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Mean Estimation

Gaussian G = N(µ, I ) ⊂ Rn

Given m independent samples xi from G

Learn approximation to µ
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Mean Estimation

Classic statistics problem

Use µ̂ = 1
n

∑n
i=1 xi

Error O(
√
n/m)→ 0
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Robust Mean Estimation

Gaussian G = N(µ, I ) ⊂ Rn

X = (1− ε)G + εE for small ε

Given m independent samples xi of X

Learn Approximation to µ
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Robust Mean Estimation

[Tukey] gave exponential time algorithm to attain O(ε) error
(information theoretically optimal).

Various polynomial time algorithms giving error O(ε
√
n).

[D-Kamath-K-Li-Moitra-S ’16] gave polynomial time algorithm with
O(ε

√
log(1/ε)) error (against stronger error model).

[D-Kamath-K-Li-Moitra-S ’18] gave polynomial time algorithm for
O(ε) error

Substantial recent work on similar robust statistics problems
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Very Robust Mean Estimation

Gaussian G = N(µ, I ) ⊂ Rn

X = αG + (1− α)E for small α

Given m independent samples xi of X

Learn Approximation to µ
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Problem

What if X =
∑

i αiGi? Which is the “real” G?

List decoding: return several hypotheses hi with guarantee that at least
one is close.
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Robust List Decoding

[Steinhardt-Charikar-Valiant ’17] first to study problem
I Polynomial time (convex programming)
I O(1/α) hypotheses
I Õ(α−1/2) error
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Information Theoretic Bounds

Before we begin, we should determine what errors are
information-theoretically possible.
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Lower Bounds

Suppose X = N(0, I ).

Any αN(µ, I ) with |µ| ≤
√

log(1/α)/C nearly hides under X (up to
αΩ(C) error).

Adding a bit to X , can hide α−Ω(C) such Gaussians.
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Lower Bounds

Proposition

There is no algorithm that returns poly(1/α) many hypothesis so that with
at least 2/3 probability, at least one is within o(

√
log(1/α)) of the true

mean.

Let X be the slightly modified Gaussian.

There are α−Ω(C) possibilities, no two within
√

log(1/α)/C .

Algorithm cannot tell which possibility is correct, and must return a
hypothesis for each.
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Upper Bounds

Proposition

There is an (inefficient) algorithm that returns O(1/α) hypotheses so that
with at least 2/3 probability, at least one of the hypotheses is within
O(

√
log(1/α)) of the true mean.
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Hypotheses

Let H be the set of points x for which there is a set Sx of samples so that:

Sx is large: it contains at least an α/2-fraction of the samples.

Sx is concentrated about x : in any direction, at most a α/10-fraction
of the points Sx are further than 2

√
log(1/α) from x in that direction.

Note that with high probability µ ∈ H with Sµ = the good samples.

Problem: Too many hypotheses.
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Idea

Cover H with a small number of balls.

Lemma

There is no set of 5/α elements of H that are pairwise separated by at
least 4

√
log(1/α).

Take a maximal set of 4
√

log(1/α)-separated hypotheses.

Size at most 5/α.

Every element of H (including µ) within 4
√

log(1/α) of one.
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Overlaps
Idea: If x and y far away, then Sx and Sy have little overlap. If many
separated x ’s, then too many points.

Lemma

If x , y ∈ H with |x − y | ≥ 4
√

log(1/ε), then |Sx ∩ Sy | ≤ α/10(|Sx |+ |Sy |).

Proof.

Project onto the line between x and y .

At most α|Sx |/10 items from Sx closer to y than x .

At most α|Sy |/10 items from Sy closer to x than y .
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Counting

If x1, x2, . . . , xm ∈ H pairwise far, then

|Sx1 ∪ Sx2 ∪ . . . ∪ Sxm | ≥
m∑
i=1

|Sxi | −
∑

1≤i<j≤m
α/10(|Sxi |+ |Sxj |)

=
m∑
i=1

|Sxi |(1−mα/10)

≥ mα/2|S |(1−mα/10).

