Robust List Decoding of Spherical Gaussians

Ilias Diakonikolas 1 Daniel M. Kane 2 Alistair Stewart 3

¹Department of Computer Science University of Southern California diakonik@usc.edu

²Departments of CS/Math University of California, San Diego dakane@ucsd.edu

³Department of Computer Science University of Southern California stewart.al@gmail.com

October 29th, 2018

4 日下

Outline

- **•** Problem Setup
- **Information Theoretic Bounds**
- **•** Basic Multifilters
- **Higher Degree Tests**
- **•** Learning Mixtures

 \leftarrow \Box

• Gaussian
$$
G = N(\mu, I) \subset \mathbb{R}^n
$$

画 DKS (UCSD/USC) [Robust List Decoding](#page-0-0) DKS (UCSD/USC) 8 / 52

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- Given m independent samples x_i from G

4 0 8

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- Given m independent samples x_i from G
- \bullet Learn approximation to μ

 \leftarrow

Classic statistics problem

← ロ ▶ → 伊

→ < 3 \sim \mathcal{A}

Classic statistics problem

• Use
$$
\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i
$$

← ロ ▶ → 伊

→ < 3 \sim \mathcal{A}

- Classic statistics problem
- Use $\hat{\mu} = \frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n x_i$
- Error $O(\sqrt{n/m}) \to 0$

4 日下

→ 4 B

• Gaussian
$$
G = N(\mu, I) \subset \mathbb{R}^n
$$

重 DKS (UCSD/USC) [Robust List Decoding](#page-0-0) DKS (UCSD/USC) 8 7 / 52

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = (1 \epsilon)G + \epsilon E$ for small ϵ

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = (1 \epsilon)G + \epsilon E$ for small ϵ
- Given m independent samples x_i of X

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = (1 \epsilon)G + \epsilon E$ for small ϵ
- Given m independent samples x_i of X
- Learn Approximation to μ

• [\[Tukey\]](#page-124-0) gave exponential time algorithm to attain $O(\epsilon)$ error (information theoretically optimal).

4 日下

- 4 国 米

- [\[Tukey\]](#page-124-0) gave exponential time algorithm to attain $O(\epsilon)$ error (information theoretically optimal).
- Various polynomial time algorithms giving error $O(\epsilon$ √ n).

4 0 8

- [\[Tukey\]](#page-124-0) gave exponential time algorithm to attain $O(\epsilon)$ error (information theoretically optimal).
- Various polynomial time algorithms giving error $O(\epsilon$ √ n).
- [\[D-Kamath-K-Li-Moitra-S '16\]](#page-124-1) gave polynomial time algorithm with $O(\epsilon \sqrt{\log(1/\epsilon)})$ error (against stronger error model).

- [\[Tukey\]](#page-124-0) gave exponential time algorithm to attain $O(\epsilon)$ error (information theoretically optimal).
- Various polynomial time algorithms giving error $O(\epsilon$ √ n).
- [\[D-Kamath-K-Li-Moitra-S '16\]](#page-124-1) gave polynomial time algorithm with $O(\epsilon \sqrt{\log(1/\epsilon)})$ error (against stronger error model).
- [\[D-Kamath-K-Li-Moitra-S '18\]](#page-124-2) gave polynomial time algorithm for $O(\epsilon)$ error

- [\[Tukey\]](#page-124-0) gave exponential time algorithm to attain $O(\epsilon)$ error (information theoretically optimal).
- Various polynomial time algorithms giving error $O(\epsilon$ √ n).
- [\[D-Kamath-K-Li-Moitra-S '16\]](#page-124-1) gave polynomial time algorithm with $O(\epsilon \sqrt{\log(1/\epsilon)})$ error (against stronger error model).
- [\[D-Kamath-K-Li-Moitra-S '18\]](#page-124-2) gave polynomial time algorithm for $O(\epsilon)$ error
- Substantial recent work on similar robust statistics problems

Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$

目 DKS (UCSD/USC) [Robust List Decoding](#page-0-0) Company Robust List Decoding Company Company Company 2 / 52

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = \alpha G + (1 \alpha)E$ for small α

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = \alpha G + (1 \alpha)E$ for small α
- Given m independent samples x_i of X

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = \alpha G + (1 \alpha)E$ for small α
- Given m independent samples x_i of X
- Learn Approximation to μ

Problem

What if $X=\sum_i\alpha_i\textsf{G}_i$? Which is the "real" \textsf{G} ?

重 DKS (UCSD/USC) [Robust List Decoding](#page-0-0) Company Robust List Decoding Cotober, 2018 8 / 52

メロト メ都 トメ ヨ トメ ヨ

Problem

What if $X=\sum_i\alpha_i\textsf{G}_i$? Which is the "real" \textsf{G} ?

List decoding: return several hypotheses h_i with guarantee that at least one is close.

