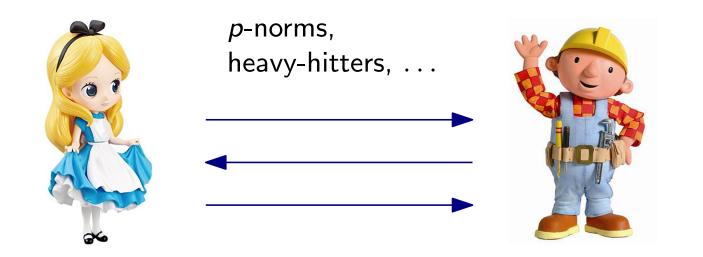
Distributed Statistical Estimation of Matrix Products with Applications

David Woodruff CMU

Qin Zhang IUB

Simons Institute October 18, 2018

The Distributed Computation Model



Alice and Bob want to compute some function on $C = A \times B$

Goal: minimize communication and number of rounds

- Alice holds $A \in \{0, 1\}^{m \times n}$, Bob holds $B \in \{0, 1\}^{n \times m}$
- Let $C = A \cdot B$. Alice and Bob want to approximate $\|C\|_p = \left(\sum_{i,j\in[n]} |C_{i,j}|^p\right)^{1/p}$

- Alice holds $A \in \{0, 1\}^{m \times n}$, Bob holds $B \in \{0, 1\}^{n \times m}$
- Let $C = A \cdot B$. Alice and Bob want to approximate $\|C\|_p = \left(\sum_{i,j\in[n]} |C_{i,j}|^p\right)^{1/p}$
 - p = 0: number of non-zero entries of C \Rightarrow size of **set-intersection join** *i*-th row of A as set A_i , *j*-th column of B as set B_j , compute #(i, j) s.t. $A_i \cap B_i \neq \emptyset$

- Alice holds $A \in \{0, 1\}^{m \times n}$, Bob holds $B \in \{0, 1\}^{n \times m}$
- Let $C = A \cdot B$. Alice and Bob want to approximate $\|C\|_p = \left(\sum_{i,j\in[n]} |C_{i,j}|^p\right)^{1/p}$
 - p = 0: number of non-zero entries of C \Rightarrow size of **set-intersection join** *i*-th row of A as set A_i , *j*-th column of B as set B_j , compute #(i,j) s.t. $A_i \cap B_j \neq \emptyset$
 - p = 1: sum of entries of C \Rightarrow size of corresponding **natural join** compute #(i, k, j) s.t. $k \in A_i \cap B_j$

- Alice holds $A \in \{0, 1\}^{m \times n}$, Bob holds $B \in \{0, 1\}^{n \times m}$
- Let $C = A \cdot B$. Alice and Bob want to approximate $\|C\|_p = \left(\sum_{i,j\in[n]} |C_{i,j}|^p\right)^{1/p}$ size estimation is the key to database query optimization
 - p = 0: number of non-zero entries of C \Rightarrow size of **set-intersection join**

i-th row of A as set A_i , *j*-th column of B as set B_j , compute #(i,j) s.t. $A_i \cap B_j \neq \emptyset$

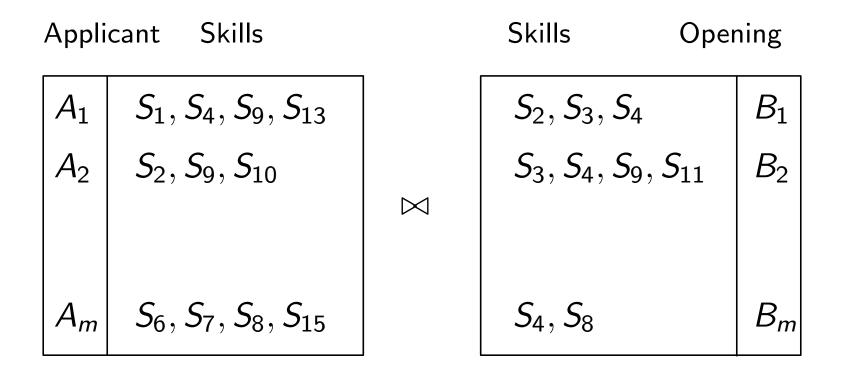
- p = 1: sum of entries of C \Rightarrow size of corresponding **natural join** compute #(i, k, j) s.t. $k \in A_i \cap B_j$

