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Least squares regression

x

y

w∗ = argmin
w

∑
i

(xiw − yi )
2
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How many labels needed to get close to optimum?

x

y

- All xi given
- But labels yi unknown

Guess how many needed?
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Answer: one label
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How good is one label?

x

y

xi

Loss of estimate = 2× Loss of optimum
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Which one?

x

y

xmaxxi

- xmax (furthest from 0) is bad
- any deterministic choice is bad

Good: 1 label yi drawn ∼ x2
i

Ei

∑
j

(
yi
xi︸︷︷︸
w∗i

xj − yj)
2 = 2

∑
j

(w∗xj − yj)
2

Ei w
∗
i =

∑
i

P(i)︷ ︸︸ ︷
x2
i

‖x‖2

w∗i︷︸︸︷
yi
xi

=
x · y
‖x‖2

= w∗
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General: sub-sampling for linear regression

Given: n points xi ∈ Rd with hidden labels yi ∈ R
Goal: Minimize loss L(w) =

∑
i (x
>
i w − yi )

2 over all n points

n

d

X y

Strategy: Solve subproblem (XS , yS), obtaining:

w∗(S) = argmin
w

∑
i∈S

(x>i w − yi )
2 = (XS)+yS

(XS)+ = (X>SXS)−1X>S - pseudo-inverse of XS
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Volume Sampling [DRVW06, AB13]

For d =1: pick set S ={i} w.p. P(S) ∝ x2
i

For any d : pick d-element S w.p. P(S) ∝ det(XS)2

Distribution over all s-element subsets S (for fixed s ≥ d):

P(S) =
det(X>SXS)

Z

Normalization factor Z is derived using Cauchy-Binet formula:

Z =
∑

S :|S|=s

det(X>SXS) =

(
n−d
s−d

)
det(X>X)
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Linear regression with dimension many labels

Theorem ([DW17])

For a volume-sampled d-element set S ,

E
[
L(w∗(S))

]
= (d + 1) L( w∗︸︷︷︸

E[w∗(S)]

),

if X is in general position

I Sampling distribution does not depend on the labels

I No range restrictions

11 / 28



What about iid leverage score sampling?

Widely used for linear regression

leverage score of xi ∝ x>i (X>X)−1xi

Leverage scores are marginals of size d volume sampling

Problems with iid sampling:

1. requires at least d log d labels (coupon collector problem)

2. produces biased estimators

Volume sampling

Requires only d labels and produces unbiased estimators
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Volume sampling vs iid leverage scores

λ indicates the amount of `2-regularization used for sampling and prediction
13 / 28



Why volume sampling?

I New loss bounds

which avoid coupon collector problem

I New expectation formulas

can be extended to matrix identities

I Unbiased estimators

easy to combine via averaging

I Surprising closure properties

volume sampling is closed under:

1. subsampling

2. adding uniform/i.i.d. samples
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Volume sampling is closed under subsampling

{1..n}

S

T

size t sample

size s sample

Hierarchical sampling (t ≥ s):

size t volume sampling from X T
t∼ X

size s volume sampling from XT S
s∼ XT

= size s volume sampling from X = S
s∼ X
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Expectation formulas for the pseudoinverse

x>
i

n

d

S
XSs

(XS)
+

X IS ISX X+ (ISX)
+

Expected pseudoinverse

E
[
(ISX)+

]
= X+

Variance of pseudoinverse estimator:

E[(ISX)+(ISX)+>︸ ︷︷ ︸
(X>S XS )−1

]−X+X+>=
n − s

s−d+1
X+X+>

w∗(S) - unbiased estimator of w∗

E
[
w∗(S)

]
= E

[
(ISX)+

]
y = X+y = w∗
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Expectation formulas: key technique

To each subset S assign a formula F(S)

Goal: Show that ES [F(S)] = F({1..n}) for size s volume sampling

Idea: Use closure under subsampling:

For fixed S of size s, sample: S−i
s−1∼ XS

Suffices to show: Ei

[
F(S−i ) |S

]
= F(S) for all S

Example: Use formula F(S) = (ISX)+.
Follows from the Sherman-Morrison formula
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Unbiased estimators are easy to combine

