Unbiased estimates for linear regression via volume sampling

Michał Dereziński UC Berkeley

Joint work with Manfred Warmuth, Daniel Hsu

Simons Institute, September 26, 2018

Introduction

Basic results

Unbiased estimators and matrix formulas

Algorithms and extensions

Least squares regression

$$w^* = \operatorname*{argmin}_{w} \sum_{i} (x_i w - y_i)^2$$

How many labels needed to get close to optimum?

- All x_i given
- But labels y_i unknown

Guess how many needed?

How many labels needed to get close to optimum?

- All x_i given
- But labels y_i unknown

Guess how many needed?

How good is one label?

Loss of estimate = $2 \times \text{Loss}$ of optimum

- x_{max} (furthest from 0) is bad - any deterministic choice is bad

- x_{max} (furthest from 0) is bad - any deterministic choice is bad

$$\mathbb{E}_{i} \sum_{j} \left(\underbrace{\frac{y_{i}}{x_{i}}}_{w_{i}^{*}} x_{j} - y_{j} \right)^{2} = 2 \sum_{j} (w^{*}x_{j} - y_{j})^{2}$$
$$\mathbb{E}_{i} w_{i}^{*} = \sum_{i} \underbrace{\frac{x_{i}^{2}}{\|\mathbf{x}\|^{2}}}_{i} \underbrace{\frac{y_{i}}{x_{i}}}_{\mathbf{x}_{i}} = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|^{2}} = w^{*}$$

- x_{max} (furthest from 0) is bad - any deterministic choice is bad

- x_{max} (furthest from 0) is bad - any deterministic choice is bad

$$\mathbb{E}_{i} \sum_{j} (\underbrace{\frac{y_{i}}{x_{i}}}_{w_{i}^{*}} x_{j} - y_{j})^{2} = 2 \sum_{j} (w^{*}x_{j} - y_{j})^{2}$$
$$\mathbb{E}_{i} w_{i}^{*} = \sum_{i} \underbrace{\frac{y_{i}}{x_{i}^{2}}}_{i} \underbrace{\frac{y_{i}}{y_{i}}}_{w_{i}^{*}} = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|^{2}} = w^{*}$$

General: sub-sampling for linear regression

Given: *n* points $\mathbf{x}_i \in \mathbb{R}^d$ with hidden labels $y_i \in \mathbb{R}$ **Goal**: Minimize loss $L(\mathbf{w}) = \sum_i (\mathbf{x}_i^\top \mathbf{w} - y_i)^2$ over all *n* points

Strategy: Solve subproblem (X_S, y_S) , obtaining:

$$\mathbf{w}^*(S) = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i \in S} (\mathbf{x}_i^\top \mathbf{w} - y_i)^2 = (\mathbf{X}_S)^+ \mathbf{y}_S$$
$$(\mathbf{X}_S)^+ = (\mathbf{X}_S^\top \mathbf{X}_S)^{-1} \mathbf{X}_S^\top \quad \text{- pseudo-inverse of } \mathbf{X}_S$$

General: sub-sampling for linear regression

Given: *n* points $\mathbf{x}_i \in \mathbb{R}^d$ with hidden labels $y_i \in \mathbb{R}$ **Goal**: Minimize loss $L(\mathbf{w}) = \sum_i (\mathbf{x}_i^\top \mathbf{w} - y_i)^2$ over all *n* points

Strategy: Solve subproblem (X_S, y_S) , obtaining:

$$\mathbf{w}^*(S) = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i \in S} (\mathbf{x}_i^\top \mathbf{w} - y_i)^2 = (\mathbf{X}_S)^+ \mathbf{y}_S$$
$$(\mathbf{X}_S)^+ = (\mathbf{X}_S^\top \mathbf{X}_S)^{-1} \mathbf{X}_S^\top \quad \text{- pseudo-inverse of } \mathbf{X}_S$$

General: sub-sampling for linear regression

Given: *n* points $\mathbf{x}_i \in \mathbb{R}^d$ with hidden labels $y_i \in \mathbb{R}$ **Goal**: Minimize loss $L(\mathbf{w}) = \sum_i (\mathbf{x}_i^\top \mathbf{w} - y_i)^2$ over all *n* points