4 D F

Robust List Decoding

- [\[Steinhardt-Charikar-Valiant '17\]](#page-124-3) first to study problem
	- \triangleright Polynomial time (convex programming)
	- \blacktriangleright $O(1/\alpha)$ hypotheses
	- $\triangleright \; \tilde O(\alpha^{-1/2})$ error

4 0 8

14 B K 4 B

Information Theoretic Bounds

Before we begin, we should determine what errors are information-theoretically possible.

4 日下

• Suppose
$$
X = N(0, 1)
$$
.

DKS (UCSD/USC) [Robust List Decoding](#page-0-0) Controllect Controllect 2018 11 / 52

- Suppose $X = N(0, 1)$.
- Any $\alpha \mathsf{N}(\mu, \mathsf{I})$ with $|\mu| \leq \sqrt{\log(1/\alpha)}/\mathsf{C}$ nearly hides under X (up to $\alpha^{\Omega(\mathsf{C})}$ error).

- Suppose $X = N(0, 1)$.
- Any $\alpha \mathsf{N}(\mu, \mathsf{I})$ with $|\mu| \leq \sqrt{\log(1/\alpha)}/\mathsf{C}$ nearly hides under X (up to $\alpha^{\Omega(\mathsf{C})}$ error).
- Adding a bit to X , can hide $\alpha^{-\Omega(\mathcal{C})}$ such Gaussians.

Proposition

There is no algorithm that returns $poly(1/\alpha)$ many hypothesis so that with at least 2/3 probability, at least one is within o $(\sqrt{\log(1/\alpha)})$ of the true mean.

- \bullet Let X be the slightly modified Gaussian.
- There are $\alpha^{-\Omega(C)}$ possibilities, no two within $\sqrt{\log(1/\alpha)}/C.$
- Algorithm cannot tell which possibility is correct, and must return a hypothesis for each.

Upper Bounds

Proposition

There is an (inefficient) algorithm that returns $O(1/\alpha)$ hypotheses so that with at least $2/3$ probability, at least one of the hypotheses is within $O(\sqrt{\log(1/\alpha)})$ of the true mean.

4 0 8

÷

Hypotheses

Let H be the set of points x for which there is a set S_x of samples so that:

- \bullet S_x is large: it contains at least an $\alpha/2$ -fraction of the samples.
- \bullet S_x is concentrated about x: in any direction, at most a $\alpha/10$ -fraction of the points S_x are further than $2\sqrt{\log(1/\alpha)}$ from x in that direction.

4.0.3

Hypotheses

Let H be the set of points x for which there is a set S_x of samples so that:

- \bullet S_x is large: it contains at least an $\alpha/2$ -fraction of the samples.
- \bullet S_x is concentrated about x: in any direction, at most a $\alpha/10$ -fraction of the points S_x are further than $2\sqrt{\log(1/\alpha)}$ from x in that direction.

Note that with high probability $\mu \in H$ with $S_{\mu} =$ the good samples.

Hypotheses

Let H be the set of points x for which there is a set S_x of samples so that:

- \bullet S_x is large: it contains at least an $\alpha/2$ -fraction of the samples.
- \bullet S_x is concentrated about x: in any direction, at most a $\alpha/10$ -fraction of the points S_x are further than $2\sqrt{\log(1/\alpha)}$ from x in that direction.

Note that with high probability $\mu \in H$ with $S_{\mu} =$ the good samples.

Problem: Too many hypotheses.

Idea

Cover H with a small number of balls.

Lemma

There is no set of $5/\alpha$ elements of H that are pairwise separated by at least 4 $\sqrt{\log(1/\alpha)}$.

4 0 8

÷

Idea

Cover H with a small number of balls.

Lemma

There is no set of 5/ α elements of H that are pairwise separated by at least 4 $\sqrt{\log(1/\alpha)}$.

Take a maximal set of 4 $\sqrt{\log(1/\alpha)}$ -separated hypotheses.

- Size at most $5/\alpha$.
- Every element of H (including μ) within $4\sqrt{\log(1/\alpha)}$ of one.

Overlaps

Idea: If x and y far away, then S_x and S_y have little overlap. If many separated x 's, then too many points.

4 日下

<母 > <目

 QQQ
Overlaps

Idea: If x and y far away, then S_x and S_y have little overlap. If many separated x 's, then too many points.

Lemma

If $x, y \in H$ with $|x-y| \geq 4\sqrt{\log(1/\epsilon)}$, then $|S_x \cap S_y| \leq \alpha/10(|S_x| + |S_y|)$.

Overlaps

Idea: If x and y far away, then S_x and S_y have little overlap. If many separated x 's, then too many points.

Lemma

If $x, y \in H$ with $|x-y| \geq 4\sqrt{\log(1/\epsilon)}$, then $|S_x \cap S_y| \leq \alpha/10(|S_x| + |S_y|)$.

Proof.

- Project onto the line between x and y .
- At most $\alpha |S_x|/10$ items from S_x closer to y than x.
- At most $\alpha |S_v|/10$ items from S_v closer to x than y.

