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Hierarchical matrix approximation

• Same mathematical foundation as FMM (Greengard-Rokhlin’87), put
in matrix form:
• Diagonal block (“near field”) represented exactly
• Off-diagonal block (“far field”) approximated via low-rank format

FMM Algebraic
separability of Green’s function low rank off-diagonal

G (x , y) ≈
∑r

`=1 f`(x)g`(y) A =

[
D1 U1B1V

T
2

U2B2V
T
1 D2

]
x ∈ X , y ∈ Y

• Algebraic power: matrix multiplication, factorization, inversion,
tensors, ...
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Hierarchical matrix formats

H-matrix (W. Hackbusch et al.)
O(r N log N)

HSS matrix (J Xia et al.)
O(r N)
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Block cluster tree and nested bases

Example: Hierarchically Semi-Separable matrices (HSS)

U1

U2 U3=
U1
U2

Usmall
3

0
0

V1

U6 V3B36
T

D1

D2

D4

D5

V2

U5
V4

U4
V5

• Diagonal blocks are full rank: Dτ = A(Iτ , Iτ )

• Off-diagonal blocks as low-rank:

Aν1,ν2 = A(Iν1 , Iν2) = Uν1Bν1,ν2V
∗
ν2

• Column bases U and row bases V ∗ are
nested:

Uτ =

[
Uν1 0
0 Uν2

]
Usmall
τ ,Vτ =

[
Vν1 0
0 Vν2

]
V small
τ
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HSS matrix – ULV factorization

ULV-like factored form (U and V ∗ unitary, L triangular)

Γ1;b↔2;t


I

Ω1
I

Ω2

[Γ3;b↔4;t
Γ5;b↔6;t

]
Ω3

Ω4
Ω5

Ω6

A

Q∗3

Q∗4
Q∗5

Q∗6


[

ΓT3;b↔4;t

ΓT5;b↔6;t

]
I
Q∗1

I
Q∗2

 ΓT1;b↔2;t

=



L3

0 L4

(Ω1L4,3)t (Ω1L3,4)t L1

L5

0 0 L6

(Ω2L6,5)t (Ω2L5,6)t L2

(Ω1L4,3)b (Ω1L3,4)b W1;bQ
∗
1;t B1,2V

∗
2

[
V∗5 Q∗5;t V∗5 Q∗5;b

V∗6 Q∗6;t V∗6 Q∗6;b

] [
I
Q∗2

]
D0

B2,1V
∗
1

[
V∗3 Q∗3;t V∗3 Q∗3;b

V∗4 Q∗4;t V∗4 Q∗4;b

] [
I
Q∗1

]
(Ω2L6,5)b (Ω2L5,6)b W2;bQ

∗
2;t
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Low rank compression via randomized sampling (RS)

Approximate range of A:

1 Pick random matrix Ωn×(k+p), k target rank, p small, e.g. 10

2 Sample matrix S = AΩ , with slight oversampling p

3 Compute Q =ON-basis(S) via RRQR

Accuracy: [Halko, Martinsson, Tropp, ’11]

• On average: E (‖A− QQ∗A‖) =
(

1 + 4
√
k+p

p−1

√
min{m, n}

)
σk+1

• Probabilistic bound: with probability ≥ 1− 3 · 10−p,
‖A− QQ∗A‖ ≤ [1 + 9

√
k + p

√
min{m, n}] σk+1

(in 2-norm)

Benefits:

• Matrix-free, only need matvec

• When embedded in sparse frontal solver, simplifies “extend-add”
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HSS compression via RS [Martinsson ’11, Xia ’13]

• R random matrix with d = r + p columns
• r is the estimated maximum rank,p is oversampling parameter

• Random sampling of matrix A
• S r = AR, columns of S r span the column space of A
• Sc = A∗R, columns of Sc span the row space of A

• Only sample off-diagonal blocks at each level (Hankel blocks):
Block diagonal matrix at level `: D(`) = diag(Dτ1 ,Dτ2 , . . . ,Dτq)

S (`) =
(
A− D(`)

)
R = S r − D(`)R

• Rank-revealing QR on S (`)
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Practical issues

• Need ε-rank: ‖A− QQ∗A‖ ≤ ε
• Non-decay singular spectrum

• Sampling is expensive using traditional dense matvec

Solution:

1 Gradually increase sample size
• User manually restart from scratch → costly!
• Built-in automatic strategy → not to re-do already-compressed blocks.

⇒ Need good error estimation!

2 Faster matvec in sampling: FFT, FMM, Gauss transform, H-matrix,
...
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Automatic adaptive sampling is essential for robustness

Increase sample size d, build Q incrementally (block variant)
[S1 S2 S3 ...]

