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The Distributed Computation Model

p-norms,
heavy-hitters, ...

A c {O, 1}m><n B c {O, 1}n><m

Alice and Bob want to compute some function on
C=AxB

Goal: minimize communication and number of rounds
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Statistics of Matrix Products: p-Norms

e Alice holds A € {0,1}™*", Bob holds B € {0,1}"7*"™

o Llet C = A- B. Alice and Bob want to approximate

1/p
1€l = (e 1Gl?)
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Statistics of Matrix Products: p-Norms

e Alice holds A € {0,1}™*", Bob holds B € {0,1}"7*"™

o Llet C = A- B. Alice and Bob want to approximate
1/p
1€l = (et 1€il?)

— p = 0: number of non-zero entries of C
= size of set-intersection join

i-th row of A as set A;, j-th column of B as set B;,
compute #(i,j) s.t. Ain B; #£ ()
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Statistics of Matrix Products: p-Norms

e Alice holds A € {0,1}™*", Bob holds B € {0,1}"7*"™

o Llet C = A- B. Alice and Bob want to approximate
1/p
ICll, = (et Cil?)

— p = 0: number of non-zero entries of C
= size of set-intersection join
i-th row of A as set A;, j-th column of B as set B;,
compute #(i,j) st. ANB; #0
— p = 1: sum of entries of C
= size of corresponding natural join
compute #(i, k,j) s.t. k € AiN B;

3-3



Statistics of Matrix Products: p-Norms

e Alice holds A € {0,1}™*", Bob holds B € {0,1}"7*"™

o Llet C = A- B. Alice and Bob want to approximate
1
||C||p — (Zije[n] ’Cij|p) /P size estimation is the key to

database query optimization
— p = 0: number of non-zero entries of C
= size of set-intersection join
i-th row of A as set A;, j-th column of B as set B;,
compute #(i,j) st. ANB; #0
— p = 1: sum of entries of C
= size of corresponding natural join
compute #(i, k,j) s.t. k € AiN B;
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Statistics of Matrix Products: p-Norms

e Alice holds A € {0,1}™*", Bob holds B € {0,1}"7*"™

o Llet C = A- B. Alice and Bob want to approximate

Pl/p i timation is the key t
— . Size estimation IS € Ke @)
ICll, = (et Cil?) e key
database query optimization
— p = 0: number of non-zero entries of C
= size of set-intersection join

i-th row of A as set A;, j-th column of B as set B;,
compute #(i,j) s.t. Ain B; #£ ()

— p = 1: sum of entries of C
= size of corresponding natural join
compute #(i, k,j) s.t. k € AiN B;

— p = 00: maximum entry of C
= most “similar” (A;, Bj) pair
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Application of set-intersection join

4-1

Applicant  Skills

Al 517 547 597 S13
Az | 52,50, S10

Am| Se,57,5s, Si5

Find all candidate (Applicant,

Skills Opening

52,53, 5 B4
537547597511 BZ

547 58 Bm

Opening) pairs




Statistics of Matrix Products: Heavy Hitters

e Alice holds A € {0,1}"*", Bob holds B € {0, 1}"*"™
o Llet C =A-B, and let

HH(C) = {(i,j) | Cij = o IC|l,)}
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Statistics of Matrix Products: Heavy Hitters

e Alice holds A € {0,1}"*", Bob holds B € {0, 1}"*"™
o Llet C =A-B, and let

HHP(C) ={(,J) | Gij = ¢|[C],}

— {p-(@, €)-heavy-hitter (0 < e < ¢ < 1): output a set
S CA(i,j) | i,j € [m]} such that

HHZ(C) € S C HHY_ (C)

Pairs (A;, Bj) that are similar = similarity join

5-2



Our Main Results — ¢, (p € [0, 2])

For simplicity, assume m = n

e For any p € [0,2], a 2-round O(n/e)-bit algorithm
that approximates ||AB|| , within a (1 + €) factor
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Our Main Results — ¢, (p € [0, 2])

