Smoothed analysis for lowrank solutions to SDPs

Praneeth Netrapalli Microsoft Research India

Joint work with:

Srinadh Bhojanapalli TTI Chicago

Nicolas Boumal Princeton

Prateek Jain MSR India

Semi-definite programs (SDPs)

 $\min_{X \in \mathbb{R}^{n \times n}} \langle C, X \rangle$

s.t.
$$\langle A_i, X \rangle = b_i, 1 \le i \le m$$

 $X \ge 0$

- Several applications
 - Clustering (max-cut)
 - Control

• ...

• Sum-of-squares

Burer-Monteiro 2003

- Much faster
- Empirically works well
- No proof of correctness
- Polynomial time solutions exist but can be slow
 - Interior-point methods
 - Multiplicative weight update

Low rank solutions always exist!

- (Barvinok'95, Pataki'98): For any feasible SDP, at least one solution exists with rank $k^* \le \sqrt{2m}$
- In several applications $m \sim n$. So $k^* \ll n$.

Burer-Monteiro: Optimize in low rank space; iterations are fast!

Burer-Monteiro factorization

Burer-Monteiro factorization

What can be done for nonconvex problems?

• First order stationary points (FOSP)

 $\|\nabla f(x)\| \leq \epsilon$

• Second order stationary points (SOSP)

$$\|\nabla f(x)\| \le \epsilon$$
 and $\nabla^2 f(x) \ge -\epsilon \mathbb{I}$

• Lot of recent work on how to find SOSPs efficiently

Low rank SDP
$$\min_{U \in \mathbb{R}^{n \times k}} f(U) = \langle C, UU^T \rangle + \mu \sum_{i} (\langle A_i, UU^T \rangle - b_i)^2$$

Boumal et al. 2016: if $k \ge \sqrt{2m}$, for almost all C, SOSP = global optimum

Open questions

- Are there C for which SOSP \neq global optimum?
- Are approximate SOSP = approximate global optima?

Our results

- Yes, there are C for which SOSP \neq global optimum
- Yes, for perturbed SDPs,

approximate SOSP = approximate global optima

$\min_{U \in \mathbb{R}^{n \times k}} f(U) = \langle C, UU^T \rangle + \mu \sum_{i} (\langle A_i, UU^T \rangle - b_i)^2$

Smoothed analysis

$$\min_{U \in \mathbb{R}^{n \times k}} f(U) = \left\langle C + G, UU^T \right\rangle + \mu \sum_{i} \left(\left\langle A_i, UU^T \right\rangle - b_i \right)^2$$

• G: symmetric Gaussian matrix with $G_{ij} \sim N(0, \sigma_G^2)$

• $\sigma_G \approx \Omega(\epsilon)$

• If $k = \Omega(\sqrt{m \log 1/\epsilon})$ then with high probability

every ϵ SOSP = ϵ global optimum

Main Ideas of the Proof

Two key steps

1. SOSP that is rank deficient is global optimum [Burer-Monteiro 2003]

U SOSP and $\sigma_k(U) = 0 \Rightarrow U$ is a global optimum $\downarrow k^{\text{th}}$ largest singular value of U

2. For perturbed SDPs, with probability 1, if $k \ge \sqrt{2m}$, then

all FOSPs have $\sigma_k(U) = 0$. [Boumal et al. 2016]

Two key steps $\min_{U \in \mathbb{R}^{n \times k}} f(UU^{\top})$ $f(\cdot)$ convex 1. approximate approximate

proximate approximate U_s SOSP and $\sigma_k(U)$ small $\Rightarrow U$ is a global optimum

high probability $k \ge \sqrt{m \log 1/\epsilon}$ 2. For perturbed SDPs, with probability 1, if $k \ge \sqrt{2m}$, then

```
approximate
all FOSPs have small \sigma_k(U).
```

$$FOSP \Rightarrow \sigma_k(U) \text{ is small}$$
$$\min_{U \in \mathbb{R}^{n \times k}} f(U) = \langle C + G, UU^T \rangle + \mu \sum_i (\langle A_i, UU^T \rangle - b_i)^2$$

• Approximate FOSP: $\|(C + G + 2\mu \sum_i (\langle A_i, UU^\top \rangle - b_i) A_i)U\| \le \epsilon$

Aside: Lower bound on product of matrices

 $\sigma_k(U) \le \frac{\|HU\|}{\sigma_{n-k+1}(H)}$

Smallest singular values of Gaussian matrices

• $\sigma_i(G)$ denotes the *i*th singular value of *G*.

 $\mathbb{P}[\sigma_n(G)=0]=0$

• In general,
$$\sigma_{n-k}(G) \sim \frac{k}{\sqrt{n}}$$
.

• Can obtain large deviation bounds [Nguyen 2017]

$$\mathbb{P}\left[\sigma_{n-k}(G) < c\frac{k}{\sqrt{n}}\right] < \exp\left(-Ck^2 + k\log n\right)$$

• Can extend the above to G + A for any fixed matrix A

Need $k^2 \ge m \log 1/\epsilon$

Coming back to SDPs

Unknown quantity

- Interested in bounding $\sigma_{n-k} \left(\frac{G}{G} + C + 2\mu \sum_{i=1}^{m} (\langle A_i, UU^{\top} \rangle - b_i) A_i \right)$
- Do an ϵ -net of $(\lambda_1, \cdots, \lambda_m) \in \mathbb{R}^m$ and apply large deviation bound for

$$\mathbb{P}\left[\sigma_{n-k}\left(G+C+\sum_{i=1}^{m}\lambda_{i}A_{i}\right) < c\frac{k}{\sqrt{n}}\right] < \exp\left(-Ck^{2} + k\log n\right)$$

• Taking union bound over ϵ -net gives additional $\left(\frac{1}{\epsilon}\right)^{m}$ factor

Technical issues

• Can do ϵ -net only over a finite size ball

• Need to show $\langle A_i, UU^{\top} \rangle - b_i$ does not become unbounded at SOSPs

- Requires us to show that all SOSPs are uniformly bounded
- Can show this for compact SDPs i.e., feasible set is compact
- Not obvious SOSPs in nonconvex world may be infeasible

Approx low rank SOSP \Rightarrow approx. global opt

- $f(\cdot)$ convex: UU^{\top} suboptimal \Rightarrow there exists descent direction
- In fact, \exists descent direction increasing the rank by at most 1
- If U was rank deficient, this direction exists in factorized space
- Since U is approx. rank deficient, can construct a direction that does not increase the rank

Summary

- Low rank solutions to SDPs useful from both application and algorithmic perspectives
- Burer-Monteiro approach tries to leverage this idea
- May not work in the worst case
- This work: Burer-Monteiro works in the smoothed analysis sense

Open directions

- We believe the results are not tight
- Extension of these results to augmented Lagrangian methods (ALM)
 - The one actually used in practice
 - Significantly better than penalty methods
- Preliminary results on exact-ALMs but no results for inexact ALMs
- Obtain solutions of rank $\ll \sqrt{m}$ for special problems

Open directions – random matrix theory

- Main bottleneck in our results ϵ -net argument
- Distance of a random matrix from a subspace Well understood!
- Distance of a random matrix from low rank matrices Well understood!
- Distance of a random matrix from a subspace + low rank matrices Not understood!
- Leads to interesting Mathematical questions + applications (in SDPs)

Thank you!

Questions?