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- All x; given
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Loss of estimate = 2 x Loss of optimum
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Given: n points x; € R with hidden labels vi € R
Goal: Minimize loss L(w) = >_.(x]w — y;)? over all n points
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Given: n points x; € R with hidden labels vi € R
Goal: Minimize loss L(w) = >_.(x]w — y;)? over all n points

d
X y
Sample
S=1{4,6,9} x4 ya
Xg Y6
Receive ya, y6, yo x5 o

Strategy: Solve subproblem (Xs,ys), obtaining:
w($) = argmin Y (xfw — y;)* = (Xs)Tys
W jes
(Xs)™ = (XEXs)™IXZ - pseudo-inverse of Xs
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For d=1: pick set S={i} w.p. P(S) x x?
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For d=1: pick set S={i} w.p. P(S) x x?
For any d: pick d-element S w.p. P(S) o det(Xs)?

Distribution over all s-element subsets S (for fixed s > d):

det(xng)

P(S) = —=

Normalization factor Z is derived using Cauchy-Binet formula:

n—d
7= XiXs) = XX
s%“_sdet( IXs) <s_ d) det(XTX)

9/28



Introduction

Basic results

Unbiased estimators and matrix formulas

Algorithms and extensions

10/28



For a volume-sampled d-element set S,

E[L(w'S))] = (d+1) L(w* )
E[W*(S)]

if X is in general position

» Sampling distribution does not depend on the labels

» No range restrictions
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Widely used for linear regression

leverage score of x; o x; (X"X) x;
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Widely used for linear regression

leverage score of x; o x; (X"X) x;

Leverage scores are marginals of size d volume sampling

Problems with iid sampling:
1. requires at least d log d labels (coupon collector problem)

2. produces biased estimators

Requires only d labels and produces unbiased estimators
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» New loss bounds
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New loss bounds

which avoid coupon collector problem

New expectation formulas

can be extended to matrix identities

Unbiased estimators

easy to combine via averaging

Surprising closure properties

volume sampling is closed under:
1. subsampling

2. adding uniform/i.i.d. samples
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{1--n} size t sample

size s sample

Hierarchical sampling (t > s):

size t volume sampling from X

size s volume sampling from X7

t

TLX
SAXr

= size s volume sampling from X
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(LN |

X Is IsX X+ (|5X)+

_ Variance of pseudoinverse estimator:

n—s
s—d+1

XtX+T

E[(1sX)" (1sX)T]-XTXT=

(X Xs)t

E[(1sX)*] =X*
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X Is 15X X+ (1sX)"
_ Variance of pseudoinverse estimator:
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(X Xs)t

w*(S) - unbiased estimator of w*
E[w(s)] =E[(IsX)*]y = X"y =w"
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To each subset S assign a formula F(S)
Goal: Show that Eg[F(S)] = F({1..n}) for size s volume sampling
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To each subset S assign a formula F(S)
Goal: Show that Eg[F(S)] = F({1..n}) for size s volume sampling

Idea: Use closure under subsampling:

For fixed S of size s, sample: S_; o~ Xs

Suffices to show: Ei[F(5-)|S] =F(S) forall §

Example: Use formula F(S) = (IsX)™.

Follows from the Sherman-Morrison formula
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Simple Strategy:
1. Compute independent estimators w(S;) for j =1, .., k,
2. Predict with the average estimator %ijzl w(S;)

19/28



Simple Strategy:
1. Compute independent estimators w(S;) for j =1, .., k,
2. Predict with the average estimator } ijzl w(S;)

If we have
E[L(w(S))] < (1 + c)L(w") and E[w(S)] =w",

then for k independent samples Sy, ..., S,

1< c “
E[L(;;Msj))] < (1+5) w)
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Simple Strategy:
1. Compute independent estimators w(S;) for j =1, .., k,

2. Predict with the average estimator } ijzl w(S;)

If we have
E[L(w(S))] < (1 + c)L(w") and E[w(S)] =w",

then for k independent samples Sy, ..., S,

k
1 c
- . < — *
E[L(k; wis))| = (1+§) tw)
Motivation:
» Ensemble methods

» Distributed optimization

» Privacy
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Open: Is there a size O(d/¢) unbiased estimator that achieves

