Smoothed analysis for lowrank solutions to SDPs

Praneeth Netrapalli Microsoft Research India

Joint work with:

Srinadh Bhojanapalli TTI Chicago

Nicolas Boumal Princeton

Prateek Jain MSR India

Semi-definite programs (SDPs)

min $X \in R^{n \times n}$ $\langle C, X \rangle$ s.t. $\langle A_i, X \rangle = b_i, 1 \le i \le m$ $X \geq 0$

- Several applications
	- Clustering (max-cut)
	- Control

 \bullet …

• Sum-of-squares

Burer-Monteiro 2003

- Much faster
- Empirically works well
- No proof of correctness
- Polynomial time solutions exist but can be slow
	- Interior-point methods
	- Multiplicative weight update

Low rank solutions always exist!

- (Barvinok'95, Pataki'98): For any feasible SDP, at least one solution exists with rank $k^* < \sqrt{2m}$
- In several applications $m \sim n$. So $k^* \ll n$.

Burer-Monteiro: Optimize in low rank space; iterations are fast!

Burer-Monteiro factorization

Burer-Monteiro factorization

What can be done for nonconvex problems?

• First order stationary points (FOSP)

 $\|\nabla f(x)\| \leq \epsilon$

• Second order stationary points (SOSP)

$$
\|\nabla f(x)\| \le \epsilon \text{ and } \nabla^2 f(x) \ge -\epsilon
$$

• Lot of recent work on how to find SOSPs efficiently

Low rank SDP
$$
\min_{U \in R^{n \times k}} f(U) = \langle C, UU^{T} \rangle + \mu \sum_{i} (\langle A_{i}, UU^{T} \rangle - b_{i})^{2}
$$

Boumal et al. 2016: if $k \geq \sqrt{2m}$, for almost all C, SOSP = global optimum

Open questions

- Are there C for which SOSP \neq global optimum?
- Are approximate $SOSP =$ approximate global optima?

Our results

- Yes, there are C for which SOSP \neq global optimum
- Yes, for perturbed SDPs,

approximate $SOSP =$ approximate global optima

min $U \in R^{n \times k}$ $f(U) = \langle C, UU^{T} \rangle + \mu \sum$ \dot{l} A_i , UU^T $- b_i$ $)^2$

Smoothed analysis

$$
\min_{U \in R^{n \times k}} f(U) = \left\langle C + G, UU^{T} \right\rangle + \mu \sum_{i} \left(\left\langle A_{i}, UU^{T} \right\rangle - b_{i} \right)^{2}
$$

- G : symmetric Gaussian matrix with $G_{ij} \thicksim N(0,\sigma_G^2)$
	- \bullet $\sigma_G \approx \Omega(\epsilon)$
- If $k = \Omega(\sqrt{m \log 1/\epsilon})$ then with high probability

every ϵ SOSP = ϵ global optimum

Main Ideas of the Proof

Two key steps

1. SOSP that is rank deficient is global optimum [Burer-Monteiro 2003]

U SOSP and $\sigma_k(U) = 0 \Rightarrow U$ is a global optimum k^{th} largest singular value of U

2. For perturbed SDPs, with probability 1, if $k \geq \sqrt{2m}$, then

all FOSPs have $\sigma_k(U) = 0$. [Boumal et al. 2016]

Two key steps min $U \in \mathbb{R}^{n \times k}$ $f(UU^\mathsf{T}$ $f(\cdot)$ convex

> U SOSP and $\sigma_k(U)$ small $\Rightarrow U$ is a global optimum approximate approximate

2. For perturbed SDPs, with probability 1, if $k \geq \sqrt{2m}$, then high probability $k \geq \sqrt{m} \log 1/\epsilon$

all FOSPs have small $\sigma_k(U)$. approximate

1.

$$
\text{FOSP} \Rightarrow \sigma_k(U) \text{ is small}
$$
\n
$$
\min_{U \in R^{n \times k}} f(U) = \langle C + G, UU^T \rangle + \mu \sum_{i} (\langle A_i, UU^T \rangle - b_i)^2
$$

• Approximate FOSP: $\left\| \left(C+G+2\mu\,\Sigma_i\big(\big\langle A_i,UU^\top\big\rangle-b_i\big)\,A_i\big)U\right\|\leq \epsilon$

Aside: Lower bound on product of matrices

Smallest singular values of Gaussian matrices

• $\sigma_i(G)$ denotes the i^{th} singular value of G .

 $\mathbb{P}[\sigma_n(G) = 0] = 0$

• In general,
$$
\sigma_{n-k}(G) \sim \frac{k}{\sqrt{n}}
$$
.

• Can obtain large deviation bounds [Nguyen 2017]

$$
\mathbb{P}\left[\sigma_{n-k}(G) < c\,\frac{k}{\sqrt{n}}\right] < \exp\left(-Ck^2 + k\log n\right)
$$

• Can extend the above to $G + A$ for any fixed matrix A

Need $k^2 \ge m \log 1/\epsilon$

Coming back to SDPs

Unknown quantity

- Interested in bounding σ_{n-k} | $G + C + 2\mu$ \sum $i=1$ \overline{m} $\langle A_i , UU^\top \rangle - b_i \big) A_i$
- Do an ϵ -net of $(\lambda_1, \dots, \lambda_m) \in \mathbb{R}^m$ and apply large deviation bound for

$$
\mathbb{P}\left[\sigma_{n-k}\left(G+C+\sum_{i=1}^m \lambda_i A_i\right)
$$

• Taking union bound over ϵ -net gives additional $\left(\frac{1}{\epsilon}\right)$ ϵ \overline{m} factor

Technical issues

• Can do ϵ -net only over a finite size ball

• Need to show $\left\langle A_i, UU^\top\right\rangle-b_i$ does not become unbounded at SOSPs

- Requires us to show that all SOSPs are uniformly bounded
- Can show this for compact SDPs i.e., feasible set is compact
- Not obvious SOSPs in nonconvex world may be infeasible

Approx low rank SOSP \Rightarrow approx. global opt

- $f(\cdot)$ convex: UU^{\top} suboptimal \Rightarrow there exists descent direction
- In fact, E descent direction increasing the rank by at most 1
- If U was rank deficient, this direction exists in factorized space
- Since U is approx. rank deficient, can construct a direction that does not increase the rank

Summary

- Low rank solutions to SDPs useful from both application and algorithmic perspectives
- Burer-Monteiro approach tries to leverage this idea
- May not work in the worst case
- This work: Burer-Monteiro works in the smoothed analysis sense

Open directions

- We believe the results are not tight
- Extension of these results to augmented Lagrangian methods (ALM)
	- The one actually used in practice
	- Significantly better than penalty methods
- Preliminary results on exact-ALMs but no results for inexact ALMs
- Obtain solutions of rank $\ll \sqrt{m}$ for special problems

Open directions – random matrix theory

- Main bottleneck in our results ϵ -net argument
- Distance of a random matrix from a subspace Well understood!
- Distance of a random matrix from low rank matrices Well understood!
- Distance of a random matrix from a subspace + low rank matrices Not understood!
- Leads to interesting Mathematical questions + applications (in SDPs)

Thank you!

Questions?