If m = 5/α, this is more than the total number of samples.
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Notes

If the good samples have all but α/10-fraction within t of the mean
in any direction, can get O(1/α) hypotheses with error O(t).

Given a set H of hypotheses at least one within r of true mean, can
in poly-time reduce to a set of O(1/α) with error O(r +

√
log(1/α)).

I Use LP to determine if there is a set Sx with concentration about x in
the directions x − y .

I Cover remaining x ’s with balls.
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Summary

[Steinhardt-Charikar-Valiant ’17] gives an algorithm that attains
Õ(α−1/2) error.

Information-theoretically can achieve O(
√

log(1/α)) error.

Question: What is achievable efficiently?
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Algorithms

Filters and Multifilters

Obstacle at α−1/2.

Higher Degree Idea

Variance Control
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Sample Mean

For non-robust algorithm use sample mean µ̂.

For moderately-robust problem would like to use µ̂.

Problem: A few bad samples can seriously change the sample mean.
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Identifying Errors

Want to certify µX ≈ µ.

Otherwise, some unit vector v so that v · (µX − µ) is large.

Requires Var(v · X ) is large.

Can detect this.
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Filters

If Var(v · X ) large, must be some outliers for v · X .

Can create a filter that throws away mostly bad samples.
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Moderately Robust Algorithm

1 Take set S of samples

2 Compute empirical covariance matrix Σ̂
3 If largest eigenvalue is small

I Return sample mean µS

4 Else
I Create filter
I Apply to S
I Go to step 2.

Each iteration either returns an answer or produces a cleaner sample.
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Multifilters

If α < 1/2, might not be able to tell where the real samples are.

Split into several overlapping sets of samples Si so that:

At least one Si has higher fraction of good samples than S∑
|Si |2 ≤ |S |2
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Analysis

Split into cases

Case 1: Almost all of the samples are in the same small interval.

Case 2: There are clusters of samples far apart from each other.
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Filter Case

Suppose that there is an interval I containing all but an α/3-fraction of
samples.

With high probability, true mean in I .

All but a tiny fraction of good samples within O(
√

log(1/α)) of I .

Unless variance is O(|I |2 + log(1/α)), so that at most an α2-fraction
of removed samples were good.
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Multifilter Case

Suppose that there is an interval I with at least an α/6-fraction of samples
on either side of it.

Find some x , let S1 = {samples ≤ x + 10
√

log(1/α)},
S2 = {samples ≥ x − 10

√
log(1/α)}.

All but an α2-fraction of removed samples (on the correct side) are
bad:

I If µ ≥ x , all but α3-fraction of good samples in S2.
I If µ ≤ x , all but α3-fraction in S1.
I Always throw away at least α/6 samples.

Need: |S1|2 + |S2|2 ≤ |S |2.
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Analysis

Let f (x) be the fraction of samples less than x .

Need x ∈ I so that (1− f (x))2 + f (x + 20
√

log(1/α))2 ≤ 1.

Happens unless f (x + 20
√

log(1/α))� f (x)1/2.

Good unless f (x + 20t
√

log(1/α))� α1/2t , only works for
t � log log(1/α).

Can find such sets unless |I | = O(
√

log(1/α) log log(1/α)).
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log(1/α))� α1/2t , only works for
t � log log(1/α).

Can find such sets unless |I | = O(
√

log(1/α) log log(1/α)).
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General Situation

Can create a filter or multifilter if either:

No interval I of length O(
√

log(1/α) log log(1/α)) contains all but an
α/3-fraction of samples.

An interval I of length O(
√

log(1/α) log log(1/α)) contains all but an
α/3-fraction of samples, and the variance is Ω(|I |2).

