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Concentration of Scalar Random Variables

Random ! = ∑$ !$ , !$ ∈ ℝ
1. !$ are independent
2. (!$ = 0

Is ! ≈ 0 with high probability?
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Concentration of Scalar Martingales

Freedman’s Inequality
Random ! = ∑$ !$ , !$ ∈ ℝ
1. !$ are independent
2. ( !$| previous steps = 0
3. !$ ≤ 5
4. ℙ[∑$ ( !$8| previous steps > :8] ≤ <

gives

ℙ[ ! > =] ≤ 2exp − =8/2
5= + :8 + <



Concentration of Matrix Random Variables

Matrix Bernstein’s Inequality (Tropp 11)
Random ! = ∑$ !$ !$ ∈ ℝ'×', symmetric
1. !$ are independent
2. *!$ = +
3. !$ ≤ /
4. ∑$ *!$0 ≤ 10

gives

ℙ[ ! > 5] ≤ 7 2exp − =>/0
@=AB>



Concentration of Matrix Martingales

Matrix Freedman’s Inequality (Tropp 11)
Random ! = ∑$ !$ !$ ∈ ℝ'×', symmetric
1. !$ are independent
2. *!$ = 0 * !$| previous steps = 0
3. !$ ≤ 9
4. ∑$ *!$: ≤ ;: ℙ[ ∑$ * !$:| prev. steps > ;:] ≤ @

gives

ℙ[ ! > A] ≤ B 2exp − FG/:
IFJKG

+ @

E.g.  if A = 0.5, and 9, ;: = 0.1/log(B/R)

≤ R + @



Concentration of Matrix Martingales

Matrix Freedman’s Inequality (Tropp 11)

ℙ[ ∑$ % &$'| prev. steps > 1'] ≤ 4

Predictable quadratic variation 
=6

$
% &$'| prev. steps



Laplacian Matrices

! "
Graph # = (&, ()
Edge weights *:( → ℝ.
/ = &
0 = |(|

2

/×/ matrix 4 = 5
6∈8
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Laplacian Matrices

! "
Graph # = (&, ()
Edge weights    *:( → ℝ.
/ = &
0 = |(|

2

3 = 4
5∈7

35

L(a,b) = w(a,b)

. . . a . . . b . . .
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...
a 1 �1
...
b �1 1
...

/×/ matrix

w(a,b)



Laplacian Matrices

!: weighted adjacency matrix of the graph

#: diagonal matrix of weighted degrees

$ = # − !

!'( = )'(

#'' = ∑( )'(

Graph + = (-, /)
Edge weights    ):/ → ℝ3
4 = -
5 = |/|



Laplacian Matrices

Symmetric matrix !

All off-diagonals are non-positive and

!"" =$
%&"

!"%



Laplacian of a Graph
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Laplacian Matrices

[ST04]: solving Laplacian linear equations in !" # time

⋮

[KS16]: simple algorithm



Solving a Laplacian Linear Equation

!" = $

Gaussian Elimination
Find %, upper triangular matrix, s.t.

%&% = !
Then

" = %'(%'&$

Easy to apply %'( and %'&



Solving a Laplacian Linear Equation

!" = $

Approximate Gaussian Elimination
Find %, upper triangular matrix, s.t.

%&% ≈ !

% is sparse.

( log ,- iterations to get
.-approximate solution /".



Approximate Gaussian Elimination

Theorem [KS]
When ! is an Laplacian matrix with " non-zeros,
we can find in #(" log( )) time an upper triangular 
matrix + with #(" log( )) non-zeros,
s.t. w.h.p.

+,+ ≈ !



Additive View of Gaussian Elimination

Find !, upper triangular matrix, s.t !"! = $
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Find the rank-1 matrix that agrees with !
on the first row and column.

Additive View of Gaussian Elimination
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Subtract the rank 1 matrix.
We have eliminated the first variable.
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Additive View of Gaussian Elimination



The remaining matrix is PSD.
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Additive View of Gaussian Elimination



Subtract the rank 1 matrix.
We have eliminated the second variable.
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Repeat until all parts written as rank 1 terms.
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Additive View of Gaussian Elimination

Repeat until all parts written as rank 1 terms.
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Additive View of Gaussian Elimination

Repeat until all parts written as rank 1 terms.
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Additive View of Gaussian Elimination

What is special about Gaussian Elimination on 
Laplacians?

The remaining matrix is always Laplacian.

L =
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Additive View of Gaussian Elimination

What is special about Gaussian Elimination on 
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Additive View of Gaussian Elimination

What is special about Gaussian Elimination on 
Laplacians?

The remaining matrix is always Laplacian.
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Why is Gaussian Elimination Slow?

Solving !" = $ by Gaussian Elimination 
can take Ω &' time.

The main issue is fill
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Solving !" = $ by Gaussian Elimination 
can take Ω &' time.

The main issue is fill

Why is Gaussian Elimination Slow?

