
1-1

Distributed Statistical Estimation of
Matrix Products with Applications

Simons Institute
October 18, 2018

Qin Zhang

IUB

David Woodruff

CMU

2-1

The Distributed Computation Model

Alice and Bob want to compute some function on
C = A× B

Goal: minimize communication and number of rounds

A ∈ {0, 1}m×n B ∈ {0, 1}n×m

p-norms,
heavy-hitters, . . .

The protocol can fail with prob. 0.01 (over its randomness)

Communication: sum of message lengths
(maximized over all choices of A, B, and randomness)

3-1

Statistics of Matrix Products: p-Norms

• Alice holds A ∈ {0, 1}m×n, Bob holds B ∈ {0, 1}n×m

• Let C = A · B. Alice and Bob want to approximate

‖C‖p =
(∑

i,j∈[n] |Ci,j |p
)1/p

3-2

Statistics of Matrix Products: p-Norms

• Alice holds A ∈ {0, 1}m×n, Bob holds B ∈ {0, 1}n×m

• Let C = A · B. Alice and Bob want to approximate

‖C‖p =
(∑

i,j∈[n] |Ci,j |p
)1/p

– p = 0: number of non-zero entries of C
⇒ size of set-intersection join

i-th row of A as set Ai , j-th column of B as set Bj ,
compute #(i , j) s.t. Ai ∩ Bj 6= ∅

3-3

Statistics of Matrix Products: p-Norms

• Alice holds A ∈ {0, 1}m×n, Bob holds B ∈ {0, 1}n×m

• Let C = A · B. Alice and Bob want to approximate

‖C‖p =
(∑

i,j∈[n] |Ci,j |p
)1/p

– p = 0: number of non-zero entries of C
⇒ size of set-intersection join

i-th row of A as set Ai , j-th column of B as set Bj ,
compute #(i , j) s.t. Ai ∩ Bj 6= ∅

– p = 1: sum of entries of C
⇒ size of corresponding natural join

compute #(i , k, j) s.t. k ∈ Ai ∩ Bj

3-4

Statistics of Matrix Products: p-Norms

• Alice holds A ∈ {0, 1}m×n, Bob holds B ∈ {0, 1}n×m

• Let C = A · B. Alice and Bob want to approximate

‖C‖p =
(∑

i,j∈[n] |Ci,j |p
)1/p

– p = 0: number of non-zero entries of C
⇒ size of set-intersection join

i-th row of A as set Ai , j-th column of B as set Bj ,
compute #(i , j) s.t. Ai ∩ Bj 6= ∅

– p = 1: sum of entries of C
⇒ size of corresponding natural join

compute #(i , k, j) s.t. k ∈ Ai ∩ Bj

size estimation is the key to
database query optimization

3-5

Statistics of Matrix Products: p-Norms

• Alice holds A ∈ {0, 1}m×n, Bob holds B ∈ {0, 1}n×m

• Let C = A · B. Alice and Bob want to approximate

‖C‖p =
(∑

i,j∈[n] |Ci,j |p
)1/p

– p = 0: number of non-zero entries of C
⇒ size of set-intersection join

i-th row of A as set Ai , j-th column of B as set Bj ,
compute #(i , j) s.t. Ai ∩ Bj 6= ∅