Counting

If $x_1, x_2, \ldots, x_m \in H$ pairwise far, then

$$
|S_{x_1} \cup S_{x_2} \cup \ldots \cup S_{x_m}| \geq \sum_{i=1}^m |S_{x_i}| - \sum_{1 \leq i < j \leq m} \alpha/10(|S_{x_i}| + |S_{x_j}|)
$$

=
$$
\sum_{i=1}^m |S_{x_i}| (1 - m\alpha/10)
$$

$$
\geq m\alpha/2|S|(1 - m\alpha/10).
$$

 \leftarrow \Box

 $AB + AB$

画

舌

14.1

Counting

If $x_1, x_2, \ldots, x_m \in H$ pairwise far, then

$$
|S_{x_1} \cup S_{x_2} \cup \ldots \cup S_{x_m}| \geq \sum_{i=1}^m |S_{x_i}| - \sum_{1 \leq i < j \leq m} \alpha/10(|S_{x_i}| + |S_{x_j}|)
$$

=
$$
\sum_{i=1}^m |S_{x_i}| (1 - m\alpha/10)
$$

$$
\geq m\alpha/2|S|(1 - m\alpha/10).
$$

If $m = 5/\alpha$, this is more than the total number of samples.

 \leftarrow \Box

A + + = +

÷

 QQ

• If the good samples have all but $\alpha/10$ -fraction within t of the mean in any direction, can get $O(1/\alpha)$ hypotheses with error $O(t)$.

4 0 8

 QQQ

Notes

- **If the good samples have all but** $\alpha/10$ -fraction within t of the mean in any direction, can get $O(1/\alpha)$ hypotheses with error $O(t)$.
- Given a set H of hypotheses at least one within r of true mean, can in poly-time reduce to a set of $O(1/\alpha)$ with error $O(r+\sqrt{\log(1/\alpha)})$.

Notes

- **If the good samples have all but** $\alpha/10$ -fraction within t of the mean in any direction, can get $O(1/\alpha)$ hypotheses with error $O(t)$.
- Given a set H of hypotheses at least one within r of true mean, can in poly-time reduce to a set of $O(1/\alpha)$ with error $O(r+\sqrt{\log(1/\alpha)})$.
	- I Use LP to determine if there is a set S_{x} with concentration about x in the directions $x - y$.
	- Cover remaining x 's with balls.

Summary

- [\[Steinhardt-Charikar-Valiant '17\]](#page-124-0) gives an algorithm that attains $\tilde{O}(\alpha^{-1/2})$ error.
- Information-theoretically can achieve $O(\sqrt{\log(1/\alpha)})$ error.

4 0 8

Summary

- [\[Steinhardt-Charikar-Valiant '17\]](#page-124-0) gives an algorithm that attains $\tilde{O}(\alpha^{-1/2})$ error.
- Information-theoretically can achieve $O(\sqrt{\log(1/\alpha)})$ error.

Question: What is achievable efficiently?

4 0 8

Algorithms

- **•** Filters and Multifilters
- Obstacle at $\alpha^{-1/2}$.
- Higher Degree Idea
- Variance Control

4 日下

 \rightarrow -4 ÷ 画

舌

 QQ

Sample Mean

• For non-robust algorithm use sample mean $\hat{\mu}$.

画

 QQ

Sample Mean

- For non-robust algorithm use sample mean $\hat{\mu}$.
- For moderately-robust problem would like to use $\hat{\mu}$.

 \leftarrow

Sample Mean

- For non-robust algorithm use sample mean $\hat{\mu}$.
- For moderately-robust problem would like to use $\hat{\mu}$.
- Problem: A few bad samples can seriously change the sample mean.

Identifying Errors

Want to certify $\mu_X \approx \mu$.

一本 重 下

K ロ ⊁ K 伊 ⊁ K 活 ⊁

重

Identifying Errors

Want to certify $\mu_X \approx \mu$.

 \bullet Otherwise, some unit vector v so that v · $(\mu_X - \mu)$ is large.

 \equiv Ω

na m≊

K ロ ▶ | K 伺 ▶ | K ヨ ▶

Identifying Errors

Want to certify $\mu_X \approx \mu$.

- \bullet Otherwise, some unit vector v so that v $\cdot (\mu_X \mu)$ is large.
- Requires $\text{Var}(v \cdot X)$ is large.
- **Can detect this.**

4 日下

 \equiv \cap α

Filters

If $\text{Var}(v \cdot X)$ large, must be some outliers for $v \cdot X$.

重

 2990

イロト イ部 トイヨ トイヨト

Filters

If $\text{Var}(v \cdot X)$ large, must be some outliers for $v \cdot X$. Can create a filter that throws away mostly bad samples.

 \leftarrow \Box

 QQ

Moderately Robust Algorithm

- \bullet Take set S of samples
- **2** Compute empirical covariance matrix $\hat{\Sigma}$
- **3** If largest eigenvalue is small
	- Return sample mean μ_S
- ⁴ Else
	- \blacktriangleright Create filter
	- Apply to S
	- \triangleright Go to step 2.

4.0.3

Moderately Robust Algorithm

- \bullet Take set S of samples
- **2** Compute empirical covariance matrix $\hat{\Sigma}$
- **3** If largest eigenvalue is small
	- Return sample mean μ_S
- ⁴ Else
	- \blacktriangleright Create filter
	- Apply to S
	- \triangleright Go to step 2.

