Recent Structure Lemmas for Depth-Two Threshold Circuits

Lijie Chen MIT

THRoTHR Circuits

THR gates :
$$f(x) = [w \cdot x \ge t] w \in Z^n$$
, $t \in Z$.

MAJ gates : when w_i 's and t are bounded by poly(n).

We can also define *THR* • *MAJ MAJ* • *THR MAJ* • *MAJ*

THRoTHR:

THRoTHR Circuits

Exponential Lower Bound are known for $MAJ \circ MAJ$ [Hajnal-Maass-Pudlák-Szegedy-Turán'93] $MAJ \circ THR$ [Nisan'94] $THR \circ MAJ$ [Forster-Krause-Lokam-Mubarakzjanov-Schmitt-Simon'01]

NEXP: Non-deterministic Exponential Time.

Frontier Open Question: *Is NEXP* \subseteq *THR* \circ *THR*? Potential Approaches in this talk.

Motivation

R. Williams' algorithmic approach to lower bounds: Lower Bounds for *C* from Non-trivial Algorithms for *C*. (some subtleties in depth increase of *C*, but turns out we can handle it!)

Natural Question:

How hard is **algorithmic analysis** of *THR* • *THR* circuits? How does it compare to *THR* • *MAJ* or *MAJ* • *MAJ*? (Spoiler): They're equally hard/easy... Counterintuitive!

Algorithmic Questions

C-SAT

C-CAPP

Estimate quantity $\Pr_{x \sim U_n} [C(x) = 1],$ with additive error ε

Algorithmic Questions

ity	
.],	
rror	0

Define non-trivial algorithms: 1. Non-trivial SAT: $2^n/n^{\omega(1)}$ time algorithm for SAT. 2. Non-trivial CAPP: $2^n/n^{\omega(1)}$ time for CAPP with error $\varepsilon = 1/poly(n)$.

C-SAT

$$x \sim U_n$$

C-CAPP

Algorithmic Equivalence I

Poly-size *THR* • *THR* and *THR* • *MAJ* are equivalent for Non-Trivial SAT Algorithms!

Algorithmic Equivalence II

Poly-size *THR* • *THR* and *MAJ* • *MAJ* are equivalent for Non-Trivial CAPP Algorithms!

Motivation: New Structure Lemmas

Motivation: New Structure Lemmas

What if we had a top **OR** gate? e.g., **OR** • **MAJ** • **MAJ**

Motivation: New Structure Lemmas

Corollary: $2^n/n^{\omega(1)}$ time SAT for *THR* • *MAJ* of poly size $\Rightarrow 2^n/n^{\omega(1)}$ time SAT for *THR* • *THR* of poly size

Structure Lemma II

For all ε > 0, every THR • THR of size s with n inputs can be explicitly written as a DOR • MAJ • MAJ circuit such that (1): The DOR gate has 2^{εn} fan-in.
(2): All MAJ • MAJ sub-circuits have size s^{0(1/ε)}.

Two concrete settings: 1. $THR \circ THR \subseteq$ sub-exp DOR of $MAJ \circ MAJ$. 2. $THR \circ THR \subseteq$ poly DOR of sub-exp-size $MAJ \circ MAJ$.

Other Applications

For all ε > 0, every THR • AND_k of size s with n inputs can be explicitly written as a DOR • MAJ • AND_{2k} circuits, such that (1): The DOR gate has 2^{εn} fan-in.
(2): All MAJ • AND_{2k} sub-circuits have size s^{0(1/ε)}.

Corollary: A Polynomial Threshold Function (PTF) of degree *k* can be written as a sub-exp Disjoint-OR of PTF with polyweights of degree 2*k*.

Open Question 1

Can every *THR* • *THR* be expressed as an OR of poly-many *MAJ* • *MAJ*?

This will show they are equivalent for non-trivial SAT algorithms.

Theorem: Non-trivial #SAT algorithm for $MAJ \circ MAJ$ \Rightarrow Non-trivial nondeterministic UNSAT algorithm for $THR \circ THR$. (Enough for an NEXP lower bound against THR \circ THR.)

SAT for Depth-*d* THR \Rightarrow Depth-*d* Lower Bounds

The Depth Increase Issue [Ben-Sasson--Viola'14]: $2^n/n^{\omega(1)}$ SAT algorithm for AND₃ \circ **C** \Rightarrow NEXP is not in **C**.

 C_1

 AND_3

 C_2

 C_3

To show SAT algs for *THR* of *THR* imply analogous lower bounds, we can't have this +1 increase in the depth (

Problem: We don't know whether $AND_3 \circ THR \circ THR \subseteq THR \circ THR$ (maybe not?!)