– p = 1: sum of entries of C
⇒ size of corresponding natural join

compute #(i , k, j) s.t. k ∈ Ai ∩ Bj

– p =∞: maximum entry of C
⇒ most “similar” (Ai ,Bj) pair

size estimation is the key to
database query optimization

4-1

Application of set-intersection join

A1 S1,S4,S9,S13

A2 S2,S9,S10

Am S6,S7,S8,S15

B1

B2

Bm

S2,S3,S4

S3,S4,S9,S11

S4,S8

./

Applicant Skills Skills Opening

Find all candidate (Applicant, Opening) pairs

5-1

Statistics of Matrix Products: Heavy Hitters

• Alice holds A ∈ {0, 1}m×n, Bob holds B ∈ {0, 1}n×m

• Let C = A · B, and let

HHp
φ(C) = {(i , j) | Ci,j ≥ φ ‖C‖p}

5-2

Statistics of Matrix Products: Heavy Hitters

• Alice holds A ∈ {0, 1}m×n, Bob holds B ∈ {0, 1}n×m

• Let C = A · B, and let

HHp
φ(C) = {(i , j) | Ci,j ≥ φ ‖C‖p}

– `p-(φ, ε)-heavy-hitter (0 < ε ≤ φ ≤ 1): output a set
S ⊆ {(i , j) | i , j ∈ [m]} such that

HHp
φ(C) ⊆ S ⊆ HHp

φ−ε(C)

Pairs (Ai ,Bj) that are similar ⇒ similarity join

6-1

Our Main Results – `p (p ∈ [0, 2])

• For any p ∈ [0, 2], a 2-round Õ(n/ε)-bit algorithm
that approximates ‖AB‖p within a (1 + ε) factor

For simplicity, assume m = n

6-2

Our Main Results – `p (p ∈ [0, 2])

• For any p ∈ [0, 2], a 2-round Õ(n/ε)-bit algorithm
that approximates ‖AB‖p within a (1 + ε) factor

– For p = 0, this improves the previous result
Õ(n/ε2) (Van Gucht et al., PODS’15)

– Same paper gives a lower bound of Ω(n/ε2/3).

For simplicity, assume m = n

6-3

Our Main Results – `p (p ∈ [0, 2])

• For any p ∈ [0, 2], a 2-round Õ(n/ε)-bit algorithm
that approximates ‖AB‖p within a (1 + ε) factor

– For p = 0, this improves the previous result
Õ(n/ε2) (Van Gucht et al., PODS’15)

– Same paper gives a lower bound of Ω(n/ε2/3).

If we restrict the communication to be one-way,
then we have a lower bound Ω(n/ε2).

For simplicity, assume m = n

7-1

Our Main Results – `∞

• O(1)-round algorithms that approximate ‖AB‖∞
– within a factor of (2 + ε) use Õ(n1.5/ε) bits
– within a factor of κ use Õ(n1.5/κ) bits

7-2

Our Main Results – `∞

• O(1)-round algorithms that approximate ‖AB‖∞
– within a factor of (2 + ε) use Õ(n1.5/ε) bits
– within a factor of κ use Õ(n1.5/κ) bits

• Any algorithm (regardless of the #rounds used) that
approximates ‖AB‖∞ within a factor of
– within a factor of 2 needs Ω(n2) bits
– within a factor of κ ≥ 4 needs Ω(n1.5/κ) bits

7-3

Our Main Results – `∞

• O(1)-round algorithms that approximate ‖AB‖∞
– within a factor of (2 + ε) use Õ(n1.5/ε) bits
– within a factor of κ use Õ(n1.5/κ) bits

• Any algorithm (regardless of the #rounds used) that
approximates ‖AB‖∞ within a factor of
– within a factor of 2 needs Ω(n2) bits
– within a factor of κ ≥ 4 needs Ω(n1.5/κ) bits

• The above results hold for binary matrices A and B.
For general matrices A,B ∈ Σn×n, the bound is
Θ̃(n2/κ2) bits (O(1)-round for UB, any round for LB)

8-1

Our Main Results – Heavy Hitters

• For binary matrices A and B, for any p ∈ (0, 2], an
O(1)-round Õ(n + φ

ε2)-bit algorithm that computes
`p-(φ, ε)-heavy-hitters

8-2

Our Main Results – Heavy Hitters

• For binary matrices A and B, for any p ∈ (0, 2], an
O(1)-round Õ(n + φ

ε2)-bit algorithm that computes
`p-(φ, ε)-heavy-hitters

• For general matrices A and B, for any p ∈ (0, 2], we

obtain O(1)-round Õ(
√
φ
ε · n) bits algorithms

8-3

Our Main Results – Heavy Hitters

• For binary matrices A and B, for any p ∈ (0, 2], an
O(1)-round Õ(n + φ

ε2)-bit algorithm that computes
`p-(φ, ε)-heavy-hitters

• For general matrices A and B, for any p ∈ (0, 2], we

obtain O(1)-round Õ(
√
φ
ε · n) bits algorithms

All of our results above can be easily extended to
rectangular matrices where A ∈ Σm×n and B ∈ Σn×m