Each iteration either returns an answer or produces a cleaner sample.

Multifilters

If $\alpha < 1/2$, might not be able to tell where the real samples are.

4 日下

 \sim

э

Multifilters

If α < 1/2, might not be able to tell where the real samples are.

Split into several overlapping sets of samples S_i

 \leftarrow

Multifilters

If α < 1/2, might not be able to tell where the real samples are.

Split into several overlapping sets of samples S_i so that:

- \bullet At least one S_i has higher fraction of good samples than S
- $\sum |S_i|^2 \leq |S|^2$

Split into cases

- Case 1: Almost all of the samples are in the same small interval.
- **Case 2:** There are clusters of samples far apart from each other.

4 0 8

Filter Case

Suppose that there is an interval *I* containing all but an $\alpha/3$ -fraction of samples.

4 0 8

<母 > <目

画

Filter Case

Suppose that there is an interval *I* containing all but an $\alpha/3$ -fraction of samples.

With high probability, true mean in I.

4 日下

Suppose that there is an interval *I* containing all but an $\alpha/3$ -fraction of samples.

- With high probability, true mean in I.
- All but a tiny fraction of good samples within $O(\sqrt{\log(1/\alpha)})$ of $I.$

4 0 8

Suppose that there is an interval I containing all but an $\alpha/3$ -fraction of samples.

- With high probability, true mean in *I*.
- All but a tiny fraction of good samples within $O(\sqrt{\log(1/\alpha)})$ of $I.$
- Unless variance is $O(|I|^2 + \log(1/\alpha))$, so that at most an α^2 -fraction of removed samples were good.

Suppose that there is an interval *I* with at least an $\alpha/6$ -fraction of samples on either side of it.

4 日下

 \blacktriangleright \blacktriangleleft

÷

 QQ

Suppose that there is an interval *I* with at least an $\alpha/6$ -fraction of samples on either side of it.

Find some x, let $S_1 = {\text{samples}} \leq x + 10\sqrt{\log(1/\alpha)}$, $S_2 = {\text{samples}} \geq x - 10\sqrt{\log(1/\alpha)}$.

4 0 8

Suppose that there is an interval I with at least an $\alpha/6$ -fraction of samples on either side of it.

- Find some x, let $S_1 = {\text{samples}} \leq x + 10\sqrt{\log(1/\alpha)}$, $S_2 = {\text{samples}} \geq x - 10\sqrt{\log(1/\alpha)}$.
- All but an α^2 -fraction of removed samples (on the correct side) are bad:
	- If $\mu \geq x$, all but α^3 -fraction of good samples in S_2 .
	- If $\mu \leq x$, all but α^3 -fraction in S_1 .
	- Always throw away at least $\alpha/6$ samples.

つへへ

Suppose that there is an interval I with at least an $\alpha/6$ -fraction of samples on either side of it.

- Find some x, let $S_1 = {\text{samples}} \leq x + 10\sqrt{\log(1/\alpha)}$, $S_2 = {\text{samples}} \geq x - 10\sqrt{\log(1/\alpha)}$.
- All but an α^2 -fraction of removed samples (on the correct side) are bad:
	- If $\mu \geq x$, all but α^3 -fraction of good samples in S_2 .
	- If $\mu \leq x$, all but α^3 -fraction in S_1 .
	- Always throw away at least $\alpha/6$ samples.
- **Need:** $|S_1|^2 + |S_2|^2 \leq |S|^2$.

つへへ

• Let $f(x)$ be the fraction of samples less than x.

 \leftarrow \Box

 \mathcal{A} \blacktriangleright \blacktriangleleft э \mathcal{A} 画

- Let $f(x)$ be the fraction of samples less than x.
- Need $x \in I$ so that $(1 f(x))^2 + f(x + 20\sqrt{\log(1/\alpha)})^2 \leq 1.$

4 0 8

÷

 QQ

- Let $f(x)$ be the fraction of samples less than x.
- Need $x \in I$ so that $(1 f(x))^2 + f(x + 20\sqrt{\log(1/\alpha)})^2 \leq 1.$
- Happens unless $f\big(x+20\sqrt{\log(1/\alpha)}\big) \gg f(x)^{1/2}.$

4 0 8

÷

- Let $f(x)$ be the fraction of samples less than x.
- Need $x \in I$ so that $(1 f(x))^2 + f(x + 20\sqrt{\log(1/\alpha)})^2 \leq 1.$
- Happens unless $f\big(x+20\sqrt{\log(1/\alpha)}\big) \gg f(x)^{1/2}.$
- Good unless $f\big(x+{20}t\sqrt{\log(1/\alpha)}\big) \gg \alpha^{1/2^t},$ only works for $t \ll \log \log(1/\alpha)$.