Strategy: Solve subproblem (X_S, y_S) , obtaining:

$$\begin{split} \mathbf{w}^*(S) &= \operatorname*{argmin}_{\mathbf{w}} \sum_{i \in S} (\mathbf{x}_i^\top \mathbf{w} - y_i)^2 = (\mathbf{X}_S)^+ \mathbf{y}_S \\ (\mathbf{X}_S)^+ &= (\mathbf{X}_S^\top \mathbf{X}_S)^{-1} \mathbf{X}_S^\top \quad \text{- pseudo-inverse of } \mathbf{X}_S \end{split}$$

For d=1: pick set $S = \{i\}$ w.p. $P(S) \propto x_i^2$ For any d: pick d-element S w.p. $P(S) \propto \det(X_S)^2$

Distribution over all *s*-element subsets *S* (for fixed $s \ge d$):

$$P(S) = \frac{\det(\mathbf{X}_S^{\top}\mathbf{X}_S)}{Z}$$

$$Z = \sum_{S:|S|=s} \det(\mathbf{X}_{S}^{\mathsf{T}}\mathbf{X}_{S}) = \binom{n-d}{s-d} \det(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$

For d=1: pick set $S = \{i\}$ w.p. $P(S) \propto x_i^2$ For any d: pick d-element S w.p. $P(S) \propto \det(\mathbf{X}_S)^2$

Distribution over all s-element subsets S (for fixed $s \ge d$):

$$P(S) = \frac{\det(\mathbf{X}_S^{\top}\mathbf{X}_S)}{Z}$$

$$Z = \sum_{S:|S|=s} \det(\mathbf{X}_{S}^{\mathsf{T}}\mathbf{X}_{S}) = \binom{n-d}{s-d} \det(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$

For d=1: pick set $S = \{i\}$ w.p. $P(S) \propto x_i^2$ For any d: pick d-element S w.p. $P(S) \propto \det(\mathbf{X}_S)^2$

Distribution over all s-element subsets S (for fixed $s \ge d$):

$$P(S) = \frac{\det(\mathbf{X}_S^{\top}\mathbf{X}_S)}{Z}$$

$$Z = \sum_{S:|S|=s} \det(\mathbf{X}_{S}^{\mathsf{T}}\mathbf{X}_{S}) = \binom{n-d}{s-d} \det(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$

For d=1: pick set $S = \{i\}$ w.p. $P(S) \propto x_i^2$ For any d: pick d-element S w.p. $P(S) \propto \det(\mathbf{X}_S)^2$

Distribution over all s-element subsets S (for fixed $s \ge d$):

$$P(S) = \frac{\det(\mathbf{X}_S^{\top}\mathbf{X}_S)}{Z}$$

$$Z = \sum_{S:|S|=s} \det(\mathbf{X}_{S}^{\mathsf{T}}\mathbf{X}_{S}) = \binom{n-d}{s-d} \det(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$

Introduction

Basic results

Unbiased estimators and matrix formulas

Algorithms and extensions

Theorem ([DW17])

For a volume-sampled d-element set S,

$$\mathbb{E}[L(\mathbf{w}^*(S))] = (d+1) L(\underbrace{\mathbf{w}^*}_{\mathbb{E}[\mathbf{w}^*(S)]}),$$

if X is in general position

- Sampling distribution does not depend on the labels
- No range restrictions

leverage score of $\mathbf{x}_i \propto \mathbf{x}_i^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{x}_i$

Leverage scores are marginals of size *d* volume sampling

Problems with iid sampling:

- 1. requires at least *d* log *d* labels (coupon collector problem)
- 2. produces biased estimators

Volume sampling

leverage score of
$$\mathbf{x}_i \propto \mathbf{x}_i^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{x}_i$$

Leverage scores are marginals of size d volume sampling

Problems with iid sampling:

- 1. requires at least *d* log *d* labels (coupon collector problem)
- 2. produces biased estimators

Volume sampling

leverage score of
$$\mathbf{x}_i \propto \mathbf{x}_i^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{x}_i$$

Leverage scores are marginals of size d volume sampling

Problems with iid sampling:

- 1. requires at least $d \log d$ labels (coupon collector problem)
- 2. produces biased estimators

Volume sampling

leverage score of
$$\mathbf{x}_i \propto \mathbf{x}_i^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{x}_i$$

Leverage scores are marginals of size d volume sampling

Problems with iid sampling:

- 1. requires at least $d \log d$ labels (coupon collector problem)
- 2. produces biased estimators

Volume sampling

Volume sampling vs iid leverage scores

 λ indicates the amount of $\ell_2\text{-regularization}$ used for sampling and prediction

New loss bounds

which avoid coupon collector problem

New <u>expectation formulas</u> can be extended to matrix identities

 Unbiased estimators easy to combine via averaging

 Surprising <u>closure properties</u> volume sampling is closed under:

- 1. subsampling
- 2. adding uniform/i.i.d. samples

New loss bounds

which avoid coupon collector problem

 New expectation formulas can be extended to matrix identities

 Unbiased estimators easy to combine via averaging

 Surprising <u>closure properties</u> volume sampling is closed under

- 1. subsampling
- 2. adding uniform/i.i.d. samples

New loss bounds

which avoid coupon collector problem

 New expectation formulas can be extended to matrix identities

 Unbiased estimators easy to combine via averaging

 Surprising <u>closure properties</u> volume sampling is closed under:

- 1. subsampling
- 2. adding uniform/i.i.d. samples

New loss bounds

which avoid coupon collector problem

 New expectation formulas can be extended to matrix identities

 Unbiased estimators easy to combine via averaging

Surprising <u>closure properties</u>

volume sampling is closed under:

- 1. subsampling
- 2. adding uniform/i.i.d. samples

Volume sampling is closed under subsampling

Hierarchical sampling $(t \ge s)$:

size t volume sampling from X	$ au \stackrel{t}{\sim} {f X}$
size s volume sampling from X_T	$S \stackrel{s}{\sim} \mathbf{X}_{T}$
= size <i>s</i> volume sampling from X	$= S \stackrel{s}{\sim} \mathbf{X}$

Introduction

Basic results

Unbiased estimators and matrix formulas

Algorithms and extensions

Expectation formulas for the pseudoinverse

Expected pseudoinverse

Variance of pseudoinverse estimator:

 $\mathbb{E}\big[(I_{\mathcal{S}}X)^+\big] = X^+$

$$\mathbb{E}[\underbrace{(\mathbf{I}_{S}\mathbf{X})^{+}(\mathbf{I}_{S}\mathbf{X})^{+\top}}_{(\mathbf{X}_{S}^{\top}\mathbf{X}_{S})^{-1}}] - \mathbf{X}^{+}\mathbf{X}^{+\top} = \frac{n-s}{s-d+1}\mathbf{X}^{+}\mathbf{X}^{+\top}$$

w^{*}(S) - unbiased estimator of w^{*} $\mathbb{E} \big[w^{*}(S) \big] = \mathbb{E} \big[(I_{S}X)^{+} \big] y = X^{+}y = w^{*}$

Expectation formulas for the pseudoinverse

Expected pseudoinverse

Variance of pseudoinverse estimator:

 $\mathbb{E}\big[(\boldsymbol{\mathsf{I}}_{\mathcal{S}}\boldsymbol{\mathsf{X}})^+\big] = \boldsymbol{\mathsf{X}}^+$

$$\mathbb{E}[\underbrace{(\mathbf{I}_{S}\mathbf{X})^{+}(\mathbf{I}_{S}\mathbf{X})^{+\top}}_{(\mathbf{X}_{S}^{\top}\mathbf{X}_{S})^{-1}}] - \mathbf{X}^{+}\mathbf{X}^{+\top} = \frac{n-s}{s-d+1}\mathbf{X}^{+}\mathbf{X}^{+\top}$$

 $\mathbf{w}^*(S)$ - unbiased estimator of \mathbf{w}^* $\mathbb{E}[\mathbf{w}^*(S)] = \mathbb{E}[(\mathbf{I}_S \mathbf{X})^+] \mathbf{y} = \mathbf{X}^+ \mathbf{y} = \mathbf{w}^*$