Proposition

If the variance in some direction is more than a sufficient multiple of
log(1/α) (with a slight refinement of the argument) then we can find at
most two sets of samples Si so that

1 For some i , at most an α2-fraction of S\Si is good samples.

2
∑

i |Si |2 ≤ |S |2.
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Basic Multifilter Algorithm

1 Maintain several sets Si of samples

2 For each i , compute empirical covariance matrix Σ̂i

3 If some Σ̂i has a large eigenvalue
I Create multifilter
I Apply to Si
I Replace Si by resulting sets in list
I Go to step 2.

4 Return list of all µSi
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Analysis

At each step:

At least one Si has an α-fraction of good samples (in fact at least
half of the total good samples)∑
|Si |2 ≤ |S |2

When return if:

Si has α-fraction of good samples AND

Σ̂i has no large eigenvalues

Then for all |v | = 1,

log(1/α)� Var(v · Si ) ≥ α[v · (µSi − µ)]2,

so
|µSi − µ| = O(α−1/2

√
log(1/α)).
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Obstacle at α−1/2

Unfortunately, the error can be as much as α−1/2.
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Idea

Bounds on the second moments are not enough to ensure concentration.

Fix: use higher moments.
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Analysis

If for all unit vectors v ,

E[|v · (X − µX )|2d ] = O(1),

then
1� α|v · (µ− µX )|2d ,

so
|µ− µX | = O(α−1/2d).
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Computational Difficulty

It is computationally intractable to determine whether or not there is a
unit vector v for which E[(v · X )2d ] is large when d > 1.

Idea: Look at a relaxation of this problem.

[Hopkins-Li,Kothari-Steinhardt,Kothari-Steurer]: Look for SoS proof
that E[(v · X )2d ]� |v |2d2 for all v .

This talk: See if there is any degree-d polynomial p with E[p(X )2]
too big.
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Basic Idea

Determine whether or not there is a degree-d polynomial p with E[p(S)2]
substantially larger than E[p(GµS )2].

Eigenvalue computation.

If not, implies |µ− µS | = Õ(α−1/2d).

If yes, create a (multi-)filter.

DKS (UCSD/USC) Robust List Decoding October, 2018 37 / 52



Basic Idea

Determine whether or not there is a degree-d polynomial p with E[p(S)2]
substantially larger than E[p(GµS )2].

Eigenvalue computation.

If not, implies |µ− µS | = Õ(α−1/2d).
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A Failed Attempt

If Var(p(X )) is too large, create a (multi-)filter based on the values of p.

Compute values of p(x) for x ∈ S .

Fairly spread out.

Values of p(G ) are clustered.

Use same multifilter ideas as before.

Problem: Var(p(G )) might also be large!

Unlike degree-1 polynomials, for degree-d , Var(p(G )) depends on µ.

Want a way to verify that Var(p(G )) is small.
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The Strategy

Given a p with E[p(S)2]� E[p(GµS )2] try to either:

Verify that E[p(G )2] ≈ E[p(GµS )2]
I Can then filter out points with p(x)2 too large.

OR produce a (multi-)filter in failing to verify this.

DKS (UCSD/USC) Robust List Decoding October, 2018 39 / 52



The Strategy

Given a p with E[p(S)2]� E[p(GµS )2] try to either:

Verify that E[p(G )2] ≈ E[p(GµS )2]
I Can then filter out points with p(x)2 too large.

OR produce a (multi-)filter in failing to verify this.

DKS (UCSD/USC) Robust List Decoding October, 2018 39 / 52



Bounding E[p(G )2]

For any degree-d polynomial p, E[p(G )2] = q(µ) for some degree-2d
polynomial q.

This in turn equals E[r(G1,G2, . . . ,G2d)] for some multilinear r with
|r | ≈ |p| and Gi i.i.d. copies of G .

Point: If E[p(G )2] is too big, then r(x1, x2, . . . , x2d) (xi ∈ S), has an α2d

chance of being large.
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Large Values

Suppose that r(x1, x2, . . . , x2d) is much larger than expected.

Assign xi ’s one at a time.

At some stage the size of the polynomial must jump.