9-1

Previous Results

• As mentioned, Van Gucht et al. PODS’15 studied the
estimation of ‖AB‖0

9-2

Previous Results

• As mentioned, Van Gucht et al. PODS’15 studied the
estimation of ‖AB‖0

• A number of recent works look at distributed linear
algebra problems (Balcan et al. KDD’16; Boutsidis et
al. STOC’16; Woodruff&Zhong, ICDE’16; etc.)

These works concern statistics estimation on C = A+B,
compared with C = A · B studied in this paper

9-3

Previous Results

• As mentioned, Van Gucht et al. PODS’15 studied the
estimation of ‖AB‖0

• A number of recent works look at distributed linear
algebra problems (Balcan et al. KDD’16; Boutsidis et
al. STOC’16; Woodruff&Zhong, ICDE’16; etc.)

These works concern statistics estimation on C = A+B,
compared with C = A · B studied in this paper

• Similar problems have been studied in the RAM model
(Cohen&Lewis, J. Algorithms, ’99; Pagh TOCT’13; etc.)

10-1

(1 + ε)-approximate `0

11-1

• Alice holds A ∈ {0, 1}n×n, Bob holds B ∈ {0, 1}n×n

• Let C = A · B. Goal: (1 + ε)-approximate ‖C‖0

(1 + ε)-approximate `0

High level idea:

1. First perform a rough estimation of the number of non-zero
entries in the rows of C

2. Use the rough estimation to partition the rows of C to groups
s.t. rows in the same group have similar #non-zero entries

3. Sample rows in each group of C with a probability propotional to
the (estimated) average #non-zero entries of rows of the group

4. Use sampled rows to estimate #non-zero entries of C

× =A B C

n× n n× n n × n

G`
B

12-1

(1 + ε)-approximate `0 (cont.)

• Alice holds A ∈ {0, 1}n×n, Bob holds B ∈ {0, 1}n×n

• Let C = A · B. Goal: (1 + ε)-approximate ‖C‖0

Algorithm. Set β =
√
ε, ρ = Θ(1/ε)

1. (Bob → Alice) Use VanGucht et al.’s algo to get a (1 + β)-approx
(w.r.t. nnz of rows) of C (denoted by C̃)

2. Alice partitions the n rows of C̃ to L = O(log n/β) groups
G1, . . . ,GL, s.t. G` contains all rows i ∈ [n] with

(1 + β)` ≤
∥∥∥C̃`,∗∥∥∥

0
≤ (1 + β)`+1

3. For each group `, Alice samples each row i ∈ G` w.pr.

p` = ρ

‖C̃‖
0

·
∑

i∈G`‖C̃i,∗‖0
|G`|

. A′ : matrix containing sampled rows of A.

Alice sends A′ to Bob

4. Bob computes C ′ ← A′B, outputs
∑
`∈[L]

∑
i∈G`

1
p`

∥∥C ′i,∗∥∥0

12-2

(1 + ε)-approximate `0 (cont.)

• Alice holds A ∈ {0, 1}n×n, Bob holds B ∈ {0, 1}n×n

• Let C = A · B. Goal: (1 + ε)-approximate ‖C‖0

Algorithm. Set β =
√
ε, ρ = Θ(1/ε)

1. (Bob → Alice) Use VanGucht et al.’s algo to get a (1 + β)-approx
(w.r.t. nnz of rows) of C (denoted by C̃)

2. Alice partitions the n rows of C̃ to L = O(log n/β) groups
G1, . . . ,GL, s.t. G` contains all rows i ∈ [n] with

(1 + β)` ≤
∥∥∥C̃`,∗∥∥∥

0
≤ (1 + β)`+1

3. For each group `, Alice samples each row i ∈ G` w.pr.

p` = ρ

‖C̃‖
0

·
∑

i∈G`‖C̃i,∗‖0
|G`|

. A′ : matrix containing sampled rows of A.

