector v for which $\mathbb{E}[(v \cdot X)^{2d}]$ is large when d > 1.

Computational Difficulty

It is computationally intractable to determine whether or not there is a unit vector v for which $\mathbb{E}[(v \cdot X)^{2d}]$ is large when d > 1. **Idea:** Look at a relaxation of this problem.

• [Hopkins-Li,Kothari-Steinhardt,Kothari-Steurer]: Look for SoS proof that $\mathbb{E}[(v \cdot X)^{2d}] \ll |v|_2^{2d}$ for all v.

Computational Difficulty

It is computationally intractable to determine whether or not there is a unit vector v for which $\mathbb{E}[(v \cdot X)^{2d}]$ is large when d > 1. Idea: Look at a relaxation of this problem.

- [Hopkins-Li,Kothari-Steinhardt,Kothari-Steurer]: Look for SoS proof that $\mathbb{E}[(v \cdot X)^{2d}] \ll |v|_2^{2d}$ for all v.
- This talk: See if there is any degree-d polynomial p with $\mathbb{E}[p(X)^2]$ too big.

Determine whether or not there is a degree-*d* polynomial *p* with $\mathbb{E}[p(S)^2]$ substantially larger than $\mathbb{E}[p(G_{\mu_S})^2]$.

Determine whether or not there is a degree-*d* polynomial *p* with $\mathbb{E}[p(S)^2]$ substantially larger than $\mathbb{E}[p(G_{\mu_S})^2]$.

- Eigenvalue computation.
- If not, implies $|\mu \mu_{\mathcal{S}}| = \tilde{O}(\alpha^{-1/2d}).$
- If yes, create a (multi-)filter.

If Var(p(X)) is too large, create a (multi-)filter based on the values of p.

A⊒ ▶ < ∃

If Var(p(X)) is too large, create a (multi-)filter based on the values of p.

- Compute values of p(x) for $x \in S$.
- Fairly spread out.
- Values of p(G) are clustered.
- Use same multifilter ideas as before.

If Var(p(X)) is too large, create a (multi-)filter based on the values of p.

- Compute values of p(x) for $x \in S$.
- Fairly spread out.
- Values of p(G) are clustered.
- Use same multifilter ideas as before.

Problem: Var(p(G)) might also be large!

If Var(p(X)) is too large, create a (multi-)filter based on the values of p.

- Compute values of p(x) for $x \in S$.
- Fairly spread out.
- Values of p(G) are clustered.
- Use same multifilter ideas as before.

Problem: Var(p(G)) might also be large!

- Unlike degree-1 polynomials, for degree-d, Var(p(G)) depends on μ .
- Want a way to verify that Var(p(G)) is small.

The Strategy

Given a p with $\mathbb{E}[p(S)^2] \gg \mathbb{E}[p(G_{\mu_S})^2]$ try to either:

- Verify that $\mathbb{E}[p(G)^2] \approx \mathbb{E}[p(G_{\mu_S})^2]$
 - Can then filter out points with $p(x)^2$ too large.

The Strategy

Given a p with $\mathbb{E}[p(S)^2] \gg \mathbb{E}[p(G_{\mu_S})^2]$ try to either:

- Verify that $\mathbb{E}[p(G)^2] \approx \mathbb{E}[p(G_{\mu_S})^2]$
 - Can then filter out points with $p(x)^2$ too large.
- OR produce a (multi-)filter in failing to verify this.

Bounding $\mathbb{E}[p(G)^2]$

For any degree-d polynomial p, E[p(G)²] = q(μ) for some degree-2d polynomial q.

3

Image: A match a ma

Bounding $\mathbb{E}[p(G)^2]$

- For any degree-d polynomial p, E[p(G)²] = q(μ) for some degree-2d polynomial q.
- This in turn equals $\mathbb{E}[r(G_1, G_2, \dots, G_{2d})]$ for some multilinear r with $|r| \approx |p|$ and G_i i.i.d. copies of G.

Bounding $\mathbb{E}[p(G)^2]$

- For any degree-d polynomial p, E[p(G)²] = q(μ) for some degree-2d polynomial q.
- This in turn equals $\mathbb{E}[r(G_1, G_2, \dots, G_{2d})]$ for some multilinear r with $|r| \approx |p|$ and G_i i.i.d. copies of G.

Point: If $\mathbb{E}[p(G)^2]$ is too big, then $r(x_1, x_2, ..., x_{2d})$ $(x_i \in S)$, has an α^{2d} chance of being large.

Large Values

Suppose that $r(x_1, x_2, ..., x_{2d})$ is much larger than expected.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Large Values

Suppose that $r(x_1, x_2, ..., x_{2d})$ is much larger than expected.