- Alice holds $A \in \{0, 1\}^{m \times n}$, Bob holds $B \in \{0, 1\}^{n \times m}$
- Let $C = A \cdot B$. Alice and Bob want to approximate $\|C\|_p = \left(\sum_{i,j\in[n]} |C_{i,j}|^p\right)^{1/p}$ size estimation is the key to database query optimization
 - p = 0: number of non-zero entries of C \Rightarrow size of **set-intersection join**

i-th row of A as set A_i , *j*-th column of B as set B_j , compute #(i,j) s.t. $A_i \cap B_j \neq \emptyset$

- p = 1: sum of entries of C \Rightarrow size of corresponding **natural join** compute #(i, k, j) s.t. $k \in A_i \cap B_j$

-
$$p = \infty$$
: maximum entry of C
 \Rightarrow most "similar" (A_i, B_j) pair



Find all candidate (Applicant, Opening) pairs

Statistics of Matrix Products: Heavy Hitters

• Alice holds $A \in \{0,1\}^{m \times n}$, Bob holds $B \in \{0,1\}^{n \times m}$

• Let
$$C = A \cdot B$$
, and let

 $HH_{\phi}^{p}(C) = \{(i,j) \mid C_{i,j} \geq \phi \|C\|_{p}\}$

Statistics of Matrix Products: Heavy Hitters

- Alice holds $A \in \{0,1\}^{m \times n}$, Bob holds $B \in \{0,1\}^{n \times m}$
- Let $C = A \cdot B$, and let

$$\mathsf{HH}_{\phi}^{p}(C) = \{(i,j) \mid C_{i,j} \geq \phi \|C\|_{p}\}$$

- ℓ_p - (ϕ, ϵ) -heavy-hitter ($0 < \epsilon \le \phi \le 1$): output a set $S \subseteq \{(i, j) \mid i, j \in [m]\}$ such that

 $\mathsf{HH}^p_\phi(C) \subseteq S \subseteq \mathsf{HH}^p_{\phi-\epsilon}(C)$

Pairs (A_i, B_j) that are similar \Rightarrow similarity join

Our Main Results – ℓ_p ($p \in [0, 2]$)

For simplicity, assume m = n

 For any p ∈ [0,2], a 2-round Õ(n/ε)-bit algorithm that approximates ||AB||_p within a (1 + ε) factor For simplicity, assume m = n

- For any $p \in [0, 2]$, a 2-round $\tilde{O}(n/\epsilon)$ -bit algorithm that approximates $||AB||_p$ within a $(1 + \epsilon)$ factor
 - For p = 0, this improves the previous result $\tilde{O}(n/\epsilon^2)$ (Van Gucht et al., PODS'15)
 - Same paper gives a lower bound of $\Omega(n/\epsilon^{2/3})$.

For simplicity, assume m = n

- For any $p \in [0, 2]$, a 2-round $\tilde{O}(n/\epsilon)$ -bit algorithm that approximates $||AB||_p$ within a $(1 + \epsilon)$ factor
 - For p = 0, this improves the previous result $\tilde{O}(n/\epsilon^2)$ (Van Gucht et al., PODS'15)
 - Same paper gives a lower bound of $\Omega(n/\epsilon^{2/3})$.

If we restrict the communication to be one-way, then we have a lower bound $\Omega(n/\epsilon^2)$.

Our Main Results – ℓ_{∞}

- O(1)-round algorithms that approximate $\|AB\|_{\infty}$
 - within a factor of $(2 + \epsilon)$ use $\tilde{O}(n^{1.5}/\epsilon)$ bits
 - within a factor of κ use $\tilde{O}(n^{1.5}/\kappa)$ bits

Our Main Results – ℓ_{∞}

- O(1)-round algorithms that approximate $\|AB\|_{\infty}$
 - within a factor of $(2 + \epsilon)$ use $\tilde{O}(n^{1.5}/\epsilon)$ bits
 - within a factor of κ use $\tilde{O}(n^{1.5}/\kappa)$ bits
- Any algorithm (regardless of the #rounds used) that approximates $\|AB\|_{\infty}$ within a factor of
 - within a factor of 2 needs $\Omega(n^2)$ bits
 - within a factor of $\kappa \geq 4$ needs $\Omega(n^{1.5}/\kappa)$ bits