Alice sends A′ to Bob

4. Bob computes C ′ ← A′B, outputs
∑
`∈[L]

∑
i∈G`

1
p`

∥∥C ′i,∗∥∥0

Correctness: expectation
+ variance estimation

12-3

(1 + ε)-approximate `0 (cont.)

• Alice holds A ∈ {0, 1}n×n, Bob holds B ∈ {0, 1}n×n

• Let C = A · B. Goal: (1 + ε)-approximate ‖C‖0

Algorithm. Set β =
√
ε, ρ = Θ(1/ε)

1. (Bob → Alice) Use VanGucht et al.’s algo to get a (1 + β)-approx
(w.r.t. nnz of rows) of C (denoted by C̃)

2. Alice partitions the n rows of C̃ to L = O(log n/β) groups
G1, . . . ,GL, s.t. G` contains all rows i ∈ [n] with

(1 + β)` ≤
∥∥∥C̃`,∗∥∥∥

0
≤ (1 + β)`+1

3. For each group `, Alice samples each row i ∈ G` w.pr.

p` = ρ

‖C̃‖
0

·
∑

i∈G`‖C̃i,∗‖0
|G`|

. A′ : matrix containing sampled rows of A.

Alice sends A′ to Bob

4. Bob computes C ′ ← A′B, outputs
∑
`∈[L]

∑
i∈G`

1
p`

∥∥C ′i,∗∥∥0

Correctness: expectation
+ variance estimation

Õ(n · ρ) = Õ(n/ε) bits

Õ(n/β2) = Õ(n/ε) bits

13-1

A lower bound (Van Gucht, Williams, Woodruff, Z. ’15)

X ∈ {0, 1}n Y ∈ {0, 1}n

∃i ,Xi ∧ Yi = 1?

Lemma. [Razborov ’90]

∃µ, (X ,Y) ∼ µ, solving DISJ w.pr. 0.99 needs Ω(n) comm.

Primitive problem 1: Set Disjointness

14-1

A lower bound (cont.)

X ∈ {0, 1}m Y ∈ {0, 1}m

Let Wi = Xi XOR Yi . Goal: compute

GAP-HAM(X ,Y) =


0, if

∑
i∈[m] Wi ≤ m

2
−
√
m,

1, if
∑

i∈[m] Wi ≥ m
2

+
√
m,

don’t care, otherwise,

Lemma. ∃ν, (X ,Y) ∼ ν, solving GAP-HAM w.pr. 0.99
needs to learn Ω(m) of Wi (i ∈ [m]) well

Primitive problem 2: Gap Hamming

(I (Wi ; Π) = Ω(1))

15-1

A lower bound (cont.)

• For each i ∈ [m], choose (Ai ,Bi) ∼ µ where µ is a
hard input distribution for set-disjointness.

Define SUM(A,B) =
∑

i∈[m] DISJ(Ai ,Bi). W.h.p.

`0(AB) = SUM(A,B) + m(m − 1).

15-2

A lower bound (cont.)

• For each i ∈ [m], choose (Ai ,Bi) ∼ µ where µ is a
hard input distribution for set-disjointness.

Define SUM(A,B) =
∑

i∈[m] DISJ(Ai ,Bi). W.h.p.

`0(AB) = SUM(A,B) + m(m − 1).

• By composing GAP-HAM and DISJ, we can show that
any rand. algo. that computes SUM(A,B) w.pr. 0.99
up to an additive error

√
m needs Ω(mn) comm.

15-3

A lower bound (cont.)

• For each i ∈ [m], choose (Ai ,Bi) ∼ µ where µ is a
hard input distribution for set-disjointness.