4.0.3
- Let $f(x)$ be the fraction of samples less than x.
- Need $x\in I$ so that $(1-f(x))^2+f(x+20\sqrt{\log(1/\alpha)})^2\leq 1.$
- Happens unless $f\big(x+20\sqrt{\log(1/\alpha)}\big) \gg f(x)^{1/2}.$
- Good unless $f\big(x+{20}t\sqrt{\log(1/\alpha)}\big) \gg \alpha^{1/2^t},$ only works for $t \ll \log \log(1/\alpha)$.

Can find such sets unless $|I| = O(\sqrt{\log(1/\alpha)}\log\log(1/\alpha)).$

General Situation

Can create a filter or multifilter if either:

- No interval I of length $O(\sqrt{\log(1/\alpha)}\log\log(1/\alpha))$ contains all but an $\alpha/3$ -fraction of samples.
- An interval I of length $O(\sqrt{\log(1/\alpha)}\log\log(1/\alpha))$ contains all but an $\alpha/3$ -fraction of samples, and the variance is $\Omega(|I|^2).$

General Situation

Can create a filter or multifilter if either:

- No interval I of length $O(\sqrt{\log(1/\alpha)}\log\log(1/\alpha))$ contains all but an $\alpha/3$ -fraction of samples.
- An interval I of length $O(\sqrt{\log(1/\alpha)}\log\log(1/\alpha))$ contains all but an $\alpha/3$ -fraction of samples, and the variance is $\Omega(|I|^2).$

Proposition

If the variance in some direction is more than a sufficient multiple of $log(1/\alpha)$ (with a slight refinement of the argument) then we can find at most two sets of samples S_i so that

 $\bullet\,$ For some i, at most an α^2 -fraction of $\mathcal{S}\backslash\mathcal{S}_i$ is good samples. **2** $\sum_i |S_i|^2 \leq |S|^2$.

Basic Multifilter Algorithm

- \bullet Maintain several sets S_i of samples
- \bullet For each i , compute empirical covariance matrix $\hat{\Sigma_i}$
- \bullet If some $\hat{\Sigma_i}$ has a large eigenvalue
	- \blacktriangleright Create multifilter
	- Apply to S_i
	- Replace S_i by resulting sets in list
	- \triangleright Go to step 2.
- \bullet Return list of all $\mu_{\mathcal{S}_i}$

At each step:

- At least one S_i has an α -fraction of good samples (in fact at least half of the total good samples)
- $\sum |S_i|^2 \le |S|^2$

4 0 8

÷

At each step:

- At least one S_i has an α -fraction of good samples (in fact at least half of the total good samples)
- $\sum |S_i|^2 \le |S|^2$

When return if:

- \bullet S_i has α -fraction of good samples AND
- $\hat{\Sigma_i}$ has no large eigenvalues

4 0 8

At each step:

- At least one S_i has an α -fraction of good samples (in fact at least half of the total good samples)
- $\sum |S_i|^2 \le |S|^2$

When return if:

- \bullet S_i has α -fraction of good samples AND
- $\hat{\Sigma_i}$ has no large eigenvalues

Then for all $|v| = 1$,

$$
\log(1/\alpha) \gg \text{Var}(v \cdot S_i) \geq \alpha [v \cdot (\mu_{S_i} - \mu)]^2,
$$

so

$$
|\mu_{\mathcal{S}_i} - \mu| = O(\alpha^{-1/2}\sqrt{\log(1/\alpha)}).
$$

4 0 8

÷

 QQ

Obstacle at $\alpha^{-1/2}$

Unfortunately, the error *can* be as much as $\alpha^{-1/2}.$

 \leftarrow \Box

DKS (UCSD/USC) [Robust List Decoding](#page-0-0) DKS (UCSD/USC) 33 / 52

目

 \equiv

 \rightarrow \rightarrow \rightarrow -4 QQ

Bounds on the second moments are not enough to ensure concentration.

活

 \equiv

 2990

メロトス部 トメミトメ

Bounds on the second moments are not enough to ensure concentration. Fix: use higher moments.

← ロ ▶ → イ 同

医尿管下

 -4

目

If for all unit vectors v ,

$$
\mathbb{E}[|v\cdot(X-\mu_X)|^{2d}]=O(1),
$$

then

$$
1 \gg \alpha |\mathbf{v} \cdot (\mu - \mu_X)|^{2d},
$$

so

$$
|\mu - \mu_X| = O(\alpha^{-1/2d}).
$$

重

 299

イロト イ部 トメ ヨ トメ ヨト

Computational Difficulty

It is computationally intractable to determine whether or not there is a unit vector v for which $\mathbb{E}[(v \cdot X)^{2d}]$ is large when $d > 1$.

4 0 8

Computational Difficulty

It is computationally intractable to determine whether or not there is a unit vector v for which $\mathbb{E}[(v \cdot X)^{2d}]$ is large when $d > 1$. Idea: Look at a relaxation of this problem.

[Hopkins-Li,Kothari-Steinhardt,Kothari-Steurer]: Look for SoS proof that $\mathbb{E}[(v \cdot X)^{2d}] \ll |v|_2^{2d}$ for all v .