Our Main Results – ℓ_{∞}

- O(1)-round algorithms that approximate $\|AB\|_{\infty}$
 - within a factor of $(2 + \epsilon)$ use $\tilde{O}(n^{1.5}/\epsilon)$ bits
 - within a factor of κ use $\tilde{O}(n^{1.5}/\kappa)$ bits
- Any algorithm (regardless of the #rounds used) that approximates $||AB||_{\infty}$ within a factor of
 - within a factor of 2 needs $\Omega(n^2)$ bits
 - within a factor of $\kappa \geq 4$ needs $\Omega(n^{1.5}/\kappa)$ bits
- The above results hold for binary matrices A and B.
 For general matrices A, B ∈ Σ^{n×n}, the bound is Õ(n²/κ²) bits (O(1)-round for UB, any round for LB)

Our Main Results – Heavy Hitters

• For **binary** matrices A and B, for any $p \in (0, 2]$, an O(1)-round $\tilde{O}(n + \frac{\phi}{\epsilon^2})$ -bit algorithm that computes ℓ_p - (ϕ, ϵ) -heavy-hitters

Our Main Results – Heavy Hitters

- For **binary** matrices A and B, for any $p \in (0, 2]$, an O(1)-round $\tilde{O}(n + \frac{\phi}{\epsilon^2})$ -bit algorithm that computes ℓ_p - (ϕ, ϵ) -heavy-hitters
- For general matrices A and B, for any $p \in (0, 2]$, we obtain O(1)-round $\tilde{O}(\frac{\sqrt{\phi}}{\epsilon} \cdot n)$ bits algorithms

Our Main Results – Heavy Hitters

- For **binary** matrices A and B, for any $p \in (0, 2]$, an O(1)-round $\tilde{O}(n + \frac{\phi}{\epsilon^2})$ -bit algorithm that computes ℓ_p - (ϕ, ϵ) -heavy-hitters
- For general matrices A and B, for any $p \in (0, 2]$, we obtain O(1)-round $\tilde{O}(\frac{\sqrt{\phi}}{\epsilon} \cdot n)$ bits algorithms

All of our results above can be easily extended to rectangular matrices where $A \in \Sigma^{m \times n}$ and $B \in \Sigma^{n \times m}$

- As mentioned, Van Gucht et al. PODS'15 studied the estimation of $\|AB\|_0$

Previous Results

- As mentioned, Van Gucht et al. PODS'15 studied the estimation of $\|AB\|_0$
- A number of recent works look at distributed linear algebra problems (Balcan et al. KDD'16; Boutsidis et al. STOC'16; Woodruff&Zhong, ICDE'16; etc.)

These works concern statistics estimation on C = A + B, compared with $C = A \cdot B$ studied in this paper

Previous Results

- As mentioned, Van Gucht et al. PODS'15 studied the estimation of $\|AB\|_0$
- A number of recent works look at distributed linear algebra problems (Balcan et al. KDD'16; Boutsidis et al. STOC'16; Woodruff&Zhong, ICDE'16; etc.)

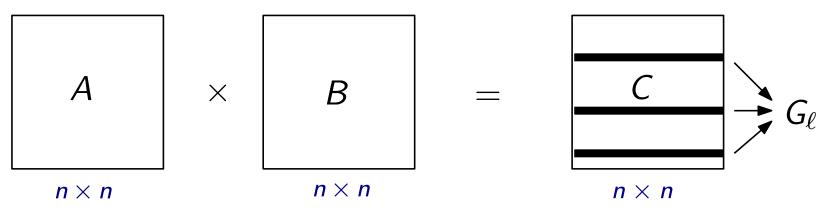
These works concern statistics estimation on C = A + B, compared with $C = A \cdot B$ studied in this paper

• Similar problems have been studied in the RAM model (Cohen&Lewis, J. Algorithms, '99; Pagh TOCT'13; etc.)

 $(1 + \epsilon)$ -approximate ℓ_0

$(1 + \epsilon)$ -approximate ℓ_0

- Alice holds $A \in \{0, 1\}^{n \times n}$, Bob holds $B \in \{0, 1\}^{n \times n}$
- Let $C = A \cdot B$. Goal: $(1 + \epsilon)$ -approximate $||C||_0$



High level idea:

- 1. First perform a rough estimation of the number of non-zero entries in the rows of C
- 2. Use the rough estimation to partition the rows of C to groups s.t. rows in the same group have similar #non-zero entries
- 3. Sample rows in each group of C with a probability propotional to the (estimated) average #non-zero entries of rows of the group
- 4. Use sampled rows to estimate #non-zero entries of C

$(1 + \epsilon)$ -approximate ℓ_0 (cont.)