For simplicity, assume m = n

e For any p € [0,2], a 2-round O(n/e)-bit algorithm
that approximates ||AB|| , within a (1 + €) factor

— For p =0, this improves the previous result
O(n/e?) (Van Gucht et al., PODS'15)

— Same paper gives a lower bound of Q(n/e?/3).
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Our Main Results — ¢, (p € [0, 2])

For simplicity, assume m = n

e For any p € [0,2], a 2-round O(n/e)-bit algorithm
that approximates ||AB|| , within a (1 + €) factor

— For p =0, this improves the previous result
O(n/e?) (Van Gucht et al., PODS'15)

— Same paper gives a lower bound of Q(n/e?/3).

If we restrict the communication to be one-way,
then we have a lower bound Q(n/¢?).
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Our Main Results — 7,

e O(1)-round algorithms that approximate ||AB]|

— within a factor of (2 + ¢) use O(n'5 /) bits
— within a factor of k use O(n'/k) bits

7-1



Our Main Results — 7,

e O(1)-round algorithms that approximate ||AB]|

— within a factor of (2 + ¢) use O(n'5 /) bits
— within a factor of k use O(n'/k) bits

e Any algorithm (regardless of the #rounds used) that
approximates ||AB]||,_ within a factor of
— within a factor of 2 needs Q(n?) bits
— within a factor of kK > 4 needs Q(n'>/k) bits
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Our Main Results — 7,

e O(1)-round algorithms that approximate ||AB]|

— within a factor of (2 + ¢) use O(n'5 /) bits
— within a factor of k use O(n'/k) bits

e Any algorithm (regardless of the #rounds used) that
approximates ||AB]||,_ within a factor of
— within a factor of 2 needs Q(n?) bits
— within a factor of kK > 4 needs Q(n'>/k) bits

e The above results hold for binary matrices A and B.
Eor general matrices A, B € 2"*", the bound is
©(n?/k?) bits (O(1)-round for UB, any round for LB)
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Our Main Results — Heavy Hitters

e For binary matrices A and B, for any p € (0,2], an
O(1)-round O(n + %)—bit algorithm that computes
lp-(¢, €)-heavy-hitters
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Our Main Results — Heavy Hitters

e For binary matrices A and B, for any p € (0,2], an
O(1)-round O(n + %)—bit algorithm that computes
lp-(¢, €)-heavy-hitters

e For general matrices A and B, for any p € (0, 2], we
obtain O(1)-round f')(\/Ta - n) bits algorithms
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Our Main Results — Heavy Hitters

e For binary matrices A and B, for any p € (0,2], an
O(1)-round O(n + eig)—bit algorithm that computes
lp-(¢, €)-heavy-hitters

e For general matrices A and B, for any p € (0, 2], we
obtain O(1)-round f')(\/Ta - n) bits algorithms

All of our results above can be easily extended to
rectangular matrices where A € X™*" and B € >"*™
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Previous Results

e As mentioned, Van Gucht et al. PODS'15 studied the
estimation of ||AB||,
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Previous Results

e As mentioned, Van Gucht et al. PODS'15 studied the
estimation of ||AB||,

e A number of recent works look at distributed linear
algebra problems (Balcan et al. KDD'16; Boutsidis et
al. STOC'16; Woodruff&Zhong, ICDE’16; etc.)

These works concern statistics estimation on C = A+ B,
compared with C = A - B studied in this paper
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Previous Results

e As mentioned, Van Gucht et al. PODS'15 studied the
estimation of ||AB||,

e A number of recent works look at distributed linear
algebra problems (Balcan et al. KDD'16; Boutsidis et
al. STOC'16; Woodruff&Zhong, ICDE’16; etc.)