- Assign x_i's one at a time.
- At some stage the size of the polynomial must jump.
- In particular,

$$\mathbb{E}[|r(x_1, x_2, \dots, x_{i+1}, G'_{i+2}, \dots, G'_{2d})|^2] \\ \gg \mathbb{E}[|r(x_1, x_2, \dots, x_i, G'_{i+1}, \dots, G'_{2d})|^2]$$

where G'_j are i.i.d. copies of G_{μ_S} .

Quadratic

Note that

$$s(y) = \mathbb{E}[|r(x_1, x_2, \dots, x_i, y, G'_{i+2}, \dots, G'_{2d})|^2]$$

is a quadratic polynomial in y with $s(x_{i+1}) \gg \mathbb{E}[s(G_{\mu_S})]$.

3

Quadratic

Note that

$$s(y) = \mathbb{E}[|r(x_1, x_2, \dots, x_i, y, G'_{i+2}, \dots, G'_{2d})|^2]$$

is a quadratic polynomial in y with $s(x_{i+1}) \gg \mathbb{E}[s(G_{\mu_S})]$.

• Can diagonalize s as

$$s(y) = \sum L_j(y)^2$$

for linear polynomials L_j .

Quadratic

Note that

$$s(y) = \mathbb{E}[|r(x_1, x_2, \dots, x_i, y, G'_{i+2}, \dots, G'_{2d})|^2]$$

is a quadratic polynomial in y with $s(x_{i+1}) \gg \mathbb{E}[s(G_{\mu_S})]$.

• Can diagonalize s as

$$s(y) = \sum L_j(y)^2$$

for linear polynomials L_j .

• So there must be some j for which $L_j(x_{i+1})$ is much larger than expected. This will let us create a (multi-)filter.

Algorithm

- Try to find polynomial p with $\mathbb{E}[p(S)^2] \gg \log^{4d}(1/\alpha)\mathbb{E}[p(G_{\mu_S})^2]$.
 - If none exist, return μ_S.
- **2** Compute corresponding multilinear *r*. See if $|r(x_1, \ldots, x_{2d})|^2 \gg \log^{2d}(1/\alpha)\mathbb{E}[p(G_{\mu_S})^2]$ with probability at least α^{2d} .
 - If not, 𝔼[p(G)²] is small, filter out x with p(x)² more than average, and return to step 1.
- Find $x_1, x_2, ..., x_i$ so that with α probability over $y \in S$, $|r(x_1, ..., x_i, y)|^2 \gg \log(1/\alpha)|r(x_1, ..., x_i)|^2$.
- Compute the corresponding quadratic $s(y) = \sum L_j(y)^2$.
- Find an j so that L_j(y) is likely larger than expected. Use to create a (multi-)filter. Apply and return to step 1.

Requirements

Samples:

- S needs to be representative of G with respect to polynomials of degree 2d.
- $|S| = \operatorname{poly}(n^d/\alpha).$

Requirements

Samples:

- S needs to be representative of G with respect to polynomials of degree 2d.
- $|S| = \operatorname{poly}(n^d/\alpha).$

Runtime:

- Need to check for events with probability $\alpha^{2d}.$
- Runtime is $poly(|S|/\alpha^d)$.

Final Results

Theorem

There exists an algorithm that given $O(d^{2d})n^{O(d)}/poly(\alpha)$ i.i.d. samples from X, there is an $(nd/\alpha)^{O(d)}$ time algorithm which with high probability returns a list of $O(1/\alpha)$ hypotheses so that at least one hypothesis is within $\tilde{O}_d(\alpha^{-1/2d})$ of μ .

Final Results

Theorem

There exists an algorithm that given $O(d^{2d})n^{O(d)}/poly(\alpha)$ i.i.d. samples from X, there is an $(nd/\alpha)^{O(d)}$ time algorithm which with high probability returns a list of $O(1/\alpha)$ hypotheses so that at least one hypothesis is within $\tilde{O}_d(\alpha^{-1/2d})$ of μ .

Note: in quasi-polynomial time/samples can achieve polylog error. We think we can improve to $O(\sqrt{\log(1/\alpha)})$.

SQ Lower Bounds

In fact, this list decoding result is qualitatively tight for SQ algorithms (though note that our algorithm is not *quite* SQ).

Theorem

Any SQ list decoding algorithm that with 2/3 probability returns a list of hypotheses at least one of which is closer than $\alpha^{-1/d}$ from the mean must do one of the following:

- Return exponentially many hypotheses.
- Perform exponentially many queries.
- Perform queries with accuracy $n^{-\Omega(d)}$.