Dealing With Depth Increase

We can use ETHR gates

ETHR gates : $f(x) = [w \cdot x = t]$, for some $w \in Z^n$, $t \in Z$.

[Hansen-Podolskii'10] proved some structural results: $THR_m \subseteq DOR_{poly(m)} \circ ETHR_m$ $ETHR \circ THR \subseteq THR \circ THR$ $AND \circ ETHR \subseteq ETHR$

Dealing With Depth Increase

 $THR_m \subseteq DOR_{poly(m)} \circ ETHR_m$

Theorem: Non-trivial SAT/CAPP for $THR \circ THR$ \Rightarrow Non-trivial SAT/CAPP for $AND_3 \circ THR \circ THR$ \Rightarrow NEXP not in $THR \circ THR$

Open Question 2

Corollary:

If (*MAJ* • *MAJ*)-CAPP has a non-trivial algorithm, Then NEXP not in *THR* • *THR*.

Can we "mine" any non-trivial SAT or CAPP algorithms from the *exponential* lower bound proofs for *MAJ* • *MAJ* or *THR* • *MAJ*?

Would imply NEXP not in THR • THR!

Connection to Fine-Grained Complexity

NEXP is not in *THR* • *THR* would follow from "shaving logs" for several natural questions in **computational geometry**.

- 1. Biochromatic Closest Pair Problem:
 - Given *n* red-blue points in polylog(n) dimensional Euclidean space, find the red-blue pair with minimum distance.
- 2. Furthest Pair Problem:

Given *n* points in polylog(n) dimensional Euclidean space, find the pair with largest distance.

3. Hopcroft's Problem:

Given *n* points and *n* hyperplanes in polylog(n) dimensional Euclidean space, is some point on some hyperplane?

If there is an $n^2/\log^{\omega(1)}n$ time algorithm for **any** of them **Then NEXP** is not in *THR* • *THR*

A Simple CAPP-like Problem

 $\begin{array}{l} Apx \# MaxIP_{n,d} : \text{Given } A, B \subseteq \{0,1\}^d \text{ of size } n \text{ and an integer} \\ t, \text{ approximate } \Pr_{\substack{(a,b) \in A \times B}} [\langle a, b \rangle \geq t] \text{ with additive error } \varepsilon. \end{array}$

By a simple reduction

Corollary: If $Apx#MaxIP_{n,d}$ for d = polylog(n) can be solved with $\varepsilon = 1/polylog(n)$ in $n^2/\log^{\omega(1)} n$ time, then NEXP is not in *THR* \circ *THR*.

Open Question 3

Slightly improve the complexity of these computational geometry problems. *(Or show why they are unlikely?)*

Would imply *NEXP* is not in *THR* • *THR*.

Another Interesting Connection

k-SAT: Best Running Time is $2^{n(1-1/\Theta(k))}$.

Best Known L.B. for general TC_0 circuits: [Impagliazzo-Paturi-Saks'93, Chen-Santhanam-Srinivasan'16]: Parity requires $n^{1+c^{-d}}$ wires for depth-d TC_0 circuits.

[C.-Tell 18]: There's a good reason for the $n^{1+\exp(-d)}$ bound!

It is consistent with the current state of knowledge that E^{NP} has TC_0 circuits of $O(\log \log n)$ depth and O(n) wires.

Another Interesting Connection

Theorem: An $2^{n(1-1/k^{1/\omega(\log \log k)})}$ time k-SAT algorithm \Rightarrow E^{NP} has no O(n) size, $O(\log \log n)$ -depth TC_0 circuits.

Based on the reduction from TC_0 -SAT to k-SAT in [Abboud-Bringmann-Dell-Nederlof'18].

Conclusion

- Poly-size THR
 • THR and THR
 • MAJ are equivalent for Non-Trivial SAT Algorithms
- 2. Poly-size THR THR and MAJ MAJ are equivalent for Non-Trivial CAPP Algorithms!
- 3. Non-trivial SAT algorithms for $THR \circ MAJ$ or CAPP algorithms for $MAJ \circ MAJ$ \Rightarrow NEXP not in $THR \circ THR$. (No depth Increase)
- 4. Slightly improving the running times on geometry problems \Rightarrow NEXP not in *THR* \circ *THR*.

Open Question

- 1. Can every *THR THR* be expressed as an OR of poly-many *MAJ MAJ*?
- 2. Can we "mine" any non-trivial SAT or CAPP algorithms from the *exponential* lower bound proofs for *MAJ MAJ* or *THR MAJ*?
- **3. Slightly** improve the complexity of these computational geometry problems. (Or show why it is unlikely?)

Thanks