
Matrix-free construction of HSS representations using
adaptive randomized sampling

Xiaoye Sherry Li
xsli@lbl.gov

Gustavo Chavez, Pieter Ghysels, Chris Gorman, Yang Liu
Lawrence Berkeley National Laboratory

Chris Gorman, UC Santa Barbara

Randomized Numerical Linear Algebra and Applications

X.S. Li Faster Linear Solvers Sept. 27 1 / 28

Acknowledgement

This research was supported by the Exascale Computing Project
(http://www.exascaleproject.org), a joint project of the U.S. Department
of Energys Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software,
applications, and hardware technology, to support the nations exascale
computing imperative.
Project Number: 17-SC-20-SC

X.S. Li Faster Linear Solvers Sept. 27 2 / 28

Hierarchical matrix approximation

• Same mathematical foundation as FMM (Greengard-Rokhlin’87), put
in matrix form:
• Diagonal block (“near field”) represented exactly
• Off-diagonal block (“far field”) approximated via low-rank format

FMM Algebraic
separability of Green’s function low rank off-diagonal

G (x , y) ≈
∑r

`=1 f`(x)g`(y) A =

[
D1 U1B1V

T
2

U2B2V
T
1 D2

]
x ∈ X , y ∈ Y

• Algebraic power: matrix multiplication, factorization, inversion,
tensors, ...

X.S. Li Faster Linear Solvers Sept. 27 3 / 28

Hierarchical matrix formats

H-matrix (W. Hackbusch et al.)
O(r N log N)

HSS matrix (J Xia et al.)
O(r N)

X.S. Li Faster Linear Solvers Sept. 27 4 / 28

Block cluster tree and nested bases

Example: Hierarchically Semi-Separable matrices (HSS)

U1

U2 U3=
U1
U2

Usmall
3

0
0

V1

U6 V3B36
T

D1

D2

D4

D5

V2

U5
V4

U4
V5

• Diagonal blocks are full rank: Dτ = A(Iτ , Iτ)

• Off-diagonal blocks as low-rank:

Aν1,ν2 = A(Iν1 , Iν2) = Uν1Bν1,ν2V
∗
ν2

• Column bases U and row bases V ∗ are
nested:

Uτ =

[
Uν1 0
0 Uν2

]
Usmall
τ ,Vτ =

[
Vν1 0
0 Vν2

]
V small
τ

X.S. Li Faster Linear Solvers Sept. 27 5 / 28

HSS matrix – ULV factorization

ULV-like factored form (U and V ∗ unitary, L triangular)

Γ1;b↔2;t

I

Ω1
I

Ω2

[Γ3;b↔4;t
Γ5;b↔6;t

]
Ω3

Ω4
Ω5

Ω6

A

Q∗3

Q∗4
Q∗5

Q∗6

[

ΓT3;b↔4;t

ΓT5;b↔6;t

]
I
Q∗1

I
Q∗2

 ΓT1;b↔2;t

=

L3

0 L4

(Ω1L4,3)t (Ω1L3,4)t L1

L5

0 0 L6

(Ω2L6,5)t (Ω2L5,6)t L2

(Ω1L4,3)b (Ω1L3,4)b W1;bQ
∗
1;t B1,2V

∗
2

[
V∗5 Q∗5;t V∗5 Q∗5;b

V∗6 Q∗6;t V∗6 Q∗6;b

] [
I
Q∗2

]
D0

B2,1V
∗
1

[
V∗3 Q∗3;t V∗3 Q∗3;b

V∗4 Q∗4;t V∗4 Q∗4;b

] [
I
Q∗1

]
(Ω2L6,5)b (Ω2L5,6)b W2;bQ

∗
2;t

X.S. Li Faster Linear Solvers Sept. 27 6 / 28

Low rank compression via randomized sampling (RS)

Approximate range of A:

1 Pick random matrix Ωn×(k+p), k target rank, p small, e.g. 10

2 Sample matrix S = AΩ , with slight oversampling p

3 Compute Q =ON-basis(S) via RRQR

Accuracy: [Halko, Martinsson, Tropp, ’11]

• On average: E (‖A− QQ∗A‖) =
(

1 + 4
√
k+p

p−1

√
min{m, n}

)
σk+1

• Probabilistic bound: with probability ≥ 1− 3 · 10−p,
‖A− QQ∗A‖ ≤ [1 + 9

√
k + p

√
min{m, n}] σk+1

(in 2-norm)

Benefits:

• Matrix-free, only need matvec

• When embedded in sparse frontal solver, simplifies “extend-add”