Expectation formulas for the pseudoinverse

Expected pseudoinverse

Variance of pseudoinverse estimator:

 $\mathbb{E}\big[(\boldsymbol{\mathsf{I}}_{\mathcal{S}}\boldsymbol{\mathsf{X}})^+\big] = \boldsymbol{\mathsf{X}}^+$

$$\mathbb{E}[\underbrace{(\mathbf{I}_{S}\mathbf{X})^{+}(\mathbf{I}_{S}\mathbf{X})^{+\top}}_{(\mathbf{X}_{S}^{\top}\mathbf{X}_{S})^{-1}}] - \mathbf{X}^{+}\mathbf{X}^{+\top} = \frac{n-s}{s-d+1}\mathbf{X}^{+}\mathbf{X}^{+\top}$$

 $\mathbf{w}^*\!(S)$ - unbiased estimator of \mathbf{w}^*

 $\mathbb{E}\big[\mathbf{w}^*(S)\big] = \mathbb{E}\big[(\mathbf{I}_S\mathbf{X})^+\big]\,\mathbf{y} = \mathbf{X}^+\mathbf{y} = \mathbf{w}^*$

To each subset S assign a formula F(S)

Goal: Show that $\mathbb{E}_{S}[\mathbf{F}(S)] = \mathbf{F}(\{1..n\})$ for size *s* volume sampling

Idea: Use closure under subsampling:

For fixed *S* of size *s*, sample: Suffices to show: $S_{-i} \stackrel{s-1}{\sim} \mathbf{X}_S$ $\mathbb{E}_i [\mathbf{F}(S_{-i}) \mid S] = \mathbf{F}(S)$ for all S

Example: Use formula $\mathbf{F}(S) = (\mathbf{I}_S \mathbf{X})^+$.

Follows from the Sherman-Morrison formula

To each subset S assign a formula $\mathbf{F}(S)$

Goal: Show that $\mathbb{E}_{S}[\mathbf{F}(S)] = \mathbf{F}(\{1..n\})$ for size *s* volume sampling

Idea: Use closure under subsampling:

For fixed S of size s, sample: $S_{-i} \stackrel{s-1}{\sim} \mathbf{X}_S$ Suffices to show: $\mathbb{E}_i [\mathbf{F}(S_{-i}) | S] = \mathbf{F}(S)$ for all S

Example: Use formula $\mathbf{F}(S) = (\mathbf{I}_S \mathbf{X})^+$.

To each subset S assign a formula $\mathbf{F}(S)$

Goal: Show that $\mathbb{E}_{S}[\mathbf{F}(S)] = \mathbf{F}(\{1..n\})$ for size *s* volume sampling

Idea: Use closure under subsampling:

For fixed S of size s, sample: $S_{-i} \stackrel{s-1}{\sim} \mathbf{X}_S$ Suffices to show: $\mathbb{E}_i [\mathbf{F}(S_{-i}) | S] = \mathbf{F}(S)$ for all S

Example: Use formula $\mathbf{F}(S) = (\mathbf{I}_S \mathbf{X})^+$.

Follows from the Sherman-Morrison formula

Unbiased estimators are easy to combine

Simple Strategy:

- 1. Compute independent estimators $\mathbf{w}(S_j)$ for j = 1, ..., k,
- 2. Predict with the average estimator $\frac{1}{k} \sum_{j=1}^{k} \mathbf{w}(S_j)$

If we have

 $\mathbb{E}[L(\mathbf{w}(S))] \leq (1+c)L(\mathbf{w}^*)$ and $\mathbb{E}[\mathbf{w}(S)] = \mathbf{w}^*$,

then for k independent samples S_1, \ldots, S_k ,

$$\mathbb{E}\left[L\left(\frac{1}{k}\sum_{j=1}^{k}\mathsf{w}(S_{j})\right)\right] \leq \left(1+\frac{c}{k}\right)L(\mathsf{w}^{*})$$

Motivation:

- Ensemble methods
- Distributed optimization
- Privacy

Unbiased estimators are easy to combine

Simple Strategy:

- 1. Compute independent estimators $\mathbf{w}(S_j)$ for j = 1, ..., k,
- 2. Predict with the average estimator $\frac{1}{k} \sum_{j=1}^{k} \mathbf{w}(S_j)$

