Why Extension-Based Proofs
Fail
Faith Ellen, University of Toronto

Research done with
Dan Alistarh, James Aspnes, Rati Gelashvili, and Leqi Zhu

Consensus Problem

Each process p, has a private input value x. € {0,1}.

* Agreement: All output values are the same.

* Validity: The output value of each process is the
input value of some process.

 Wait-Free Termination: Each non-faulty process
outputs a value after taking a finite number of
steps.

Impossibility of Consensus [FLP83]

RS
%

A configuration Cis:

x-univalent if all executions starting
from C output x and

bivalent if there are two executions
starting from C that output
different values.

Impossibility of Consensus [FLP83]

LEMMA 1 Every consensus algorithm has a bivalent initial

configuration.
LEMMA 2 From every bivalent configuration, there is a step

that leads to a bivalent configuration.

This implies there is an infinite execution,
consisting of only bivalent configurations,

violating wait-free termination.

k-set Agreement Problem

Each process p; has a private input value x; € {0,1,..,k}.

* Agreement: At most k different values are output.

* Validity: The output value of each process is the
input value of some process.

 Wait-Free Termination: Each non-faulty process
outputs a value after taking a finite number of
steps.

Impossibility of k-set Agreement [BG,HS,S793]

The proofs of this result are MUCH more complicated.

Is there an extension based proof of this result?

Impossibility of k-set Agreement [BG,HS,S793]

The proofs of this result are MUCH more complicated.

Is there an extension based proof of this result? NO!

Outline

* Model of Computation
* Topological View of a Protocol in this model
 Definition of Extension-based proof

* Prove that there is no extension based proof of the impossibility of
k-set agreement for more than k processes

Non-uniform lterated Immediate Snapshot
(NIIS) Model [HS99]

S]. O = = 1 O

* There are n processes py,...,Pp 1

* Processes communicate using an infinite sequence S,,S,,... of snapshot
objects, each with n components which are all initially -.

* Initially, p/’s state is its input.
* Inits 2r-1’st step, p; updates component i of S, with its state.

* Inits 2r’th step, p; atomically scans S, to get the values of all n
components and updates its state to be this vector.

Non-uniform lterated Immediate Snapshot
(NIIS) Model [HS99]

* There is a decision function A that maps each pair
(process, state) to either an output value or the special
symbol L.

* If A maps (p, s)toy # L, then p,outputs y in state s and
terminates.

* If A maps (p,, s) to L, this indicates that p, hasn’t yet decided
In state s.

A protocol for a task in the NIIS model is completely specified
by its decision function A.

Non-uniform lterated Immediate Snapshot
(NIIS) Model [HS99]

* An adversarial scheduler decides the order in which processes take
steps.

* |t repeatedly selects a set of processes that are all poised to perform
updates on the same snapshot object, schedules all of these updates

and then schedules all of their next scans.

{Po,P1,P2HP3,PsHP2HP4,Ps}

Non-uniform lterated Immediate Snapshot
(NIIS) Model [HS99]

* An adversarial scheduler decides the order in which processes take
steps.

* |t repeated selects a set of processes that are all poised to perform
updates on the same snapshot object, schedules all of these updates
and then schedules all of their next scans.

* Without loss of generality, the scheduler can schedule all operations
on S, before any operationon S, forall r > 1.

{Po,P1,P2HP3,P7HP2HP4, Ps) IS indistinguishable from
{Po,P1,P2HP3,P7HP4PsHPS!

Non-uniform lterated Immediate Snapshot
Model [HS99]

* A configuration consists of the state of each process and the contents
of each snapshot object at some point in a schedule.

* If a process has not terminated, but it is not subsequently scheduled,
(i.e. the scheduler does not ever select it again), then the process is
considered to have crashed.

e A process is active if it has not terminated or crashed.

Non-uniform lterated Immediate Snapshot
(NIIS) Model [HSO6

* This model is computationally equivalent to the standard
asynchronous shared memory model, in which processes
communicate by reading from and writing to shared registers.

* Any task that can be solved by a wait-free protocol in one of these
models can be solved by a wait-free protocol in the other.

* It is much easier to use tools from combinatorial topology in the NIIS
model.

Some Basic Combinatorial Topology

A simplicial complex o is a collection
of sets that is closed under subset, i.e.
if X€EoandyY © X, thenY € o.

e Asetinois called a simplex.
 Asimplex of size 1 is called a vertex.
 Asimplex of size 2 is called an edge.