X.S. Li Faster Linear Solvers Sept. 27 7 / 28

Low rank compression via randomized sampling (RS)

Approximate range of A:

1 Pick random matrix Ωn×(k+p), k target rank, p small, e.g. 10

2 Sample matrix S = AΩ , with slight oversampling p

3 Compute Q =ON-basis(S) via RRQR

Accuracy: [Halko, Martinsson, Tropp, ’11]

• On average: E (‖A− QQ∗A‖) =
(

1 + 4
√
k+p

p−1

√
min{m, n}

)
σk+1

• Probabilistic bound: with probability ≥ 1− 3 · 10−p,
‖A− QQ∗A‖ ≤ [1 + 9

√
k + p

√
min{m, n}] σk+1

(in 2-norm)

Benefits:

• Matrix-free, only need matvec

• When embedded in sparse frontal solver, simplifies “extend-add”

X.S. Li Faster Linear Solvers Sept. 27 7 / 28

HSS compression via RS [Martinsson ’11, Xia ’13]

• R random matrix with d = r + p columns
• r is the estimated maximum rank,p is oversampling parameter

• Random sampling of matrix A
• S r = AR, columns of S r span the column space of A
• Sc = A∗R, columns of Sc span the row space of A

• Only sample off-diagonal blocks at each level (Hankel blocks):
Block diagonal matrix at level `: D(`) = diag(Dτ1 ,Dτ2 , . . . ,Dτq)

S (`) =
(
A− D(`)

)
R = S r − D(`)R

• Rank-revealing QR on S (`)

X.S. Li Faster Linear Solvers Sept. 27 8 / 28

Practical issues

• Need ε-rank: ‖A− QQ∗A‖ ≤ ε
• Non-decay singular spectrum

• Sampling is expensive using traditional dense matvec

Solution:

1 Gradually increase sample size
• User manually restart from scratch → costly!
• Built-in automatic strategy → not to re-do already-compressed blocks.

⇒ Need good error estimation!

2 Faster matvec in sampling: FFT, FMM, Gauss transform, H-matrix,
...

X.S. Li Faster Linear Solvers Sept. 27 9 / 28

Automatic adaptive sampling is essential for robustness

Increase sample size d, build Q incrementally (block variant)
[S1 S2 S3 ...]

Q ← ∅;
S1 ← AΩ1;
i ← 1;
WHILE (error still large) {

Qi ← QR(Si); // Orthogonalize within current block
Q ← [Q Qi];
Si+1 ← AΩi+1; // New samples
Si+1 ← (I − QQ∗)Si+1; // Orthogonalize against previous Q
Compute error;
i ← i + 1;

}

X.S. Li Faster Linear Solvers Sept. 27 10 / 28

Adaptive sampling in HSS tree

Recall:

• Only have S = AΩ

• At level `:
S (`) = (A− D(`))Ω = S − D(`)Ω

X.S. Li Faster Linear Solvers Sept. 27 11 / 28

Adaptive sampling: probabilistic error estimation

• Goal: Bound errors for A: ||(I − QQ∗)A||, but A is not available.
• Approach: Use sample S . Need to establish a stochastic

relationship between ||A|| and ||S ||.

Let A ∈ Rm×n, and x ∈ Rn with xi ∼ N (0, 1). Consider SVD:

A = UΣV ∗ =
[
U1 U2

] [Σr 0
0 0

] [
V ∗1
V ∗2

]
Define ξ = V ∗x , ξ is also a Gaussian random vector.

||Ax ||22 = ||Σξ||22 = ξ2
1σ

2
1 + · · ·+ ξ2

r σ
2
r . (1)

Here, σ1 ≥ · · · ≥ σr > 0 are positive singular values. Therefore,

E
(
||Ax ||22

)
= σ2

1 + · · ·+ σ2
r = ||A||2F . (2)

For d sample vectors: E
(
||S ||2F

)
= d ||A||2F .

X.S. Li Faster Linear Solvers Sept. 27 12 / 28

Adaptive sampling: stopping criterion

Let [S1 S2] = [AR1 AR2],Q = QR(S1)

Absolute criterion:

‖(I − QQ∗)A‖F ≈
1√
d
‖(I − QQ∗)S2‖F ≤ εa

Relative criterion:

‖(I − QQ∗)A‖F
‖A‖F

≈ ‖(I − QQ∗)S2‖F
‖S2‖F

≤ εr

Cost: one reduction to compute norms of the sample vectors.