If we have

$$\mathbb{E}[L(\mathbf{w}(S))] \leq (1+c)L(\mathbf{w}^*)$$
 and $\mathbb{E}[\mathbf{w}(S)] = \mathbf{w}^*$,

then for k independent samples S_1, \ldots, S_k ,

$$\mathbb{E}\left[L\left(\frac{1}{k}\sum_{j=1}^{k}\mathbf{w}(S_{j})\right)\right] \leq \left(1+\frac{c}{k}\right)L(\mathbf{w}^{*})$$

Motivation:

- Ensemble methods
- Distributed optimization
- Privacy

Unbiased estimators are easy to combine

Simple Strategy:

- 1. Compute independent estimators $\mathbf{w}(S_j)$ for j = 1, ..., k,
- 2. Predict with the average estimator $\frac{1}{k} \sum_{j=1}^{k} \mathbf{w}(S_j)$

If we have

$$\mathbb{E}[L(\mathbf{w}(S))] \leq (1+c)L(\mathbf{w}^*) \quad \text{and} \quad \mathbb{E}[\mathbf{w}(S)] = \mathbf{w}^*,$$

then for k independent samples S_1, \ldots, S_k ,

$$\mathbb{E}\left[L\left(\frac{1}{k}\sum_{j=1}^{k}\mathbf{w}(S_{j})\right)\right] \leq \left(1+\frac{c}{k}\right)L(\mathbf{w}^{*})$$

Motivation:

- Ensemble methods
- Distributed optimization

Open: Is there a size $O(d/\epsilon)$ unbiased estimator that achieves

$$\mathbb{E}\big[L(\mathbf{w}(S))\big] \leq (1+\epsilon)L(\mathbf{w}^*) ?$$

Our progress so far:

1. size $O(d^2/\epsilon)$ (averaging size d volume sampling)[DW17]2. size $O(d/\epsilon)$ (only if y is linear plus white noise)[DW18a]3. size $O(d \log d + d/\epsilon)$ (leveraged volume sampling)[DWH18]

Also biased estimators of size $O(d/\epsilon)$ are known [CP18]

Open: Is there a size $O(d/\epsilon)$ unbiased estimator that achieves

$$\mathbb{E}\big[L(\mathbf{w}(S))\big] \le (1+\epsilon)L(\mathbf{w}^*) ?$$

Our progress so far:

- 1. size $O(d^2/\epsilon)$ (averaging size d volume sampling) [DW17]2. size $O(d/\epsilon)$ (only if y is linear plus white noise) [DW18a]
- 3. size $O(d \log d + d/\epsilon)$ (leveraged volume sampling) [DWH18]

Also biased estimators of size $O(d/\epsilon)$ are known [CP18]

Open: Is there a size $O(d/\epsilon)$ unbiased estimator that achieves

$$\mathbb{E}\big[L(\mathbf{w}(S))\big] \le (1+\epsilon)L(\mathbf{w}^*) ?$$

Our progress so far:

- 1. size $O(d^2/\epsilon)$ (averaging size *d* volume sampling) [DW17]
- 2. size $O(d/\epsilon)$ (only if **y** is linear plus white noise) [DW18a]
- 3. size $O(d \log d + d/\epsilon)$ (leveraged volume sampling) [DWH18]

Also biased estimators of size $O(d/\epsilon)$ are known [CP18]

Introduction

Basic results

Unbiased estimators and matrix formulas

Algorithms and extensions

Reverse iterative volume sampling

Start with $S = \{1..n\}$

Sample index $i \in S$ Go to set $S_{-i} = S - \{i\}$

Repeat until desired size

Simple algorithm: Update distribution $P(S_{-i}|S)$ at every step

Problem: Quadratic dependence on *n*

Faster algorithm via rejection sampling

$$\mathsf{Recall}: \qquad \mathsf{P}(\mathsf{S}_{-i}|\mathsf{S}) \sim 1 - \mathsf{x}_i^{\scriptscriptstyle \top} (\mathsf{X}_{\mathsf{S}}^{\scriptscriptstyle \top} \mathsf{X}_{\mathsf{S}})^{-1} \mathsf{x}_i$$

Idea: Rejection sampling from distribution $P(S_{-i}|S)$ 1. Sample *i* uniformly from set *S*, 2. Compute $h_i = 1 - \mathbf{x}_i^{\top} (\mathbf{X}_S^{\top} \mathbf{X}_S)^{-1} \mathbf{x}_i$, 3. With probability $1 - h_i$ reject and go back to 1.