- Alice holds $A \in \{0, 1\}^{n \times n}$, Bob holds $B \in \{0, 1\}^{n \times n}$
- Let $C = A \cdot B$. Goal: $(1 + \epsilon)$ -approximate $||C||_0$

Algorithm. Set $\beta = \sqrt{\epsilon}, \rho = \Theta(1/\epsilon)$

- 1. (Bob \rightarrow Alice) Use VanGucht et al.'s algo to get a $(1 + \beta)$ -approx (w.r.t. nnz of rows) of C (denoted by \tilde{C})
- 2. Alice partitions the *n* rows of \tilde{C} to $L = O(\log n/\beta)$ groups G_1, \ldots, G_L , s.t. G_ℓ contains all rows $i \in [n]$ with $(1+\beta)^\ell \leq \left\| \widetilde{C_{\ell,*}} \right\|_0 \leq (1+\beta)^{\ell+1}$
- 3. For each group ℓ , Alice samples each row $i \in G_{\ell}$ w.pr. $p_{\ell} = \frac{\rho}{\|\tilde{c}\|_{0}} \cdot \frac{\sum_{i \in G_{\ell}} \|\widetilde{c_{i,*}}\|_{0}}{|G_{\ell}|} \cdot A' : \text{matrix containing sampled rows of } A.$ Alice sends A' to Bob
- 4. Bob computes $C' \leftarrow A'B$, outputs $\sum_{\ell \in [L]} \sum_{i \in G_{\ell}} \frac{1}{p_{\ell}} \|C'_{i,*}\|_{0}$

$(1 + \epsilon)$ -approximate ℓ_0 (cont.)

- Alice holds $A \in \{0, 1\}^{n \times n}$, Bob holds $B \in \{0, 1\}^{n \times n}$
- Let $C = A \cdot B$. Goal: $(1 + \epsilon)$ -approximate $||C||_0$

Algorithm. Set $\beta = \sqrt{\epsilon}, \rho = \Theta(1/\epsilon)$

Correctness: expectation + variance estimation

- 1. (Bob \rightarrow Alice) Use VanGucht et al.'s algo to get a $(1 + \beta)$ -approx (w.r.t. nnz of rows) of C (denoted by \tilde{C})
- 2. Alice partitions the *n* rows of \tilde{C} to $L = O(\log n/\beta)$ groups G_1, \ldots, G_L , s.t. G_ℓ contains all rows $i \in [n]$ with $(1+\beta)^\ell \leq \left\| \widetilde{C_{\ell,*}} \right\|_0 \leq (1+\beta)^{\ell+1}$
- 3. For each group ℓ , Alice samples each row $i \in G_{\ell}$ w.pr. $p_{\ell} = \frac{\rho}{\|\tilde{c}\|_{0}} \cdot \frac{\sum_{i \in G_{\ell}} \|\widetilde{c_{i,*}}\|_{0}}{|G_{\ell}|}. A' : \text{matrix containing sampled rows of } A.$ Alice sends A' to Bob
- 4. Bob computes $C' \leftarrow A'B$, outputs $\sum_{\ell \in [L]} \sum_{i \in G_{\ell}} \frac{1}{p_{\ell}} \|C'_{i,*}\|_{0}$

$(1 + \epsilon)$ -approximate ℓ_0 (cont.)

- Alice holds $A \in \{0, 1\}^{n \times n}$, Bob holds $B \in \{0, 1\}^{n \times n}$
- Let $C = A \cdot B$. Goal: $(1 + \epsilon)$ -approximate $||C||_0$

Algorithm. Set $\beta = \sqrt{\epsilon}, \rho = \Theta(1/\epsilon)$

Correctness: expectation + variance estimation

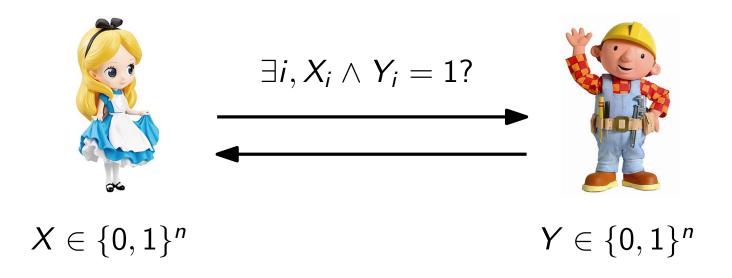
- 1. (Bob \rightarrow Alice) Use VanGucht et al.'s algo to get a $(1 + \beta)$ -approx (w.r.t. nnz of rows) of C (denoted by \tilde{C}) $\tilde{O}(n/\beta^2) = \tilde{O}(n/\epsilon)$ bits
- 2. Alice partitions the *n* rows of \tilde{C} to $L = O(\log n/\beta)$ groups G_1, \ldots, G_L , s.t. G_ℓ contains all rows $i \in [n]$ with $(1+\beta)^\ell \leq \left\| \widetilde{C_{\ell,*}} \right\|_0 \leq (1+\beta)^{\ell+1}$
- 3. For each group ℓ , Alice samples each row $i \in G_{\ell}$ w.pr.