X.S. Li Faster Linear Solvers Sept. 27 13 / 28

Estimation accuracy: exponential decaying tail probabilities

Define random variables:

X = ||Ax ||22 ∼ σ
2
1ξ

2
1 + · · ·+ σ2

r ξ
2
r , X d ∼

1

d
[X1 + · · ·+ Xd] ,

Xi are independent realizations of X , E (X) = E
(
X d

)
= ||A||2F .

Theorem [C. Gorman]

P
[
X d ≥ ||A||2F τ

]
≤ exp

(
−dτ

2

)
||A||drF

r∏
k=1

(
A′k
)−d

τ > 1

P
[
X d ≤ ||A||2F τ

]
≤ exp

(
−dτ

2

)
||A||drF

r∏
k=1

(
A′′k
)−d

τ ∈ [0, 1)

where, (A′k)2 = ||A||2F − σ2
k , (A′′k)2 = ||A||2F + σ2

k .

This shows the probability tails of X and X d decay exponentially away
from the mean ||A||2F .

X.S. Li Faster Linear Solvers Sept. 27 14 / 28

Adaptive sampling example: decay singular value

A = αI + UDV ∗,U,V rank = 120,Dk,k = 2−24(k−1)/r

X.S. Li Faster Linear Solvers Sept. 27 15 / 28

Adaptive sampling: non-decay singular values

A = αI + UDV ∗,U,V rank = 120,Dk,k = 1

X.S. Li Faster Linear Solvers Sept. 27 16 / 28

Adaptivity cost is small

A = αI + UDV ∗,U,V rank = 1200,Dk,k = 2−24(k−1)/r ,N = 60, 000,P =
1024, εa = εr = 10−14

“Known-rank” Adaptive “Hard-restart”

d0 = 128
∆d = 64

Compr. time 36.5 37.2 100.3
HSS-rank 1162 1267 1165
Num. adapt. 0 17 4

X.S. Li Faster Linear Solvers Sept. 27 17 / 28

Mitigate dense sampling cost

• HSS compression cost = sampling cost + O(r2N).

• Sampling cost:
• Traditional matvec: O(rN2)
• FFT: O(rN logN) (e.g., Toeplitz)
• FMM: O(rN)

X.S. Li Faster Linear Solvers Sept. 27 18 / 28

Mitigate dense sampling cost

• Kernel Rdge Regression for classification [IPDPS ParLearning
Workship 2018]

• Kernel matrix: Kij = exp(− 1
2
||xi−xj ||2

h2)
• Need to solve w := (K + λI)−1y ; a few digits suffice→ use HSS

• Use H-matrix to perform sampling for HSS construction.
UCI dataset; parallel runtime on Intel Haswell at NERSC.

SUSY: 4.5M, dimension=8; COVTYPE: 0.5M, dimension=54
SUSY COVTYPE

Cores 32 512 32 512

H construction 173.7 18.3 36.5 32.2

HSS construction 3344.4 726.7 432.3 239.7

→ Sampling 2993.5 662.1 305.2 178.4

→ Other 350.9 64.6 127.1 61.3

ULV Factorization 14.2 3.3 26.5 4.6

Solve 0.5 0.3 0.5 0.4

X.S. Li Faster Linear Solvers Sept. 27 19 / 28

Dense scalability

P = 4096, Cray XC40 (Cori at NERSC)

• quantum chemistry (Toeplitz): ai ,i = π2

6 and ai ,j = (−1)i−j

(i−j)2d2

• A = I + UDV ∗,U,V , r = 500,Dk,k = 2−24(k−1)/r ,N = 500, 000

26 27 28 29 210 211 212

101

102

Processors

T
ot
al

ti
m
e
(s
)

Quantum Chemistry
αI + βUDV ∗

X.S. Li Faster Linear Solvers Sept. 27 20 / 28

Sparse scalability

Matrix from SuiteSparse collection:
Flan 1565 (N = 1,564,794, NNZ = 114,165,372)

• Flat MPI on nodes with 2 12-core Intel Ivy Bridge (NERSC Edison)

X.S. Li Faster Linear Solvers Sept. 27 21 / 28

STRUMPACK – STRUctured Matrices PACKage
http://portal.nersc.gov/project/sparse/strumpack/

• Two components:
• Dense – applicable to Toeplitz, Cauchy, BEM, integral equations, etc.
• Sparse – aim at matrices discretized from PDEs.

• Open source on Github, BSD license.
• C++, hybrid MPI + OpenMP implementation
• Real & complex datatypes, single & double precision (via template),

and 64-bit indexing.
• Input interfaces:

• Dense matrix in standard format.
• Matrix-free, with query function to return selected entries.
• Sparse matrix in CSR format.