We show: Number of trials per step is constant w.h.p.

intime:
$$\overbrace{\text{steps}}^{n-s} \times \overbrace{\text{trials per step}}^{O(1)} \times \overbrace{\text{compute } h_i}^{O(d^2)} = O(nd^2)$$

Result: Linear dependence on *n*

Faster algorithm via rejection sampling

$$\mathsf{Recall}: \qquad \mathsf{P}(S_{-i}|S) \sim 1 - \mathsf{x}_i^{\scriptscriptstyle \top} (\mathsf{X}_S^{\scriptscriptstyle \top} \mathsf{X}_S)^{-1} \mathsf{x}_i$$

Idea: Rejection sampling from distribution $P(S_{-i}|S)$ 1. Sample *i* uniformly from set *S*, 2. Compute $h_i = 1 - \mathbf{x}_i^{\top} (\mathbf{X}_S^{\top} \mathbf{X}_S)^{-1} \mathbf{x}_i$, 3. With probability $1 - h_i$ reject and go back to 1.

We show: Number of trials per step is constant w.h.p.

Runtime:
$$\overbrace{\text{steps}}^{n-s} \times \overbrace{\text{trials per step}}^{O(1)} \times \overbrace{\text{compute } h_i}^{O(d^2)} = O(nd^2)$$

Result: Linear dependence on n

Extension: regularized volume sampling [DW18a]

Goal: Error bounds for sets of size $\ll d$

Result: With properly tuned λ , it suffices to sample d_{λ} labels

Extension: regularized volume sampling [DW18a]

Goal: Error bounds for sets of size $\ll d$

Result: With properly tuned λ , it suffices to sample d_{λ} labels

Extension: Leveraged volume sampling [DWH18]

- rescaled volume sampling
- with iid leverage scores:

$$q_i \sim \mathbf{x}_i^{ op} (\mathbf{X}^{ op} \mathbf{X})^{-1} \mathbf{x}_i$$

Determinantal rejection sampling trick repeat Sample $i_1, ..., i_s$ i.i.d. $\sim (q_1, ..., q_n)$ Sample $Accept \sim \text{Bernoulli}\left[\frac{\det (\sum_{t=1}^s \frac{1}{q_{i_t}} \mathsf{x}_{i_t} \mathsf{x}_{i_t}^\top)}{\det(\mathsf{X}^\top \mathsf{X})}\right]$ until Accept = true

preprocessing
$$O(nd^2)$$

improvable to $\widetilde{O}(nnz(\mathbf{X})+poly(d))$

no dependence on *n*

Removes the bias from iid leverage score sampling!

Extension: Leveraged volume sampling [DWH18]

- rescaled volume sampling
- with iid leverage scores:

$$q_i \sim \mathbf{x}_i^{ op} (\mathbf{X}^{ op} \mathbf{X})^{-1} \mathbf{x}_i$$

Determinantal rejection sampling trick repeat Sample $i_1, ..., i_s$ i.i.d. $\sim (q_1, ..., q_n)$ Sample $Accept \sim \text{Bernoulli}\left[\frac{\det(\sum_{t=1}^s \frac{1}{q_{i_t}} \times_{i_t} \times_{i_t}^{\top})}{\det(X^\top X)}\right]$ until Accept = true

$$\underbrace{\text{preprocessing } O(nd^2)}_{+}$$

improvable to $\widetilde{O}(nnz(\mathbf{X})+poly(d))$

sampling
$$O(d^4)$$

no dependence on n

Removes the bias from iid leverage score sampling!