Computational Difficulty

It is computationally intractable to determine whether or not there is a unit vector v for which $\mathbb{E}[(v \cdot X)^{2d}]$ is large when $d > 1$. Idea: Look at a relaxation of this problem.

- [Hopkins-Li,Kothari-Steinhardt,Kothari-Steurer]: Look for SoS proof that $\mathbb{E}[(v \cdot X)^{2d}] \ll |v|_2^{2d}$ for all v .
- This talk: See if there is any degree-d polynomial p with $\mathbb{E}[p(X)^2]$ too big.

Determine whether or not there is a degree-d polynomial ρ with $\mathbb{E}[\rho(S)^2]$ substantially larger than $\mathbb{E} [p(\mathit{G}_{\mu_{S}})^{2}].$

 \leftarrow \Box

÷

Determine whether or not there is a degree-d polynomial ρ with $\mathbb{E}[\rho(S)^2]$ substantially larger than $\mathbb{E} [p(\mathit{G}_{\mu_{S}})^{2}].$

- Eigenvalue computation.
- If not, implies $|\mu-\mu_{\mathcal{S}}| = \tilde{O}(\alpha^{-1/2d}).$
- If yes, create a (multi-)filter.

4 0 8

 QQ

If $\text{Var}(p(X))$ is too large, create a (multi-)filter based on the values of p.

4 日下

 QQ

If $\text{Var}(p(X))$ is too large, create a (multi-)filter based on the values of p.

- Compute values of $p(x)$ for $x \in S$.
- **•** Fairly spread out.
- Values of $p(G)$ are clustered.
- Use same multifilter ideas as before.

If $\text{Var}(p(X))$ is too large, create a (multi-)filter based on the values of p.

- Compute values of $p(x)$ for $x \in S$.
- **•** Fairly spread out.
- Values of $p(G)$ are clustered.
- Use same multifilter ideas as before.

Problem: $Var(p(G))$ might also be large!

If $\text{Var}(p(X))$ is too large, create a (multi-)filter based on the values of p.

- Compute values of $p(x)$ for $x \in S$.
- **•** Fairly spread out.
- Values of $p(G)$ are clustered.
- Use same multifilter ideas as before.

Problem: $Var(p(G))$ might also be large!

- Unlike degree-1 polynomials, for degree-d, $Var(p(G))$ depends on μ .
- Want a way to verify that $Var(p(G))$ is small.

The Strategy

- Given a ρ with $\mathbb{E}[\rho(S)^2] \gg \mathbb{E}[\rho(\mathit{G}_{\mu_S})^2]$ try to either:
	- Verify that $\mathbb{E}[\rho(G)^2] \approx \mathbb{E}[\rho(\mathit{G}_{\mu_{S}})^2]$
		- Exm then filter out points with $p(x)^2$ too large.

4 0 8

The Strategy

- Given a ρ with $\mathbb{E}[\rho(S)^2] \gg \mathbb{E}[\rho(\mathit{G}_{\mu_S})^2]$ try to either:
	- Verify that $\mathbb{E}[\rho(G)^2] \approx \mathbb{E}[\rho(\mathit{G}_{\mu_{S}})^2]$
		- Exm then filter out points with $p(x)^2$ too large.
	- OR produce a (multi-)filter in failing to verify this.

4.0.3

Bounding $\mathbb{E}[p(G)^2]$

For any degree-d polynomial ρ , $\mathbb{E}[\rho(G)^2]=q(\mu)$ for some degree-2d polynomial q.

 \leftarrow \Box

 \rightarrow \oplus \rightarrow \rightarrow \oplus

画

 QQ

 \equiv

Bounding $\mathbb{E}[p(G)^2]$

- For any degree-d polynomial ρ , $\mathbb{E}[\rho(G)^2]=q(\mu)$ for some degree-2d polynomial q.
- This in turn equals $\mathbb{E}[r(G_1, G_2, \ldots, G_{2d})]$ for some multilinear r with $|r| \approx |p|$ and G_i i.i.d. copies of G .

4 0 8

Bounding $\mathbb{E}[p(G)^2]$

- For any degree-d polynomial ρ , $\mathbb{E}[\rho(G)^2]=q(\mu)$ for some degree-2d polynomial q.
- This in turn equals $\mathbb{E}[r(G_1, G_2, \ldots, G_{2d})]$ for some multilinear r with $|r| \approx |p|$ and G_i i.i.d. copies of G .

Point: If $\mathbb{E}[p(G)^2]$ is too big, then $r(x_1, x_2, \ldots, x_{2d})$ $(x_i \in S)$, has an α^{2d} chance of being large.

Large Values

Suppose that $r(x_1, x_2, \ldots, x_{2d})$ is much larger than expected.

 \leftarrow \Box

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

造

 \equiv

 -4

 -990

Large Values

Suppose that $r(x_1, x_2, \ldots, x_{2d})$ is much larger than expected.