Q ← ∅;
S1 ← AΩ1;
i ← 1;
WHILE (error still large) {

Qi ← QR(Si ); // Orthogonalize within current block
Q ← [Q Qi ];
Si+1 ← AΩi+1; // New samples
Si+1 ← (I − QQ∗)Si+1; // Orthogonalize against previous Q
Compute error;
i ← i + 1;

}
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Adaptive sampling in HSS tree

Recall:

• Only have S = AΩ

• At level `:
S (`) = (A− D(`))Ω = S − D(`)Ω
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Adaptive sampling: probabilistic error estimation

• Goal: Bound errors for A: ||(I − QQ∗)A||, but A is not available.
• Approach: Use sample S . Need to establish a stochastic

relationship between ||A|| and ||S ||.

Let A ∈ Rm×n, and x ∈ Rn with xi ∼ N (0, 1). Consider SVD:

A = UΣV ∗ =
[
U1 U2

] [Σr 0
0 0

] [
V ∗1
V ∗2

]
Define ξ = V ∗x , ξ is also a Gaussian random vector.

||Ax ||22 = ||Σξ||22 = ξ2
1σ

2
1 + · · ·+ ξ2

r σ
2
r . (1)

Here, σ1 ≥ · · · ≥ σr > 0 are positive singular values. Therefore,

E
(
||Ax ||22

)
= σ2

1 + · · ·+ σ2
r = ||A||2F . (2)

For d sample vectors: E
(
||S ||2F

)
= d ||A||2F .
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Adaptive sampling: stopping criterion

Let [S1 S2] = [AR1 AR2],Q = QR(S1)

Absolute criterion:

‖(I − QQ∗)A‖F ≈
1√
d
‖(I − QQ∗)S2‖F ≤ εa

Relative criterion:

‖(I − QQ∗)A‖F
‖A‖F

≈ ‖(I − QQ∗)S2‖F
‖S2‖F

≤ εr

Cost: one reduction to compute norms of the sample vectors.
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Estimation accuracy: exponential decaying tail probabilities

Define random variables:

X = ||Ax ||22 ∼ σ
2
1ξ

2
1 + · · ·+ σ2

r ξ
2
r , X d ∼

1

d
[X1 + · · ·+ Xd ] ,

Xi are independent realizations of X , E (X ) = E
(
X d

)
= ||A||2F .

Theorem [C. Gorman]

P
[
X d ≥ ||A||2F τ

]
≤ exp

(
−dτ

2

)
||A||drF

r∏
k=1

(
A′k
)−d

τ > 1

P
[
X d ≤ ||A||2F τ

]
≤ exp

(
−dτ

2

)
||A||drF

r∏
k=1

(
A′′k
)−d

τ ∈ [0, 1)

where, (A′k)2 = ||A||2F − σ2
k , (A′′k)2 = ||A||2F + σ2

k .

This shows the probability tails of X and X d decay exponentially away
from the mean ||A||2F .
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Adaptive sampling example: decay singular value

A = αI + UDV ∗,U,V rank = 120,Dk,k = 2−24(k−1)/r
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Adaptive sampling: non-decay singular values

A = αI + UDV ∗,U,V rank = 120,Dk,k = 1

X.S. Li Faster Linear Solvers Sept. 27 16 / 28



Adaptivity cost is small

A = αI + UDV ∗,U,V rank = 1200,Dk,k = 2−24(k−1)/r ,N = 60, 000,P =
1024, εa = εr = 10−14

“Known-rank” Adaptive “Hard-restart”

d0 = 128
∆d = 64

Compr. time 36.5 37.2 100.3
HSS-rank 1162 1267 1165
Num. adapt. 0 17 4
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Mitigate dense sampling cost

• HSS compression cost = sampling cost + O(r2N).

• Sampling cost:
• Traditional matvec: O(rN2)
• FFT: O(rN logN) (e.g., Toeplitz)
• FMM: O(rN)
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Mitigate dense sampling cost

• Kernel Rdge Regression for classification [IPDPS ParLearning
Workship 2018]

• Kernel matrix: Kij = exp(− 1
2
||xi−xj ||2

h2 )
• Need to solve w := (K + λI )−1y ; a few digits suffice→ use HSS

• Use H-matrix to perform sampling for HSS construction.
UCI dataset; parallel runtime on Intel Haswell at NERSC.