Simple Strategy:
1. Compute independent estimators w(Sj) for j = 1, .., k ,

2. Predict with the average estimator 1
k

∑k
j=1 w(Sj)

If we have

E[L(w(S))] ≤ (1 + c)L(w∗) and E[w(S)] = w∗,

then for k independent samples S1, . . . ,Sk ,

E
[
L
(1

k

k∑
j=1

w(Sj)
)]
≤
(

1 +
c

k

)
L(w∗)

Motivation:

I Ensemble methods

I Distributed optimization

I Privacy
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Open problems for unbiased estimators

Open: Is there a size O(d/ε) unbiased estimator that achieves

E
[
L(w(S))

]
≤ (1 + ε)L(w∗) ?

Our progress so far:

1. size O(d2/ε) (averaging size d volume sampling) [DW17]

2. size O(d/ε) (only if y is linear plus white noise) [DW18a]

3. size O(d log d + d/ε) (leveraged volume sampling) [DWH18]

Also biased estimators of size O(d/ε) are known [CP18]
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Reverse iterative volume sampling

{1..n}

S

S = S−i

P(S−i |S)

size

n

n−1

ss

s−1

Start with S = {1..n}

Sample index i ∈ S

Go to set S−i = S − {i}

Repeat until desired size

Simple algorithm: Update distribution P(S−i |S) at every step

Runtime:

n−s︷ ︸︸ ︷
steps ×

O(n d)︷ ︸︸ ︷
update = O(n2d)

Problem: Quadratic dependence on n
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Faster algorithm via rejection sampling

Recall: P(S−i |S) ∼ 1− x>i (X>SXS)−1xi

Idea: Rejection sampling from distribution P(S−i |S)

1. Sample i uniformly from set S ,
2. Compute hi = 1− x>i (X>SXS)−1xi , one trial
3. With probability 1− hi reject and go back to 1.

We show: Number of trials per step is constant w.h.p.

Runtime:

n−s︷ ︸︸ ︷
steps ×

O(1)︷ ︸︸ ︷
trials per step ×

O(d2)︷ ︸︸ ︷
compute hi = O(nd2)

Result: Linear dependence on n
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Extension: regularized volume sampling [DW18a]

Goal: Error bounds for sets of size � d

Instead of det(X>SXS)

use det(X>SXS + λI)

λ-statistical dimension

λ1, . . . , λd - eigenvalues of X>X

dλ =
d∑

i=1

λi
λi + λ

< d

Result: With properly tuned λ, it suffices to sample dλ labels
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Extension: Leveraged volume sampling [DWH18]

- rescaled volume sampling

- with iid leverage scores:

qi ∼ x>i (X>X)−1xi

Determinantal rejection sampling trick
repeat

Sample i1, . . . , is i.i.d. ∼ (q1, . . . , qn)

Sample Accept ∼ Bernoulli

[
det (

∑s
t=1

1
qit

xit x
>
it

)

det(X>X)

]
until Accept = true

preprocessing O(nd2)︸ ︷︷ ︸
improvable to Õ(nnz(X)+poly(d))

+ sampling O(d4)︸ ︷︷ ︸
no dependence on n

Removes the bias from iid leverage score sampling!
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Efficiency of volume sampling

Libsvm dataset: YearPredictionMSD (n = 463715, d = 90)

computing leverage scores: (preprocessing step)

volume sampling runtime

first polynomial algorithm: [LJS17]
Mar. 2017

our volume sampling algorithms

reverse iterative sampling : [DW17]
May 2017

fast reverse iterative sampling : [DW18a]
Oct. 2017

leveraged volume sampling : [DWH18]
May 2018
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Conclusion

We showed

I Volume sampling is fundamental, elegant, quite fast

I Leads to unbiased estimators

And what is next?

I Introducing controlled bias into volume sampling

I Subsampled Newton’s method

I Applications in distributed computing

I Connections to Determinantal Point Processes
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