These works concern statistics estimation on C = A+ B,
compared with C = A - B studied in this paper

e Similar problems have been studied in the RAM model
(Cohen&Lewis, J. Algorithms, '99; Pagh TOCT'13; etc.)
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(1 + €)-approximate £



(1 + €)-approximate /g

e Alice holds A € {0,1}"%" Bob holds B € {0,1}"*"
o Let C=A-B. Goal: (1+ €)-approximate ||C||,

A X B — C \
6
—
nxn nxn nxn
High level idea:

1. First perform a rough estimation of the number of non-zero
entries in the rows of C

2. Use the rough estimation to partition the rows of C to groups
s.t. rows in the same group have similar #non-zero entries

3. Sample rows in each group of C with a probability propotional to
the (estimated) average #non-zero entries of rows of the group

4. Use sampled rows to estimate #non-zero entries of C
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(1 + €)-approximate ¢y (cont.)

e Alice holds A € {0,1}"%" Bob holds B € {0,1}"*"
o Let C=A-B. Goal: (1+ €)-approximate ||C||,

Algorithm. Set 5 = /e, p = ©(1/¢)

1. (Bob — Alice) Use VanGucht et al.’s algo to get a (1 + 3)-approx
(w.r.t. nnz of rows) of C (denoted by C)

2. Alice partitions the n rows of C to L = O(log n/3) groups
Gi, ..., G, s.t. Gy contains all rows i € [n] with

1+8) < |G| = @+8)"

3. For each group £, Alice samples each row i € Gy w.pr.

Siee, |Gl
_ _p . ZieGplliTh*llg
PE= TeTl, 1G]

Alice sends A’ to Bob

. A’ . matrix containing sampled rows of A.

4. Bob computes C' +— A’B, outputs PIEADD Lq,

i€Gy py 0
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(1 + €)-approximate ¢y (cont.)

e Alice holds A € {0,1}"%" Bob holds B € {0,1}"*"
o Let C=A-B. Goal: (1+ €)-approximate ||C||,

Correctness: expectation
Algorithm. Set 8 = /e, p = O(1/¢) + variance estimation

1. (Bob — Alice) Use VanGucht et al.’s algo to get a (1 + 3)-approx
(w.r.t. nnz of rows) of C (denoted by C)

2. Alice partitions the n rows of C to L = O(log n/3) groups
Gi, ..., G, s.t. Gy contains all rows i € [n] with

1+8) < |G| = @+8)"

3. For each group £, Alice samples each row i € Gy w.pr.

Siee, |Gl
_ _p . ZieGplliTh*llg
PE= TeTl, 1G]

Alice sends A’ to Bob

. A’ . matrix containing sampled rows of A.

4. Bob computes C' +— A’B, outputs PIEADD Lq,

i€Gy py 0

12-2



(1 + €)-approximate ¢y (cont.)

e Alice holds A € {0,1}"%" Bob holds B € {0,1}"*"
o Let C=A-B. Goal: (1+ €)-approximate ||C||,

Correctness: expectation
Algorithm. Set 8 = /e, p = O(1/¢) + variance estimation

1. (Bob — Alice) Use VanGucht et al.’s algo to get a (1 + 3)-approx
(w.rt. nnz of rows) of C (denoted by C) (O(n/32) = O(n/e) bits

2. Alice partitions the n rows of C to L = O(log n/3) groups
Gi, ..., G, s.t. Gy contains all rows i € [n] with

1+8) < |G| = @+8)"

3. For each group £, Alice samples each row i € Gy w.pr.

pe = Hé)H : Z'EGfJ.L' ’ HO A’ : matrix containing sampled rows of A.
0 - - .
Alice sends A" to Bob O(n - p) = O(n/e) bits

4. Bob computes C' +— A’B, outputs PIEADD Lq,

i€Gy py 0
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A lower bound (Van Gucht, Williams, Woodruff, Z. '15)

Primitive problem 1: Set Disjointness

i’i; A, Xi NY; =17

X €{0,1}"

Lemma. [Razborov '90]
Au, (X, Y) ~ p, solving DISJ w.pr. 0.99 needs 2(n) comm.
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A lower bound (cont.)