Learning Mixtures of Spherical Gaussians

Application: Let $X = 1/k \sum_{i=1}^{k} G_i$ with each $G_i \sim N(\mu_i, I)$.

3

Image: A matrix and A matrix

Learning Mixtures of Spherical Gaussians

Application: Let $X = 1/k \sum_{i=1}^{k} G_i$ with each $G_i \sim N(\mu_i, I)$. Want to learn the μ_i .

DKS (UCSD/USC)

• [Regev-Vijjayraghavan '17] show information-theoretically impossible to learn the means unless have separation $\Omega(\sqrt{\log(k)})$.

3

History

- [Regev-Vijjayraghavan '17] show information-theoretically impossible to learn the means unless have separation $\Omega(\sqrt{\log(k)})$.
- [Regev-Vijjayraghavan '17] show how to improve a rough approximation to μ_i to a precise one.

History

- [Regev-Vijjayraghavan '17] show information-theoretically impossible to learn the means unless have separation $\Omega(\sqrt{\log(k)})$.
- [Regev-Vijjayraghavan '17] show how to improve a rough approximation to μ_i to a precise one.
- [Vempala-Wang '02] Give algorithm with separation $\Omega(k^{1/4})$.

History

- [Regev-Vijjayraghavan '17] show information-theoretically impossible to learn the means unless have separation $\Omega(\sqrt{\log(k)})$.
- [Regev-Vijjayraghavan '17] show how to improve a rough approximation to μ_i to a precise one.
- [Vempala-Wang '02] Give algorithm with separation $\Omega(k^{1/4})$.

Question: How much separation is actually needed?

List Decoding

Run list decoding algorithm. Since X is a noisy version of *each* G_i , our list contains approximations to all means with error D.

DKS (UCSD/USC)

DKS (UCSD/USC)

October, 2018 50 / 52

3

イロト イヨト イヨト イヨト

Round samples to nearest hypothesis. With high probability samples round to one of hypotheses within O(D) of the mean.

DKS (UCSD/USC)

October, 2018 50 / 52

Round samples to nearest hypothesis. With high probability samples round to one of hypotheses within O(D) of the mean. Cluster used hypotheses.

DKS (UCSD/USC)

October, 2018 50 / 52

Round samples to nearest hypothesis. With high probability samples round to one of hypotheses within O(D) of the mean.

Cluster used hypotheses.

Recover original Gaussians to estimate means.

DKS (UCSD/USC)

Results

Theorem

If the means have separation $\Omega(k^{1/2d})$, there is an algorithm that takes $poly(n, (dk)^d)$ samples, runs in sample polynomial time and returns accurate approximations to the μ_i .

Results

Theorem

If the means have separation $\Omega(k^{1/2d})$, there is an algorithm that takes $poly(n, (dk)^d)$ samples, runs in sample polynomial time and returns accurate approximations to the μ_i .

Can be improved to polylogarithmic separation in quasi-polynomial time/samples. We think we can improve this to $O(\sqrt{\log(k)})$ separation.

Results

Theorem

If the means have separation $\Omega(k^{1/2d})$, there is an algorithm that takes $poly(n, (dk)^d)$ samples, runs in sample polynomial time and returns accurate approximations to the μ_i .

Can be improved to polylogarithmic separation in quasi-polynomial time/samples. We think we can improve this to $O(\sqrt{\log(k)})$ separation. Can be generalized to unequal mixtures or to Gaussians with different radii (though still spherical).

Conclusion

Have a robust list decoding algorithm with much better error. Can use to learn mixtures of spherical Gaussians with k^{δ} separation.

Conclusion

Have a robust list decoding algorithm with much better error. Can use to learn mixtures of spherical Gaussians with k^{δ} separation. Open problems:

- I How much can the Gaussian assumption be relaxed?
- ② Can you do better for learning mixtures than for list decoding?
- S Are there better algorithms for density estimation?

- Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart, *Robust Estimators in High Dimensions,* without the Computational Intractability, Foundations Of Computer Science, (FOCS) 2016.
- Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart *Robustly Learning a Gaussian: Getting Optimal Error Efficiently*, Symposium On Discrete Algorithms (SODA) 2018.
- Jacob Steinhardt, Moses Charikar, Gregory Valiant *Learning from Untrusted Data* STOC, 2017.
- O. Regev, A. Vijjayraghavan *On learning mixtures of well-separated gaussians* Proceedings of FOCS, 2017.
- J.W. Tukey, *Mathematics and picturing of data* Proceedings of ICM, volume 6, pp. 523-531, 1975.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

S. Vempala, G. Wang *A spectral algorithm for learning mixtures of distributions*, Proceedings of the 43rd Annual Symposium on Foundations of Computer Science, pp. 113–122, 2002.