• Can take user input: cluster tree & block partitioning.
• Functions:

• HSS construction, HSS-vector product, ULV factorization, Solution.

• Available from PETSc, MFEM.
• Extensible to include other data-sparse formats.

X.S. Li Faster Linear Solvers Sept. 27 22 / 28

http://portal.nersc.gov/project/sparse/strumpack/

Summary

• Sampling is handy, but still needs more mathematical insight to make
it robust and efficient.

• Preconditioner appears to be robust [IPDPS 2017]
• Works well for problems where AMG has slow convergence, e.g.,

indefinite problems.
• More parallelizable than ILU, fewer parameters to tune.

• More research
• Dynamic load balancing.
• Communication analysis for sparse solvers.
• Rank analysis of different application problems.
• Good ordering and hierarchical clustering / partitioning to reduce

off-diagonal rank.
• Not all problems compress well in HSS, look into other formats.

X.S. Li Faster Linear Solvers Sept. 27 23 / 28

THANK YOU !

X.S. Li Faster Linear Solvers Sept. 27 24 / 28

HSS matrix – ULV factorization

ULV-like factored form (U and V ∗ unitary, L triangular)

Γ1;b↔2;t

I

Ω1
I

Ω2

[Γ3;b↔4;t
Γ5;b↔6;t

]
Ω3

Ω4
Ω5

Ω6

A

Q∗3

Q∗4
Q∗5

Q∗6

[

ΓT3;b↔4;t

ΓT5;b↔6;t

]
I
Q∗1

I
Q∗2

 ΓT1;b↔2;t

=

L3

0 L4

(Ω1L4,3)t (Ω1L3,4)t L1

L5

0 0 L6

(Ω2L6,5)t (Ω2L5,6)t L2

(Ω1L4,3)b (Ω1L3,4)b W1;bQ
∗
1;t B1,2V

∗
2

[
V∗5 Q∗5;t V∗5 Q∗5;b

V∗6 Q∗6;t V∗6 Q∗6;b

] [
I
Q∗2

]
D0

B2,1V
∗
1

[
V∗3 Q∗3;t V∗3 Q∗3;b

V∗4 Q∗4;t V∗4 Q∗4;b

] [
I
Q∗1

]
(Ω2L6,5)b (Ω2L5,6)b W2;bQ

∗
2;t

X.S. Li Faster Linear Solvers Sept. 27 25 / 28

Themes

Many research areas for exascale computing: https://exascaleproject.org

• Algorithms with lower arithmetic & communication complexity.
Multilevel algorithms:
• Multigrid
• Fast Multipole Method (FMM)
• Hierarchical matrices – algebraic generalization of FMM,

applicable to broader classes of problems

• Parallel algorithms and codes for machines with million-way
parallelism, hierarchical organization.
• Distributed memory
• Manycore nodes: 100s of lightweight cores, accelerators,

co-processors

X.S. Li Faster Linear Solvers Sept. 27 26 / 28

h

Themes

Many research areas for exascale computing: https://exascaleproject.org

• Algorithms with lower arithmetic & communication complexity.
Multilevel algorithms:
• Multigrid
• Fast Multipole Method (FMM)
• Hierarchical matrices – algebraic generalization of FMM,

applicable to broader classes of problems

• Parallel algorithms and codes for machines with million-way
parallelism, hierarchical organization.
• Distributed memory
• Manycore nodes: 100s of lightweight cores, accelerators,

co-processors

X.S. Li Faster Linear Solvers Sept. 27 26 / 28

h

Why factorization?

• Target problems:

• indefinite, ill-conditioned, nonsymmetric (e.g. those from multiphysics,
multiscale simulations)

• Where can be used?
• Stand-alone solver.
• Good for multiple right-hand sides.
• Precondition Krylov solvers.
• Coarse-grid solver in multigrid. (e.g., Hypre)
• In nonlinear solver. (e.g., SUNDIALS)
• Solving interior eigenvalue prolems.
• ...

• Error analysis:
• Componentwise error bounds (Guaranteed solution accuracy).
• Condition number estimation.

X.S. Li Faster Linear Solvers Sept. 27 27 / 28

Arithmetic complexities – dense HSS

Let r = HSS rank, i.e., maximum rank found during the different
compression steps.

Compression

• Without RS: O(r N2).

• With RS: sampling cost (dominant) + O(r2N)

sampling cost:
• Classical matvec: O(r N2).
• FFT (e.g., Toeplitz matrix): O(r N logN).
• FMM: O(r N).

ULV factorization and solve: O(r N)

X.S. Li Faster Linear Solvers Sept. 27 28 / 28