Primitive problem 2: Gap Hamming

o

et
N

X €{0,1}m
Let W; = X; XOR Y;. Goal: compute
0, |lee[ Wi < 3 o /m,

GAP-HAM(X,Y) = 1, if Z [l w, > 2 5+ v m,
don't care, otherW|se

Lemma. v, (X, Y) ~ v, solving GAP-HAM w.pr. 0.99
needs to learn Q(m) of W; (i € [m]) well (1(W;; ) = Q(1))
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A lower bound (cont.)

e For each i € [m], choose (A;, B;) ~ i where i is a

hard input distribution for set-disjointness.
Define SUM(A,B) = > DISJ(A;, Bi). W.h.p.

i€[m]

lo(AB) = SUM(A, B) + m(m — 1).
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A lower bound (cont.)

e For each i € [m], choose (A;, B;) ~ i where i is a
hard input distribution for set-disjointness.

Define SUM(A, B) = Zie[m] DISJ(A;, Bi). W.h.p.
lo(AB) = SUM(A, B) + m(m — 1).
e By composing GAP-HAM and DISJ, we can show that

any rand. algo. that computes SUM(A, B) w.pr. 0.99
up to an additive error \/m needs Q(mn) comm.
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A lower bound (cont.)

e For each i € [m], choose (A;, B;) ~ i where i is a
hard input distribution for set-disjointness.

Define SUM(A, B) = Zie[m] DISJ(A;, Bi). W.h.p.
lo(AB) = SUM(A, B) + m(m — 1).
e By composing GAP-HAM and DISJ, we can show that

any rand. algo. that computes SUM(A, B) w.pr. 0.99
up to an additive error \/m needs Q(mn) comm.

e Set m = 1/€/3 to make error \/m = ¢ - {o(AB),
getting an LB Q(n/€?/3).
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The open problem

The main problem left open by our work:

O(n/e) UB vs. Q(n/e?/3) LB

What is the right complexity?
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The open problem

The main problem left open by our work:

O(n/e) UB vs. Q(n/e?/3) LB
What is the right complexity?
The difficulty: cannot set m > 1/€2/3, since under

the distribution © we choose, w.h.p. each A; will

intersect each B; (j # /), and the term m(m — 1) will
“dominate” ¢o(AB). From another perspective,

the primitive problems “overlap™.

Need new techniques?
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(2 + €)-approximate /.

e Alice holds A € {0,1}"%" Bob holds B € {0,1}"*"
o Let C = A:B. Goal: (2 + €)-approximate ||C|

A X B — C
nh X n nxn n xn
A(l) =A C°'=A"xB
A" = subsample each cl=A' x B
entry of A w.pr. 1—16
A? = subsample each C?=A°x B

1

entry of A w.pr. Tep
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(2 + €)-approximate /.

18-2

e Alice holds A € {0,1}"%" Bob holds B € {0,1}"*"
o Let C = A:B. Goal: (2 + €)-approximate ||C|

A X B — C
nh X n nxn n xn
A=A C°'=A"xB
Al = subsample each cl=A' x B
entry of A w.pr. 1—16
A? = subsample each C?=A°x B
entry of A w.pr. ﬁ

The idea: subsample C (via subsampling A) to a level ¢ s.t.
(1) £ is as large as possible, or, El(Ce) is as small as possible
(2) Lo (CY) - (1 + €)° still approximates £oo(C) well.



(2 + €)-approximate /., (cont.)

e Alice holds A € {0,1}"%" Bob holds B € {0,1}"*"
o Let C=A-B. Goal: (24 €)-approximate ||C||_,

Algorithm Set L = O(log n/¢),y = ©(log n/€?)