 $p_{\ell} = \frac{\rho}{\|\tilde{c}\|_{0}} \cdot \frac{\sum_{i \in G_{\ell}} \|\widetilde{c_{i,*}}\|_{0}}{|G_{\ell}|}. A' : \text{matrix containing sampled rows of } A.$ Alice sends A' to Bob $\tilde{O}(n \cdot \rho) = \tilde{O}(n/\epsilon)$ bits

4. Bob computes $C' \leftarrow A'B$, outputs $\sum_{\ell \in [L]} \sum_{i \in G_{\ell}} \frac{1}{p_{\ell}} \|C'_{i,*}\|_{0}$

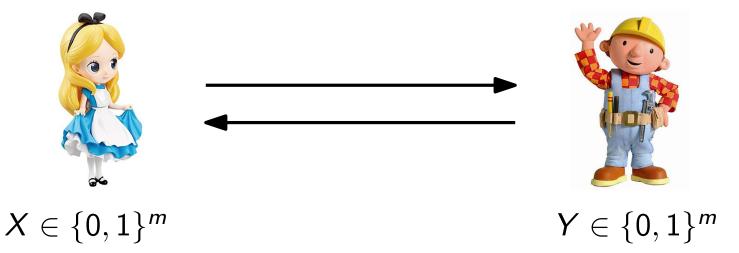
A lower bound (Van Gucht, Williams, Woodruff, Z. '15)

Primitive problem 1: Set Disjointness



Lemma. [Razborov '90] $\exists \mu, (X, Y) \sim \mu$, solving DISJ w.pr. 0.99 needs $\Omega(n)$ comm.

Primitive problem 2: Gap Hamming



Let $W_i = X_i$ XOR Y_i . Goal: compute

$$\mathsf{GAP-HAM}(X,Y) = \begin{cases} 0, & \text{if } \sum_{i \in [m]} W_i \leq \frac{m}{2} - \sqrt{m}, \\ 1, & \text{if } \sum_{i \in [m]} W_i \geq \frac{m}{2} + \sqrt{m}, \\ & \text{don't care, otherwise,} \end{cases}$$

Lemma. $\exists \nu, (X, Y) \sim \nu$, solving GAP-HAM w.pr. 0.99 needs to learn $\Omega(m)$ of W_i ($i \in [m]$) well ($I(W_i; \Pi) = \Omega(1)$)

For each i ∈ [m], choose (A_i, B_i) ~ μ where μ is a hard input distribution for set-disjointness.
 Define SUM(A, B) = ∑_{i∈[m]} DISJ(A_i, B_i). W.h.p.

 $\ell_0(AB) = SUM(A, B) + m(m-1).$

For each i ∈ [m], choose (A_i, B_i) ~ μ where μ is a hard input distribution for set-disjointness.
 Define SUM(A, B) = ∑_{i∈[m]} DISJ(A_i, B_i). W.h.p.

 $\ell_0(AB) = SUM(A, B) + m(m-1).$

• By composing GAP-HAM and DISJ, we can show that any rand. algo. that computes SUM(A, B) w.pr. 0.99 up to an additive error \sqrt{m} needs $\Omega(mn)$ comm.

For each i ∈ [m], choose (A_i, B_i) ~ μ where μ is a hard input distribution for set-disjointness.
 Define SUM(A, B) = ∑_{i∈[m]} DISJ(A_i, B_i). W.h.p.

 $\ell_0(AB) = SUM(A, B) + m(m-1).$

- By composing GAP-HAM and DISJ, we can show that any rand. algo. that computes SUM(A, B) w.pr. 0.99 up to an additive error \sqrt{m} needs $\Omega(mn)$ comm.
- Set $m = 1/\epsilon^{2/3}$ to make error $\sqrt{m} = \epsilon \cdot \ell_0(AB)$, getting an LB $\Omega(n/\epsilon^{2/3})$.

The main problem left open by our work:

 $O(n/\epsilon)$ UB vs. $\Omega(n/\epsilon^{2/3})$ LB

What is the right complexity?