In particular,

E[|r(x1, x2, . . . , xi+1,G
′
i+2, . . . ,G

′
2d)|2]

� E[|r(x1, x2, . . . , xi ,G
′
i+1, . . . ,G

′
2d)|2]

where G ′j are i.i.d. copies of GµS .
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Quadratic

Note that

s(y) = E[|r(x1, x2, . . . , xi , y ,G
′
i+2, . . . ,G

′
2d)|2]

is a quadratic polynomial in y with s(xi+1)� E[s(GµS )].

Can diagonalize s as

s(y) =
∑

Lj(y)2

for linear polynomials Lj .

So there must be some j for which Lj(xi+1) is much larger than
expected. This will let us create a (multi-)filter.
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Algorithm

1 Try to find polynomial p with E[p(S)2]� log4d(1/α)E[p(GµS )2].
I If none exist, return µS .

2 Compute corresponding multilinear r . See if
|r(x1, . . . , x2d)|2 � log2d(1/α)E[p(GµS )2] with probability at least
α2d .

I If not, E[p(G )2] is small, filter out x with p(x)2 more than average,
and return to step 1.

3 Find x1, x2, . . . , xi so that with α probability over y ∈ S ,
|r(x1, . . . , xi , y)|2 � log(1/α)|r(x1, . . . , xi )|2.

4 Compute the corresponding quadratic s(y) =
∑

Lj(y)2.

5 Find an j so that Lj(y) is likely larger than expected. Use to create a
(multi-)filter. Apply and return to step 1.
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Requirements

Samples:

S needs to be representative of G with respect to polynomials of
degree 2d .

|S | = poly(nd/α).

Runtime:

Need to check for events with probability α2d .

Runtime is poly(|S |/αd).
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Final Results

Theorem

There exists an algorithm that given O(d2d)nO(d)/poly(α) i.i.d. samples
from X , there is an (nd/α)O(d) time algorithm which with high probability
returns a list of O(1/α) hypotheses so that at least one hypothesis is
within Õd(α−1/2d) of µ.

Note: in quasi-polynomial time/samples can achieve polylog error. We
think we can improve to O(

√
log(1/α)).
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SQ Lower Bounds

In fact, this list decoding result is qualitatively tight for SQ algorithms
(though note that our algorithm is not quite SQ).

Theorem

Any SQ list decoding algorithm that with 2/3 probability returns a list of
hypotheses at least one of which is closer than α−1/d from the mean must
do one of the following:

Return exponentially many hypotheses.

Perform exponentially many queries.

Perform queries with accuracy n−Ω(d).
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Learning Mixtures of Spherical Gaussians

Application: Let X = 1/k
∑k

i=1 Gi with each Gi ∼ N(µi , I ).

Want to learn the µi .
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History

[Regev-Vijjayraghavan ’17] show information-theoretically impossible
to learn the means unless have separation Ω(

√
log(k)).

[Regev-Vijjayraghavan ’17] show how to improve a rough
approximation to µi to a precise one.

[Vempala-Wang ’02] Give algorithm with separation Ω(k1/4).

Question: How much separation is actually needed?
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List Decoding

Run list decoding algorithm. Since X is a noisy version of each Gi , our list
contains approximations to all means with error D.
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Clustering

Round samples to nearest hypothesis. With high probability samples round
to one of hypotheses within O(D) of the mean.
Cluster used hypotheses.
Recover original Gaussians to estimate means.
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Results

Theorem

If the means have separation Ω(k1/2d), there is an algorithm that takes
poly(n, (dk)d) samples, runs in sample polynomial time and returns
accurate approximations to the µi .

Can be improved to polylogarithmic separation in quasi-polynomial
time/samples. We think we can improve this to O(

√
log(k)) separation.

Can be generalized to unequal mixtures or to Gaussians with different radii
(though still spherical).
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Conclusion

Have a robust list decoding algorithm with much better error.
Can use to learn mixtures of spherical Gaussians with kδ separation.

Open problems:

1 How much can the Gaussian assumption be relaxed?

2 Can you do better for learning mixtures than for list decoding?

3 Are there better algorithms for density estimation?
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