1. For £=0,1,...,L, let C* < A*’B

A < sample each ‘1" in A w.pr. py =

(14+¢) "
2. Let ¢* be the smallest ¢ for which ||C*||, < yn?.

3. For each j € [n]

(a) u: #'U's in j-th column of A ;
vi: #'1's in j-th row of B

(b) If uj < v;, then Alice sends j-th column of A* to Bob;
otherwise Bob sends j-th row of B to Alice

4. Alice and Bob use received information to compute matrices Cx
and Cp respectively, s.t. C4 + Cg = Cct

5. Output max{ €Al o ”CBHOO}

Py * Pex*
19-1



(2 + €)-approximate /., (cont.)

e Correctness

Lemma: With probability 1 — -,
<
Pex*

= approximates ||C||__ within a factor of 1 + €.

Simple Fact: If C4 + Cg = CY, then
Ic”

2

= < max {||Callo [ Callc} < || €7

C C
Put together, max{ | A”OO, IC5llo
Pex* Pex

| C|| ., within a factor of 2 + €.

} approximates
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(2 + €)-approximate /., (cont.)

e Communication cost
Bottleneck:
For each j € [n]
(a) wuj: #'1's in j-th column of AL
vi: #'1's in j-th row of B

(b) If u;i < v;, then Alice sends j-th column of A" to Bob:
otherwise Bob sends j-th row of B to Alice
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(2 + €)-approximate /., (cont.)

e Communication cost
Bottleneck:
For each j € [n]
(a) wuj: #'1's in j-th column of AL
vi: #'1's in j-th row of B
(b) If u;i < v;, then Alice sends j-th column of AL to Bob:

otherwise Bob sends j-th row of B to Alice

For each j € [n], we analyze two cases:

o If uj,v; > /n/e, # such j is bounded by |

|| /(v/nfey
1
The comm. cost can be bounded by O (”16'5).

e If min{uj,v;} < /n/e, the communication is bounded by

1.5
E min{uj, v;} < n x vn < T
€ €

n
€

S

j:min{u-,vj}g
21-2



A Lower Bound for /., (cont.)

A reduction from set-disjointness to {..(AB)

1. Alice partitions x € {0, 1}”2/4 to n/2 chunks of size

n/2 each, and uses them as rows to construct
A" € {0,1}2"2. Further, let

A
=10l

2. Similarly, Bob uses y € {0, 1}"2/4 to construct
B’ € {0,1}2%2, and futher let

6= g o |

3. We have ||A-B||_ = ||A" + B’||_., which is 2 if
DISJ(x,y) =1, and 1 otherwise.
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Concluding Remarks

Main results:
e (14 ¢)-approximating £, (p € [0,2]) with ¥ =7Z
using O(n/e) comm. and 2 rounds.

® (2 + €)-approximating {o, with 3 = {0, 1} using
O(n'/€) comm. and 4 rounds.

o (,-(¢,€)-heavy-hitters with ¥ = 7Z using @(\/Tan)
comm. and O(1) rounds;
that with ¥ = {0, 1} using O(n + 6%) comm. and
O(1) rounds.
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Concluding Remarks

Main results:
e (14 ¢)-approximating £, (p € [0,2]) with ¥ =7Z
using O(n/e) comm. and 2 rounds.

Open: close the gap between this UB
and the Q(n/e*/?) LB.

e (2 + €)-approximating £, with ¥ = {0, 1} using

O(n*®/€) comm. and 4 rounds.
Open: better #rounds?

o (,-(¢,€)-heavy-hitters with ¥ = 7Z using @(\/Tan)
comm. and O(1) rounds;
that with ¥ = {0, 1} using O(n + 6%) comm. and
O(1) rounds. Open: tight LBs?
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Thank youl

Questions?
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| C||; corresponds to natural join

Ul|V YARYY;
1|2 111
1| 4 211
2|1 > 4|1 = (2,1,2)
2 |2 1|2
2|3 312
V W
o[1]o0]1 1D
0|1
110
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