The main problem left open by our work:

 $O(n/\epsilon)$ UB vs. $\Omega(n/\epsilon^{2/3})$ LB

What is the right complexity?

The difficulty: cannot set $m > 1/\epsilon^{2/3}$, since under the distribution μ we choose, w.h.p. each A_i will intersect each B_j $(j \neq i)$, and the term m(m-1) will "dominate" $\ell_0(AB)$. From another perspective,

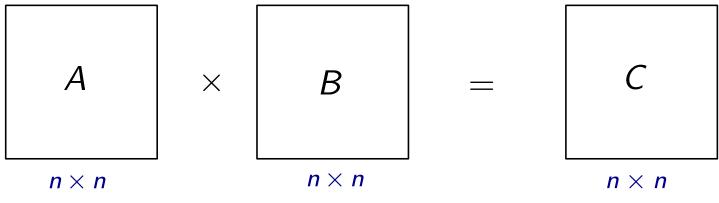
the primitive problems "overlap".

Need new techniques?

$(2+\epsilon)$ -approximate ℓ_{∞}

$(2+\epsilon)$ -approximate ℓ_{∞}

- Alice holds $A \in \{0, 1\}^{n \times n}$, Bob holds $B \in \{0, 1\}^{n \times n}$
- Let $C = A \cdot B$. Goal: $(2 + \epsilon)$ -approximate $||C||_{\infty}$



 $C^0 = A^0 \times B$

 $C^1 = A^1 \times B$

 $C^2 = A^2 \times B$

. . .

$$A^0 = A$$

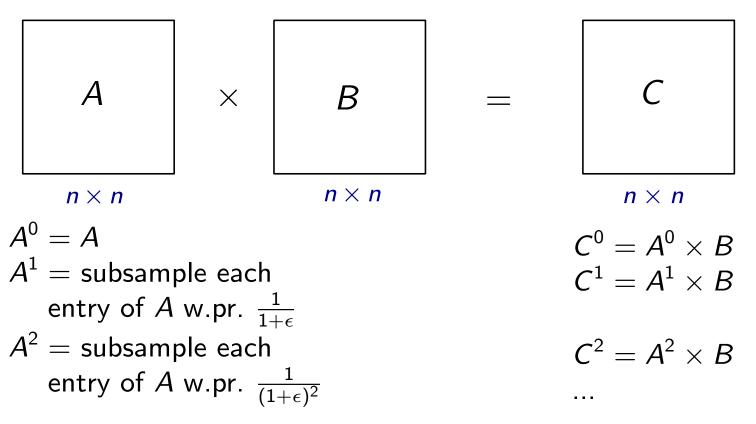
 $A^1 = \text{subsample each}$
entry of A w.pr. $\frac{1}{1+\epsilon}$
 $A^2 = \text{subsample each}$
entry of A w.pr. $\frac{1}{(1+\epsilon)^2}$

. . .

18-1

$(2+\epsilon)$ -approximate ℓ_{∞}

- Alice holds $A \in \{0, 1\}^{n \times n}$, Bob holds $B \in \{0, 1\}^{n \times n}$
- Let $C = A \cdot B$. Goal: $(2 + \epsilon)$ -approximate $||C||_{\infty}$



The idea: subsample C (via subsampling A) to a level ℓ s.t. (1) ℓ is as large as possible, or, $\ell_1(C^{\ell})$ is as small as possible (2) $\ell_{\infty}(C^{\ell}) \cdot (1+\epsilon)^{\ell}$ still approximates $\ell_{\infty}(C)$ well.

$(2 + \epsilon)$ -approximate ℓ_{∞} (cont.)

- Alice holds $A \in \{0, 1\}^{n \times n}$, Bob holds $B \in \{0, 1\}^{n \times n}$
- Let $C = A \cdot B$. Goal: $(2 + \epsilon)$ -approximate $||C||_{\infty}$

Algorithm Set $L = O(\log n/\epsilon), \gamma = \Theta(\log n/\epsilon^2)$

1. For
$$\ell = 0, 1, ..., L$$
, let $C^{\ell} \leftarrow A^{\ell} B$
 $A^{\ell} \Leftarrow \text{sample each '1' in } A \text{ w.pr. } p_{\ell} = \frac{1}{(1+\epsilon)^{\ell}}.$