- Assign x_i 's one at a time.
- At some stage the size of the polynomial must jump.
- In particular,

$$
\mathbb{E}[|r(x_1, x_2, \ldots, x_{i+1}, G'_{i+2}, \ldots, G'_{2d})|^2] \gg \mathbb{E}[|r(x_1, x_2, \ldots, x_i, G'_{i+1}, \ldots, G'_{2d})|^2]
$$

where G'_j are i.i.d. copies of $\mathsf{G}_{\mu_S}.$

4 0 8

Quadratic

o Note that

$$
s(y) = \mathbb{E}[|r(x_1, x_2, \ldots, x_i, y, G'_{i+2}, \ldots, G'_{2d})|^2]
$$

is a quadratic polynomial in y with $s(x_{i+1}) \gg \mathbb{E}[s(G_{\mu_S})].$

4 日下

 \blacktriangleright \blacktriangleleft

画

 QQ

Quadratic

• Note that

$$
s(y) = \mathbb{E}[|r(x_1, x_2, \dots, x_i, y, G'_{i+2}, \dots, G'_{2d})|^2]
$$

is a quadratic polynomial in y with $s(x_{i+1}) \gg \mathbb{E}[s(G_{\mu_S})].$

• Can diagonalize s as

$$
s(y) = \sum L_j(y)^2
$$

for linear polynomials L_j .

4 0 8

÷

Quadratic

• Note that

$$
s(y) = \mathbb{E}[|r(x_1, x_2, \ldots, x_i, y, G'_{i+2}, \ldots, G'_{2d})|^2]
$$

is a quadratic polynomial in y with $s(x_{i+1}) \gg \mathbb{E}[s(G_{\mu_S})].$

• Can diagonalize s as

$$
s(y) = \sum L_j(y)^2
$$

for linear polynomials L_j .

• So there must be some *j* for which $L_i(x_{i+1})$ is much larger than expected. This will let us create a (multi-)filter.

Algorithm

- \bullet Try to find polynomial ρ with $\mathbb{E}[\rho(S)^2] \gg \log^{4d}(1/\alpha)\mathbb{E}[\rho(\mathcal{G}_{\mu_S})^2].$
	- If none exist, return μ_S .
- **2** Compute corresponding multilinear r. See if $|r(x_1,\ldots,x_{2d})|^2\gg \log^{2d}(1/\alpha)\mathbb{E}[p(\mathit{G}_{\mu_{S}})^2]$ with probability at least α^{2d} .
	- If not, $\mathbb{E}[p(G)^2]$ is small, filter out x with $p(x)^2$ more than average, and return to step 1.
- **3** Find $x_1, x_2, ..., x_i$ so that with α probability over $y \in S$, $|r(x_1,\ldots,x_i,y)|^2\gg \log(1/\alpha)|r(x_1,\ldots,x_i)|^2.$
- \bullet Compute the corresponding quadratic $s(y) = \sum L_j(y)^2.$
- **•** Find an *j* so that $L_i(y)$ is likely larger than expected. Use to create a (multi-)filter. Apply and return to step 1.

 Ω

イロト イ押ト イヨト イヨト

Requirements

Samples:

- S needs to be representative of G with respect to polynomials of degree 2d.
- $|S| = \text{poly}(n^d/\alpha).$

4 日下

 \sim

画

 QQ

Requirements

Samples:

- S needs to be representative of G with respect to polynomials of degree 2d.
- $|S| = \text{poly}(n^d/\alpha).$

Runtime:

- Need to check for events with probability $\alpha^{2d}.$
- Runtime is $\mathrm{poly}(|\mathcal{S}|/\alpha^d).$

Final Results

Theorem

There exists an algorithm that given $O(d^{2d})n^{O(d)}/poly(\alpha)$ i.i.d. samples from X , there is an $(\mathsf{nd}/\alpha)^{O(d)}$ time algorithm which with high probability returns a list of $O(1/\alpha)$ hypotheses so that at least one hypothesis is within $\tilde{O}_d(\alpha^{-1/2d})$ of μ .

つへへ

Final Results

Theorem

There exists an algorithm that given $O(d^{2d})n^{O(d)}/poly(\alpha)$ i.i.d. samples from X , there is an $(\mathsf{nd}/\alpha)^{O(d)}$ time algorithm which with high probability returns a list of $O(1/\alpha)$ hypotheses so that at least one hypothesis is within $\tilde{O}_d(\alpha^{-1/2d})$ of μ .

Note: in quasi-polynomial time/samples can achieve polylog error. We think we can improve to $O(\sqrt{\log(1/\alpha)})$.

つへへ

SQ Lower Bounds

In fact, this list decoding result is qualitatively tight for SQ algorithms (though note that our algorithm is not quite SQ).

Theorem

Any SQ list decoding algorithm that with 2/3 probability returns a list of hypotheses at least one of which is closer than $\alpha^{-1/d}$ from the mean must do one of the following:

- Return exponentially many hypotheses.
- Perform exponentially many queries.
- Perform queries with accuracy $n^{-\Omega(d)}$.