Define SUM(A,B) =
∑

i∈[m] DISJ(Ai ,Bi). W.h.p.

`0(AB) = SUM(A,B) + m(m − 1).

• By composing GAP-HAM and DISJ, we can show that
any rand. algo. that computes SUM(A,B) w.pr. 0.99
up to an additive error

√
m needs Ω(mn) comm.

• Set m = 1/ε2/3 to make error
√
m = ε · `0(AB),

getting an LB Ω(n/ε2/3).

16-1

The open problem

The main problem left open by our work:

O(n/ε) UB vs. Ω(n/ε2/3) LB

What is the right complexity?

16-2

The open problem

The main problem left open by our work:

O(n/ε) UB vs. Ω(n/ε2/3) LB

What is the right complexity?

The difficulty: cannot set m > 1/ε2/3, since under
the distribution µ we choose, w.h.p. each Ai will
intersect each Bj (j 6= i), and the term m(m− 1) will
“dominate” `0(AB). From another perspective,

the primitive problems “overlap”.

Need new techniques?

17-1

(2 + ε)-approximate `∞

18-1

(2 + ε)-approximate `∞

A0 = A
A1 = subsample each

entry of A w.pr. 1
1+ε

A2 = subsample each
entry of A w.pr. 1

(1+ε)2

...

C 0 = A0 × B
C 1 = A1 × B

C 2 = A2 × B
...

× =A B C

n× n n× n n × n

B

• Alice holds A ∈ {0, 1}n×n, Bob holds B ∈ {0, 1}n×n

• Let C = A · B. Goal: (2 + ε)-approximate ‖C‖∞

18-2

(2 + ε)-approximate `∞

A0 = A
A1 = subsample each

entry of A w.pr. 1
1+ε

A2 = subsample each
entry of A w.pr. 1

(1+ε)2

...

C 0 = A0 × B
C 1 = A1 × B

C 2 = A2 × B
...

× =A B C

n× n n× n n × n

B

• Alice holds A ∈ {0, 1}n×n, Bob holds B ∈ {0, 1}n×n

• Let C = A · B. Goal: (2 + ε)-approximate ‖C‖∞

The idea: subsample C (via subsampling A) to a level ` s.t.
(1) ` is as large as possible, or, `1(C `) is as small as possible
(2) `∞(C `) · (1 + ε)` still approximates `∞(C) well.

19-1

(2 + ε)-approximate `∞ (cont.)

Algorithm Set L = O(log n/ε), γ = Θ(log n/ε2)

1. For ` = 0, 1, . . . , L, let C ` ← A`B

A` ⇐ sample each ‘1’ in A w.pr. p` = 1
(1+ε)`

.

2. Let `∗ be the smallest ` for which
∥∥C `∥∥

1
≤ γn2.

3. For each j ∈ [n]

(a) uj : #‘1’s in j-th column of A`
∗

;
vj : #‘1’s in j-th row of B

(b) If uj ≤ vj , then Alice sends j-th column of A`
∗

to Bob;
otherwise Bob sends j-th row of B to Alice

4. Alice and Bob use received information to compute matrices CA

and CB respectively, s.t. CA + CB = C `
∗

5. Output max
{
‖CA‖∞

p`∗
,
‖CB‖∞

p`∗

}

• Alice holds A ∈ {0, 1}n×n, Bob holds B ∈ {0, 1}n×n

• Let C = A · B. Goal: (2 + ε)-approximate ‖C‖∞

20-1

(2 + ε)-approximate `∞ (cont.)

Lemma: With probability 1− 1
n2 ,∥∥∥C`∗∥∥∥

∞
p`∗

approximates ‖C‖∞ within a factor of 1 + ε.

Simple Fact: If CA + CB = C `
∗
, then∥∥C `∗∥∥∞

2
≤ max {‖CA‖∞ , ‖CB‖∞} ≤

∥∥∥C `∗∥∥∥
∞

• Correctness

Put together, max
{
‖CA‖∞
p`∗

,
‖CB‖∞
p`∗

}
approximates

‖C‖∞ within a factor of 2 + ε.