2. Let ℓ^* be the smallest ℓ for which $\|C^{\ell}\|_1 \leq \gamma n^2$.

- 3. For each $j \in [n]$
 - (a) u_j : #'1's in *j*-th column of A^{ℓ^*} ; v_j : #'1's in *j*-th row of *B*
 - (b) If $u_j \leq v_j$, then Alice sends *j*-th column of A^{ℓ^*} to Bob; otherwise Bob sends *j*-th row of *B* to Alice
- 4. Alice and Bob use received information to compute matrices C_A and C_B respectively, s.t. $C_A + C_B = C^{\ell^*}$

5. Output max
$$\left\{\frac{\|C_A\|_{\infty}}{p_{\ell^*}}, \frac{\|C_B\|_{\infty}}{p_{\ell^*}}\right\}$$

$(2+\epsilon)$ -approximate ℓ_{∞} (cont.)

• Correctness

Lemma: With probability $1 - \frac{1}{n^2}$, $\frac{\|c^{\ell^*}\|_{\infty}}{p_{\ell^*}}$ approximates $\|C\|_{\infty}$ within a factor of $1 + \epsilon$.

Simple Fact: If $C_A + C_B = C^{\ell^*}$, then

$$\frac{\left\|C^{\ell^*}\right\|_{\infty}}{2} \leq \max\left\{\left\|C_A\right\|_{\infty}, \left\|C_B\right\|_{\infty}\right\} \leq \left\|C^{\ell^*}\right\|_{\infty}$$

Put together, $\max\left\{\frac{\|C_A\|_{\infty}}{p_{\ell^*}}, \frac{\|C_B\|_{\infty}}{p_{\ell^*}}\right\}$ approximates $\|C\|_{\infty}$ within a factor of $2 + \epsilon$.

$(2+\epsilon)$ -approximate ℓ_{∞} (cont.)

• Communication cost

Bottleneck:

For each $j \in [n]$

- (a) u_j : #'1's in *j*-th column of A^{ℓ^*} ; v_j : #'1's in *j*-th row of B
- (b) If $u_j \leq v_j$, then Alice sends *j*-th column of A^{ℓ^*} to Bob; otherwise Bob sends *j*-th row of *B* to Alice

$(2+\epsilon)$ -approximate ℓ_{∞} (cont.)

• Communication cost

Bottleneck:

For each $j \in [n]$

- (a) u_j : #'1's in *j*-th column of A^{ℓ^*} ; v_j : #'1's in *j*-th row of *B*
- (b) If $u_j \leq v_j$, then Alice sends *j*-th column of A^{ℓ^*} to Bob; otherwise Bob sends *j*-th row of *B* to Alice

For each $j \in [n]$, we analyze two cases:

- If $u_j, v_j > \sqrt{n}/\epsilon$, # such j is bounded by $\left\| C^{\ell^*} \right\|_1 / (\sqrt{n}/\epsilon)^2$ The comm. cost can be bounded by $\tilde{O}\left(\frac{n^{1.5}}{\epsilon}\right)$.
- If min $\{u_j, v_j\} \leq \sqrt{n}/\epsilon$, the communication is bounded by

$$\sum_{\substack{j:\min\{u_j,v_j\}\leq \frac{\sqrt{n}}{\epsilon}}}\min\{u_j,v_j\}\leq n\times \frac{\sqrt{n}}{\epsilon}\leq \frac{n^{1.5}}{\epsilon}.$$

A reduction from set-disjointness to $\ell_{\infty}(AB)$

1. Alice partitions $x \in \{0,1\}^{n^2/4}$ to n/2 chunks of size n/2 each, and uses them as rows to construct $A' \in \{0,1\}^{\frac{n}{2} \times \frac{n}{2}}$. Further, let

$$A = \left[\begin{array}{cc} A' & I \\ \mathbf{0} & \mathbf{0} \end{array} \right],$$

2. Similarly, Bob uses $y \in \{0,1\}^{n^2/4}$ to construct $B' \in \{0,1\}^{\frac{n}{2} \times \frac{n}{2}}$, and futher let

$$B = \left[\begin{array}{cc} I & \mathbf{0} \\ B' & \mathbf{0} \end{array} \right]$$

3. We have $||A \cdot B||_{\infty} = ||A' + B'||_{\infty}$, which is 2 if DISJ(x, y) = 1, and 1 otherwise.

Concluding Remarks

Main results:

• $(1 + \epsilon)$ -approximating ℓ_p ($p \in [0, 2]$) with $\Sigma = \mathbb{Z}$ using $\tilde{O}(n/\epsilon)$ comm. and 2 rounds.