つひひ
Learning Mixtures of Spherical Gaussians

Application: Let $X=1/k\sum_{i=1}^k G_i$ with each $G_i\sim N(\mu_i,I).$

4 日下

÷

 QQQ

Learning Mixtures of Spherical Gaussians

Application: Let $X=1/k\sum_{i=1}^k G_i$ with each $G_i\sim N(\mu_i,I).$ Want to learn the $\mu_i.$

• [\[Regev-Vijjayraghavan '17\]](#page-124-0) show information-theoretically impossible to learn the means unless have separation $\Omega(\sqrt{\log(k)})$.

4 日下

÷

 QQ

History

- [\[Regev-Vijjayraghavan '17\]](#page-124-0) show information-theoretically impossible to learn the means unless have separation $\Omega(\sqrt{\log(k)})$.
- [\[Regev-Vijjayraghavan '17\]](#page-124-0) show how to improve a rough approximation to μ_i to a precise one.

4 日下

History

- [\[Regev-Vijjayraghavan '17\]](#page-124-0) show information-theoretically impossible to learn the means unless have separation $\Omega(\sqrt{\log(k)})$.
- [\[Regev-Vijjayraghavan '17\]](#page-124-0) show how to improve a rough approximation to μ_i to a precise one.
- [\[Vempala-Wang '02\]](#page-124-1) Give algorithm with separation $\Omega(k^{1/4})$.

4 日下

History

- [\[Regev-Vijjayraghavan '17\]](#page-124-0) show information-theoretically impossible to learn the means unless have separation $\Omega(\sqrt{\log(k)})$.
- [\[Regev-Vijjayraghavan '17\]](#page-124-0) show how to improve a rough approximation to μ_i to a precise one.
- [\[Vempala-Wang '02\]](#page-124-1) Give algorithm with separation $\Omega(k^{1/4})$.

Question: How much separation is actually needed?

List Decoding

Run list decoding algorithm. Since X is a noisy version of *each* G_i *,* our list contains approximations to all means with error D.

4 D F

DKS (UCSD/USC) [Robust List Decoding](#page-0-0) Controllect Controllect 2018 50 / 52

重

 2990

 $\rightarrow \equiv$

 \mathbf{p}

K ロ ト K 伊 ト K 毛

Round samples to nearest hypothesis. With high probability samples round to one of hypotheses within $O(D)$ of the mean.

 \leftarrow

DKS (UCSD/USC) [Robust List Decoding](#page-0-0) COMBING DRS (UCSD/USC) 52

Round samples to nearest hypothesis. With high probability samples round to one of hypotheses within $O(D)$ of the mean. Cluster used hypotheses.

 \leftarrow

DKS (UCSD/USC) **[Robust List Decoding](#page-0-0) COLL 2018** 50 / 52

Round samples to nearest hypothesis. With high probability samples round to one of hypotheses within $O(D)$ of the mean.

Cluster used hypotheses.

Recover original Gaussians to estimate means.

Results

Theorem

If the means have separation $\Omega(k^{1/2d})$, there is an algorithm that takes $\mathit{poly}(n, (dk)^d)$ samples, runs in sample polynomial time and returns accurate approximations to the $\mu_i.$

 200

Results

Theorem

If the means have separation $\Omega(k^{1/2d})$, there is an algorithm that takes $\mathit{poly}(n, (dk)^d)$ samples, runs in sample polynomial time and returns accurate approximations to the $\mu_i.$

Can be improved to polylogarithmic separation in quasi-polynomial time/samples. We think we can improve this to $O(\sqrt{\log(k)})$ separation.

Results

Theorem

If the means have separation $\Omega(k^{1/2d})$, there is an algorithm that takes $\mathit{poly}(n, (dk)^d)$ samples, runs in sample polynomial time and returns accurate approximations to the $\mu_i.$

Can be improved to polylogarithmic separation in quasi-polynomial time/samples. We think we can improve this to $O(\sqrt{\log(k)})$ separation. Can be generalized to unequal mixtures or to Gaussians with different radii (though still spherical).

Conclusion

Have a robust list decoding algorithm with much better error. Can use to learn mixtures of spherical Gaussians with k^δ separation.

4 日下

Conclusion

Have a robust list decoding algorithm with much better error. Can use to learn mixtures of spherical Gaussians with k^δ separation. Open problems:

- **1** How much can the Gaussian assumption be relaxed?
- 2 Can you do better for learning mixtures than for list decoding?
- **3** Are there better algorithms for density estimation?

- Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart, Robust Estimators in High Dimensions, without the Computational Intractability, Foundations Of Computer Science, (FOCS) 2016.
- Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart Robustly Learning a Gaussian: Getting Optimal Error Efficiently, Symposium On Discrete Algorithms (SODA) 2018.
- 螶 Jacob Steinhardt, Moses Charikar, Gregory Valiant Learning from Untrusted Data STOC, 2017.
- O. Regev, A. Vijjayraghavan On learning mixtures of well-separated gaussians Proceedings of FOCS, 2017.
- J.W. Tukey, Mathematics and picturing of data Proceedings of ICM, volume 6, pp. 523-531, 1975.

 QQ

イロト イ押ト イヨト イヨト

4 日下

 QQ