Topological View of a Configuration

A simplicial complex o is a collection
of sets that is closed under subset, i.e.
if X€EoandY © X, thenY € o.

Each vertex represents a process

(denoted by a colou r) and a state of Part of the input complex for 2-set
agreement among 3 processes
that process (denoted by a label).

A reachable configuration C is represented by the set of vertices

corresponding to the processes that have not crashed in C and
the states of those processes in C.

The input complex represents all initial configurations.

Topological View of a Protocol

The simplicial complex of a protocol represents the set of all
reachable configurations of the protocol in which no processes are
active, i.e. every process has crashed or terminated.

A protocol is wait-free if every process terminates after being
scheduled a finite number of times.

The simplicial complex of a wait-free protocol in the NIIS model
has a special structure.

Chromatic Subdivision of a Simplex

Consider a simplex representing a configuration reached by a schedule in which
every active process has been selected the same number of times.

Consider all schedules from this configuration in which every active process is
selected at most once. The set of simplexes representing the resulting configurations
is called the chromatic subdivision of the simplex.

Chromatic Subdivision of a Simplex

Consider a simplex representing a configuration reached by a schedule in which
every active process has been selected the same number of times.

Consider all schedules from this configuration in which every active process is
selected at most once. The set of simplexes representing the resulting configurations
is called the chromatic subdivision of the simplex.

Azl Az L

—)

Non-Uniform Chromatic Subdivision of a
Simplicial Complex

The non-uniform chromatic subdivision of a simplicial complex is obtained
by replacing every set in the simplicial complex by its chromatic
subdivision.

Let (., be the input simplicial complex for a protocol in the NIIS model.
Let ., be the non-uniform chromatic subdivision of (.

Then [, represents all configurations of the protocol reachable from an
initial configuration by a schedule in which each active process is selected
exactly once.

Topological View of a Protocol in the NIIS Model

Let [, denote the input complex for a protocol in the NIIS model.

Forr >0, let \/,, denote the non-uniform chromatic subdivision of (/.
Then [, represents all configurations of the protocol reachable from a
configuration corresponding to a simplex in .. by a schedule in which
each active process is selected exactly once.

Consider a protocol in the NIIS model in which every process terminates
after it has been selected at most r times.
Then [is the simplicial complex of the protocol specified by A.

LEMMA 1

Let ”.and [, be disjoint subcomplexes of (..

Let ", and .., be the non-uniform chromatic subdivisions of ', and ",

(which are subcomplexes of).

If every path between a vertex of 7. and a vertex of | has length at least d and
contains at least x edges between vertices that have not terminated, then
every path between a vertex of .., and a vertex of |, has length at least d+x.

INFAAA /\M
Yo\ oV e |

i\

A A

LEMMA 2

Let F be a simplex in (i, where f > 1.
Let | be the largest subcomplex of (; which contains only

vertices that are distance < 1 from every vertex in F.
Then there exists an input value a such that every vertex in |

contains a.

LEMMA 3

Let | be a subcomplex of ; and
let be the be the non-uniform chromatic subdivision of | .

If every vertex in = contains a, then every vertex in © contains a.

Extension-based proof

* Represented as an interaction between a prover and a protocol
defined by a map A.

* Initially, the prover only knows the initial configurations of the
protocol, where the state of each process is its input.
A(1) is this set of configurations. A’(1) is initialized to ¢.

* The prover may repeatedly query the protocol by choosing a
configuration C € A(1) U A’(1) and selecting a set of processes P
all poised to perform an update on the same snapshot object in C.

* For each p; € P, the protocol responds with A(p,s;), where s. is the
state of p,in the configuration C’ resulting from scheduling P from C,
and adds C’ to A'(1).

Extension-based proof

The prover wins (i.e. shows that the protocol is incorrect)
if the protocol responds:

* inconsistently,

e with more than k different outputs in a configuration, or

e with an output a in a configuration that was obtained by
a schedule from an initial configuration in which no
process had a as its input.

Extension-based proof

* The prover may make a chain of queries (C,, Py), (C, P4), .. .,
such that, for eachi = 0,

Ci,1 is the configuration resulting from scheduling P, from C..