21-1

(2 + ε)-approximate `∞ (cont.)

• Communication cost

For each j ∈ [n]

(a) uj : #‘1’s in j-th column of A`
∗
;

vj : #‘1’s in j-th row of B

(b) If uj ≤ vj , then Alice sends j-th column of A`
∗
to Bob;

otherwise Bob sends j-th row of B to Alice

Bottleneck:

21-2

(2 + ε)-approximate `∞ (cont.)

• Communication cost

For each j ∈ [n]

(a) uj : #‘1’s in j-th column of A`
∗
;

vj : #‘1’s in j-th row of B

(b) If uj ≤ vj , then Alice sends j-th column of A`
∗
to Bob;

otherwise Bob sends j-th row of B to Alice

Bottleneck:

For each j ∈ [n], we analyze two cases:

• If uj , vj >
√
n/ε, # such j is bounded by

∥∥∥C `∗∥∥∥
1

/
(
√
n/ε)2

The comm. cost can be bounded by Õ
(

n1.5

ε

)
.

• If min{uj , vj} ≤
√
n/ε, the communication is bounded by∑

j :min{uj ,vj}≤
√

n
ε

min{uj , vj} ≤ n ×
√
n

ε
≤ n1.5

ε
.

22-1

A reduction from set-disjointness to `∞(AB)

1. Alice partitions x ∈ {0, 1}n
2/4 to n/2 chunks of size

n/2 each, and uses them as rows to construct
A′ ∈ {0, 1}

n
2
× n

2 . Further, let

A =

[
A′ I
0 0

]
,

2. Similarly, Bob uses y ∈ {0, 1}n
2/4 to construct

B ′ ∈ {0, 1}
n
2
× n

2 , and futher let

B =

[
I 0
B ′ 0

]
.

3. We have ‖A · B‖∞ = ‖A′ + B ′‖∞, which is 2 if
DISJ(x , y) = 1, and 1 otherwise.

A Lower Bound for `∞ (cont.)

23-1

Concluding Remarks

Main results:

• (1 + ε)-approximating `p (p ∈ [0, 2]) with Σ = Z
using Õ(n/ε) comm. and 2 rounds.

• (2 + ε)-approximating `∞ with Σ = {0, 1} using
Õ(n1.5/ε) comm. and 4 rounds.

• `p-(φ, ε)-heavy-hitters with Σ = Z using Õ(
√
φ
ε n)

comm. and O(1) rounds;
that with Σ = {0, 1} using Õ(n + φ

ε2) comm. and
O(1) rounds.

23-2

Concluding Remarks

Main results:

• (1 + ε)-approximating `p (p ∈ [0, 2]) with Σ = Z
using Õ(n/ε) comm. and 2 rounds.

• (2 + ε)-approximating `∞ with Σ = {0, 1} using
Õ(n1.5/ε) comm. and 4 rounds.

• `p-(φ, ε)-heavy-hitters with Σ = Z using Õ(
√
φ
ε n)

comm. and O(1) rounds;
that with Σ = {0, 1} using Õ(n + φ

ε2) comm. and
O(1) rounds.

Open: close the gap between this UB
and the Ω(n/ε2/3) LB.

Open: tight LBs?

Open: better #rounds?

24-1

Thank you!
Questions?

25-1

‖C‖1 corresponds to natural join

U V V W

1 2
1 4
2 1
2 2
2 3

1 1
2 1
4 1
1 2
3 2

0 1
0

0 1
1 1 11

1
1

1

1

10
0

0

×U

V

V

W

./

A B

25-2

‖C‖1 corresponds to natural join

U V V W

1 2
1 4
2 1
2 2
2 3

1 1
2 1
4 1
1 2
3 2

0 1
0

0 1
1 1 11

1
1

1

1

10
0

0

× +1=U

V

V

W

./

A B C

⇒ (2, 1, 2)