SUSY: 4.5M, dimension=8; COVTYPE: 0.5M, dimension=54
SUSY COVTYPE

Cores 32 512 32 512

H construction 173.7 18.3 36.5 32.2

HSS construction 3344.4 726.7 432.3 239.7

→ Sampling 2993.5 662.1 305.2 178.4

→ Other 350.9 64.6 127.1 61.3

ULV Factorization 14.2 3.3 26.5 4.6

Solve 0.5 0.3 0.5 0.4
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Dense scalability

P = 4096, Cray XC40 (Cori at NERSC)

• quantum chemistry (Toeplitz): ai ,i = π2

6 and ai ,j = (−1)i−j

(i−j)2d2

• A = I + UDV ∗,U,V , r = 500,Dk,k = 2−24(k−1)/r ,N = 500, 000

26 27 28 29 210 211 212

101

102

Processors

T
ot
al

ti
m
e
(s
)

Quantum Chemistry
αI + βUDV ∗
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Sparse scalability

Matrix from SuiteSparse collection:
Flan 1565 (N = 1,564,794, NNZ = 114,165,372)

• Flat MPI on nodes with 2 12-core Intel Ivy Bridge (NERSC Edison)
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STRUMPACK – STRUctured Matrices PACKage
http://portal.nersc.gov/project/sparse/strumpack/

• Two components:
• Dense – applicable to Toeplitz, Cauchy, BEM, integral equations, etc.
• Sparse – aim at matrices discretized from PDEs.

• Open source on Github, BSD license.
• C++, hybrid MPI + OpenMP implementation
• Real & complex datatypes, single & double precision (via template),

and 64-bit indexing.
• Input interfaces:

• Dense matrix in standard format.
• Matrix-free, with query function to return selected entries.
• Sparse matrix in CSR format.

• Can take user input: cluster tree & block partitioning.
• Functions:

• HSS construction, HSS-vector product, ULV factorization, Solution.

• Available from PETSc, MFEM.
• Extensible to include other data-sparse formats.
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Summary

• Sampling is handy, but still needs more mathematical insight to make
it robust and efficient.

• Preconditioner appears to be robust [IPDPS 2017]
• Works well for problems where AMG has slow convergence, e.g.,

indefinite problems.
• More parallelizable than ILU, fewer parameters to tune.

• More research
• Dynamic load balancing.
• Communication analysis for sparse solvers.
• Rank analysis of different application problems.
• Good ordering and hierarchical clustering / partitioning to reduce

off-diagonal rank.
• Not all problems compress well in HSS, look into other formats.
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HSS matrix – ULV factorization

ULV-like factored form (U and V ∗ unitary, L triangular)

Γ1;b↔2;t


I

Ω1
I

Ω2

[Γ3;b↔4;t
Γ5;b↔6;t

]
Ω3

Ω4
Ω5

Ω6

A

Q∗3

Q∗4
Q∗5

Q∗6


[

ΓT3;b↔4;t

ΓT5;b↔6;t

]
I
Q∗1

I
Q∗2

 ΓT1;b↔2;t

=



L3

0 L4

(Ω1L4,3)t (Ω1L3,4)t L1

L5

0 0 L6

(Ω2L6,5)t (Ω2L5,6)t L2

(Ω1L4,3)b (Ω1L3,4)b W1;bQ
∗
1;t B1,2V

∗
2

[
V∗5 Q∗5;t V∗5 Q∗5;b

V∗6 Q∗6;t V∗6 Q∗6;b

] [
I
Q∗2

]
D0

B2,1V
∗
1

[
V∗3 Q∗3;t V∗3 Q∗3;b

V∗4 Q∗4;t V∗4 Q∗4;b

] [
I
Q∗1

]
(Ω2L6,5)b (Ω2L5,6)b W2;bQ

∗
2;t
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Themes

Many research areas for exascale computing: https://exascaleproject.org

• Algorithms with lower arithmetic & communication complexity.
Multilevel algorithms:
• Multigrid
• Fast Multipole Method (FMM)
• Hierarchical matrices – algebraic generalization of FMM,

applicable to broader classes of problems

• Parallel algorithms and codes for machines with million-way
parallelism, hierarchical organization.
• Distributed memory
• Manycore nodes: 100s of lightweight cores, accelerators,

co-processors
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Why factorization?

• Target problems:

• indefinite, ill-conditioned, nonsymmetric (e.g. those from multiphysics,
multiscale simulations)

• Where can be used?
• Stand-alone solver.
• Good for multiple right-hand sides.
• Precondition Krylov solvers.
• Coarse-grid solver in multigrid. (e.g., Hypre)
• In nonlinear solver. (e.g., SUNDIALS)
• Solving interior eigenvalue prolems.
• ...

• Error analysis:
• Componentwise error bounds (Guaranteed solution accuracy).
• Condition number estimation.
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Arithmetic complexities – dense HSS

Let r = HSS rank, i.e., maximum rank found during the different
compression steps.

Compression

• Without RS: O(r N2).

• With RS: sampling cost (dominant) + O(r2N)

sampling cost:
• Classical matvec: O(r N2).
• FFT (e.g., Toeplitz matrix): O(r N logN).
• FMM: O(r N).

ULV factorization and solve: O(r N)
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