New Laplacian(

Elimination creates a clique
on the neighbors of (

! =



Solving !" = $ by Gaussian Elimination 
can take Ω &' time.

The main issue is fill

Why is Gaussian Elimination Slow?

(

Laplacian cliques can be sparsified!

New Laplacian

≈

! =



Gaussian Elimination

1. Pick a vertex ! to eliminate
2. Add the clique created by eliminating !
3. Repeat until done



Approximate Gaussian Elimination

1. Pick a vertex ! to eliminate
2. Add the clique created by eliminating !
3. Repeat until done



Approximate Gaussian Elimination

1. Pick a random vertex ! to eliminate
2. Add the clique created by eliminating !
3. Repeat until done



Approximate Gaussian Elimination

1. Pick a random vertex ! to eliminate
2. Sample the clique created by eliminating !
3. Repeat until done

Resembles randomized Incomplete Cholesky



Approximating Matrices by Sampling

Goal 
!"! ≈ $

Approach
1. % !"! = $
2. Show !"! concentrated around expectation

Gives !"! ≈ $ w. high probability



Approximating Matrices in Expectation

Consider eliminating the first variable

Original 
Laplacian 

Rank 1
term

Remaining graph 
+ clique

! "($) = '( '(
)

+ ! ∎ ∎
∎ ∎

∎
∎

∎ ∎ ∎
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Approximating Matrices in Expectation

Consider eliminating the first variable
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Approximating Matrices in Expectation

Consider eliminating the first variable

! "($) = '$ '$
(

+ ! ∎ ∎
∎ ∎

∎
∎

∎ ∎ ∎
Rank 1
term

Remaining graph 
+ sparsified clique

= "(+)Then



Approximating Matrices in Expectation

Let !(#) be our approximation after % eliminations

If we ensure at each step

Then
& !(#) = !(#())

& ∎ ∎
∎ ∎

∎
∎

∎ ∎ ∎
= ∎ ∎

∎ ∎
∎
∎

∎ ∎ ∎
Sparsified clique Clique

& ! # −! #() | previous steps = 6



Approximation?

Approximate Gaussian Elimination
Find !, upper triangular matrix, s.t.

!"! ≈ $

!"! − $ ≤ 0.5

$*+/-!"!$*+/- − . ≤ 0.5



Essential Tools

Isotropic position 
!" ≝ $%&/( " $%&/(

Goal is now
)*) − , ≈ .

PSD Order
/ ≼ 1

iff for all 2
2*/2 ≤ 2*12



Matrix Concentration: Edge Variables

Zero-mean variables  !" = $" − &"

Isotropic position variables '!"

w. probability ("

o.w.  
$" =

1
("
&*

1
("
+



Predictable Quadratic Variation

Predictable quadratic variation = ∑# $ %#&| prev. steps

Want to show ℙ ∑# $ %#&| prev. steps > 1& ≤ 3

Promise: $4%5& ≼ 7895



Sample Variance

!" #
$∈ "

&'$ ≼ !"#
$∋"

&'$

≼

* *

elim. clique of



Sample Variance

!" #
$∈ "

&'$ ≼ !"#
$∋"

&'$

≼

* *

elim. clique of

≼ 4&'
# vertices

= 4-
# vertices

= 2current lap.
# vertices

WARNING: only true w.h.p. 



= " 4$

Sample Variance

Recall  %&'() ≼ "+,(

Putting it together%- .
(∈ -

+,( ≼ %-.
(∋-

+,(
elim. clique of

= 4$
# vertices

%- .
(∈ -

%&'() ≼
elim. clique of # vertices

variance 
in one round of elimination 



Sample Variance

! ≼
rounds of
elimination 

variance

≼ 4 $ log ( ⋅ *

! $ ⋅ 4*
# ver2ces

rounds of
elimination 



Summary

Matrix martingales: a natural fit for algorithmic analysis 

Understanding the Predictable Quadratic Variation is key

Some results using matrix martingales 

Cohen, Musco, Pachocki ’16 – online row sampling

Kyng, Sachdeva ’17 – approximate Gaussian elimination

Kyng, Peng, Pachocki, Sachdeva ’17 – semi-streaming graph sparsification

Cohen, Kelner, Kyng, Peebles, Peng, Rao, Sidford ’18 – solving Directed Laplacian eqs.

Kyng, Song ’18 – Matrix Chernoff bound for negatively dependent random variables



Thanks!



How to Sample a Clique

For each edge (1, $)
pick an edge 1, & with probability ~ ()
insert edge $, & with weight *+*,*+-*,

1

2
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5 5
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pick an edge 1, & with probability ~ ()
insert edge $, & with weight *+*,*+-*,

How to Sample a Clique



Practice

Julia Package: Laplacians.jl

tiny.cc/spielman-solver-code

Theory

Nearly-linear time Directed Laplacian solvers
using approximate Gaussian elimination
[CKKPPSR17]



This is really the end