• $(2 + \epsilon)$ -approximating ℓ_{∞} with $\Sigma = \{0, 1\}$ using $\tilde{O}(n^{1.5}/\epsilon)$ comm. and 4 rounds.

• ℓ_p - (ϕ, ϵ) -heavy-hitters with $\Sigma = \mathbb{Z}$ using $\tilde{O}(\frac{\sqrt{\phi}}{\epsilon}n)$ comm. and O(1) rounds; that with $\Sigma = \{0, 1\}$ using $\tilde{O}(n + \frac{\phi}{\epsilon^2})$ comm. and O(1) rounds.

Concluding Remarks

Main results:

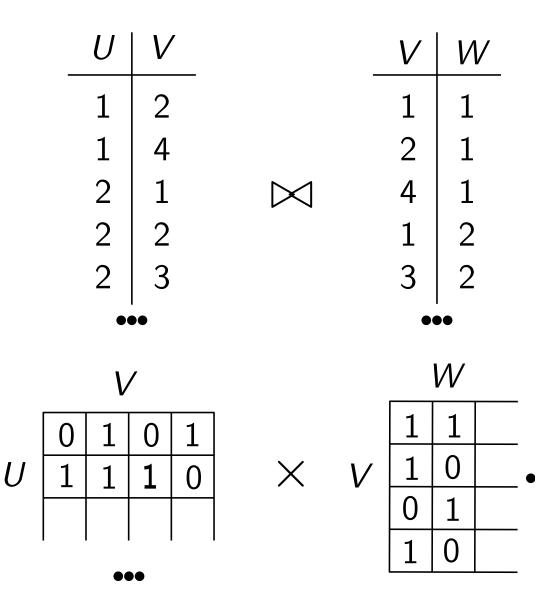
• $(1 + \epsilon)$ -approximating ℓ_p $(p \in [0, 2])$ with $\Sigma = \mathbb{Z}$ using $\tilde{O}(n/\epsilon)$ comm. and 2 rounds.

Open: close the gap between this UB and the $\Omega(n/\epsilon^{2/3})$ LB.

• $(2 + \epsilon)$ -approximating ℓ_{∞} with $\Sigma = \{0, 1\}$ using $\tilde{O}(n^{1.5}/\epsilon)$ comm. and 4 rounds. Open: better #rounds?

• ℓ_p - (ϕ, ϵ) -heavy-hitters with $\Sigma = \mathbb{Z}$ using $\tilde{O}(\frac{\sqrt{\phi}}{\epsilon}n)$ comm. and O(1) rounds; that with $\Sigma = \{0, 1\}$ using $\tilde{O}(n + \frac{\phi}{\epsilon^2})$ comm. and O(1) rounds. Open: tight LBs? Thank you! Questions?

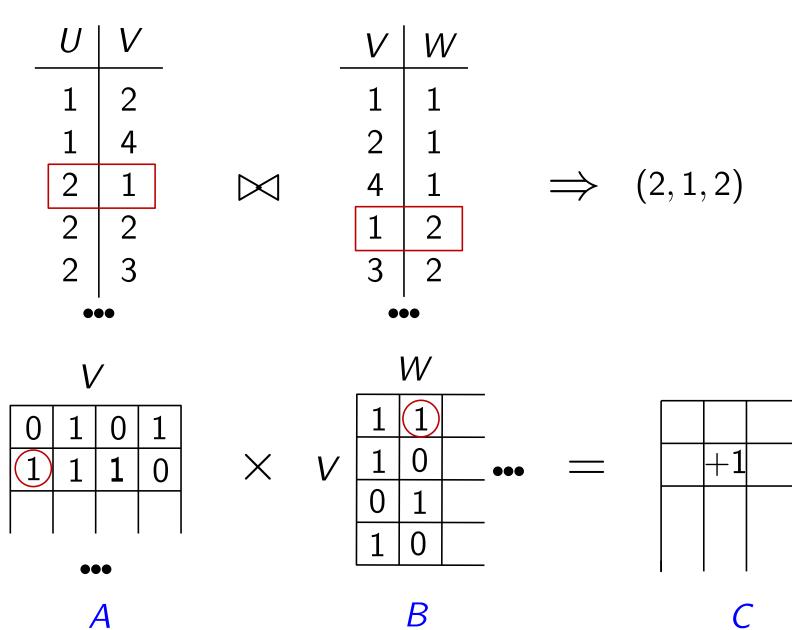
$\|C\|_1$ corresponds to natural join



В

A

$\|C\|_1$ corresponds to natural join



U