Extension: Leveraged volume sampling [DWH18]

- rescaled volume sampling
- with iid leverage scores:

$$q_i \sim \mathbf{x}_i^{ op} (\mathbf{X}^{ op} \mathbf{X})^{-1} \mathbf{x}_i$$

Determinantal rejection sampling trick repeat Sample $i_1, ..., i_s$ i.i.d. $\sim (q_1, ..., q_n)$ Sample $Accept \sim \text{Bernoulli}\left[\frac{\det(\sum_{t=1}^s \frac{1}{q_{i_t}} x_{i_t} x_{i_t}^{\top})}{\det(X^{\top} X)}\right]$ until Accept = true

preprocessing
$$O(nd^2)$$
 + sampling

improvable to $O(nnz(\mathbf{X})+poly(d))$

Removes the bias from iid leverage score sampling!

Libsvm dataset: YearPredictionMSD

computing leverage scores:

volume sampling

first polynomial algorithm:

our volume sampling algorithms reverse iterative sampling:

fast reverse iterative sampling:

leveraged volume sampling:

(n = 463715, d = 90)

(preprocessing step)

[LJS17]

[DW17] May 2017

[DW18a] Oct. 2017

[DWH18] May 2018

Libsvm dataset:YearPredictionMSD(n = 463715, d = 90)computing leverage scores:10 seconds(preprocessing step)

volume sampling runtime

first polynomial algorithm:

our volume sampling algorithms

fast reverse iterative sampling:

leveraged volume sampling:

[DW17] May 2017

[DW18a] Oct. 2017

Libsvm dataset:YearPredictionMSD(n = 463715, d = 90)computing leverage scores:10 seconds(preprocessing step)

Libsvm dataset:YearPredictionMSD(n = 463715, d = 90)computing leverage scores:10 seconds(preprocessing step)

runtime volume sampling age of the universe [LJS17] first polynomial algorithm: Mar 2017 our volume sampling algorithms reverse iterative sampling: 24 hours [DW17] May 2017

Libsvm dataset:YearPredictionMSD(n = 463715, d = 90)computing leverage scores:10 seconds(preprocessing step)

volume sampling	runtime	
first polynomial algorithm:	age of the universe	[LJS17] Mar. 2017
our volume sampling algorithms		
reverse iterative sampling:	24 hours	[DW17] May 2017
fast reverse iterative sampling:	30 seconds	[DW18a] Oct. 2017
leveraged volume sampling:		[DWH18]

Libsvm dataset:YearPredictionMSD(n = 463715, d = 90)computing leverage scores:10 seconds(preprocessing step)

volume sampling	runtime	
first polynomial algorithm:	age of the universe	[LJS17] Mar. 2017
our volume sampling algorithms		
reverse iterative sampling:	24 hours	[DW17] May 2017
fast reverse iterative sampling:	30 seconds	[DW18a] Oct. 2017
leveraged volume sampling:	3 seconds	[DWH18] May 2018

We showed

- Volume sampling is fundamental, elegant, quite fast
- Leads to unbiased estimators

And what is next?

- Introducing controlled bias into volume sampling
- Subsampled Newton's method
- Applications in distributed computing
- Connections to Determinantal Point Processes

We showed

- Volume sampling is fundamental, elegant, quite fast
- Leads to unbiased estimators

And what is next?

- Introducing controlled bias into volume sampling
- Subsampled Newton's method
- Applications in distributed computing
- Connections to Determinantal Point Processes

References

- [DRVW06] Deshpande, Rademacher, Vempala, Wang. *Matrix approximation and projective clustering via volume sampling*. SODA 2006.
- [AB13] Avron, Boutsidis. Faster subset selection for matrices and applications. JMAA 2013.
- [LJS17] Li, Jegelka, Sra. *Polynomial time algorithms for dual volume sampling*. NIPS 2017.
- [DW17] Dereziński, Warmuth. Unbiased estimates for linear regression via volume sampling. NIPS 2017.

[DW18a] Dereziński, Warmuth. *Subsampling for ridge regression via regularized volume sampling*. AISTATS 2018.

[DW18b] Dereziński, Warmuth. *Reverse iterative volume sampling for linear regression*. JMLR, 2018.

- [DWH18] Dereziński, Warmuth, Hsu. *Leveraged volume sampling for linear regression*. NIPS 2018 (to appear).
- [CP18] Chen, Price. Active regression via linear-sample sparsification. 2018.