* If the protocol does not eventually terminate all of the processes in
the chain, then the prover wins, since the protocol is not wait-free.

e After making finitely many chains of queries without winning,
the prover must choose a configuration C € A’(1) and define A(2) to
be the set of all configurations C’ such that, for all processes p,,
if p; is in an initial state in C, then p; is in an initial state in C’ and
if p; is not in an initial state in C, then p; is in the same state in C’.

Extension-based proof

The prover wins if the protocol responds:
* inconsistently,
e with more than k different outputs in a configuration, or

e with an output y in a configuration that was obtained by a schedule
from an initial configuration in which no process had y as its input.

The prover wins if it asks an infinite chain of queries or
there are an infinite number of phases.

The prover loses if A’(r) = ¢ at the end of some phaser.

There is no Extension-Based Proof for
the Unsolvability of k-set agreement

To prove that k-set agreement is unsolvable using an extension-based
proof, a prover must win against every protocol.

To show that there is no extension based proof, we give an adversarial

protocol that is adaptively constructing the map A, and show that every
prover loses against this protocol.

A Strategy for an Adversarial Protocol

Initialization:
e Construct the input complex (., for k-set agreement.

* Fori=0,1,2,3 define A(v) « L foreachv € (. and
construct the non-uniform chromatic subdivision ., .

* For all v € (, that contain only one input value a, define A(v) < a.
e Sett < 4.

Invariants maintained during phase 1.

* For each 0 <i<tandforeach vertexv € ([, A(v) is defined.
* For each vertex in a configuration in A(1) U A’(1), A(v) is defined.

e If v ,v' € [, are the states of processes that have terminated with
different values, then the distance between v and V' is at least 6.

* If v € [, is the state of a process that has terminated with value a, and
u € [, is a state that does not contain a, then the distance between v
and u is at least 6.

A Strategy for the Adversarial Protocol

During phase 1, when the prover performs a query scheduling a set of processes P from
(a previously explored) configuration C, resulting in configuration C’:
* Let vand Vv’ be the states of some processp € PinCand C. IfvE [, butv’ & [, then
— for all vertices u € [, where A(u) is undefined, define A(u) ¢ L,
— construct the non-uniform chromatic subdivision .., and
—increment t.

e For all v’ € C’ such that A(v’) is undefined:

— If v’ has a neighbour u’ € ([, that has terminated, let a = A(u’);

— otherwise, let a = minimum value contained in state V'

— If there exists a vertex in (., at distance at most 5 from v’ that does not
contain a or is the state of a process that has decided a value other than a,
define A(V’) & L;

— otherwise, define A(V’) & a.

LEMMA There is no infinite chain of queries in phase 1.

A Strategy for the Adversarial Protocol

At the beginning of phase 2:

Let f > 1 denote the maximum number of times that some process has been scheduled
in any configuration C € A(2).

* Define A(u) ¢ L for all vertices u € [, where A(u) is undefined, construct the non-
uniform chromatic subdivision (\,,;, and increment t.

* Let F be the vertices in (s that are states of the processes in C which have been
scheduled f times.

* Let | be the largest sub-complex of (. that contains only vertices at distance < 1 from
every vertex in F. By Lemma 2, there is an input value a such that every vertex in
contains a.

* Let | be the sub-complex of [, obtained from | by performing t-f non-uniform
chromatic subdivisions. By Lemma 3, every vertex in | contains a.

A Strategy for the Adversarial Protocol

Note that A(u) # L for every vertex in (..

By the Invariant, the distance is at least 6 between any v ,v’ € ([, that are the
states of processes terminating with different values v .

Define A(u) ¢ a for all vertices u € © where A(u) is undefined.

Then, in every configuration corresponding to a simplex in ", all processes have
terminated.

In every configuration corresponding to a simplexin ., at most 2 different values
have been output.

In phases 2 and greater, the prover can only explore configurations reachable
from A(2), so any sufficiently long schedule results in a configuration in .

Thus, there are no infinite chains and the prover must eventually choose a
configuration in = at the end of some phase. At this point, the prover loses.

Extensions to extension-based proofs

Allow the prover to perform additional queries:

* |s there a schedule starting from a specific explored configuration in which
some process answers value a?

* Provide a schedule starting from a specific explored configuration in which
some process answers value a.

 What is the length of the longest schedule that can occur in the protocol?
The prover can use the answer to such a query only when it has reached a
configuration by a schedule that is longer than this, but not to decide
which configurations to explore.

Covering arguments cannot be used to obtain space lower bounds for k-set
agreement.