E[L(w(S))] < (1+e)L(w*) ?
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Open: Is there a size O(d/¢) unbiased estimator that achieves
E[L(W(S))] <(14+e)L(w*)?
Our progress so far:
1. size O(d?/e) (averaging size d volume sampling) [DW17]

2. size O(d/e) (only if y is linear plus white noise) [DW18a]
3. size O(dlogd + d/e) (leveraged volume sampling)  [DWH18]
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Open: Is there a size O(d/¢) unbiased estimator that achieves

E[L(w(S))] < (1+e)L(w*) ?

Our progress so far:
1. size O(d?/e) (averaging size d volume sampling) [DW17]
2. size O(d/e) (only if y is linear plus white noise) [DW18a]
3. size O(dlogd + d/e) (leveraged volume sampling)  [DWH18]

Also biased estimators of size O(d/¢) are known [CP18]
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{1..n} - size Start with S = {1..n}

,,,,,,,,,,,,,,,,, R n—1 Sample index i € S
,,,,,,,,,,,, o ... s Gotoset S_; =S5 —{i}
L= P(5_1]S)
rrrrrrrrrrrr D T
S=5 Repeat until desired size

Simple algorithm: Update distribution P(S_;|S) at every step

n—s O(nd)
~ = ~—
Runtime: Steps x update = O(nd)

Problem: Quadratic dependence on n
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Recall: P(5-i|S) ~1— x,T(XEXS)_lx,-

Idea: Rejection sampling from distribution P(5_;|S)
1. Sample i uniformly from set S,
2. Compute hj = 1 — x] (XIXs) 1x,, one trial
3. With probability 1 — h; reject and go back to 1.
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Faster algorithm via rejection sampling

Recall: P(S5_i|S) ~ 1 —x] (XEXs) tx;

Idea: Rejection sampling from distribution P(S_;|S)

1. Sample i uniformly from set S,
2. Compute h; = 1 — x; (XEXs) Ix;, one trial
3. With probability 1 — h; reject and go back to 1.

We show: Number of trials per step is constant w.h.p.

n—s o(1) O(d?)
. ~ = -
Runtime: Steps X trials per step x compute hj = O(nd?)

Result: Linear dependence on n
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Goal: Error bounds for sets of size < d

Instead of det(X5Xs)
use det(X5Xs + Al)
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Goal: Error bounds for sets of size < d

Instead of det(X5Xs)
use det(X5Xs + Al)

A-statistical dimension $
L) T

AL, ..., \q - eigenvalues of XTX ) -‘-,‘: N
LR
d ‘ .. o
Aj P B
dy = E < d ff“f?j‘*%*w;
= AtA - T,
@
— A Y

Result: With properly tuned J, it suffices to sample d) labels
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Determinantal rejection sampling trick

- rescaled volume sampling repeat
- with iid leverage scores: Sample i1, ..., is i.id. ~ (q1,...,qn)
. det (3271 ix,—tx;)
Gi ~ x,-T(XTX)_lx,' Sample Accept ~ Bernoulli T A

until Accept = true
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Determinantal rejection sampling trick

- rescaled volume sampling repeat
- with iid leverage scores: Sample i1, ..., is i.id. ~ (q1,...,qn)
. det (3271 ix,—tx;)
Gi ~ x,-T(XTX)_lx,' Sample Accept ~ Bernoulli T A

until Accept = true

preprocessing O(nd?) 4+ sampling O(d*)

-~

improvable to 5(nnz(X)—|—po|y(d)) no dependence on n
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Extension: Leveraged volume sampling [DWH18]

Determinantal rejection sampling trick

- rescaled volume sampling repeat
- with iid leverage scores: Sample i1, ..., is iid. ~ (qi,...,qn)
. det (D27 %x,-txi—tr)
gi ~ X,-T(XTX)_lx,- Sample Accept ~ Bernoulli T A
until Accept = true
preprocessing O(nd?) + sampling O(d*)
—_———
improvable to O(nnz(X)+poly(d)) no dependence on n

Removes the bias from iid leverage score sampling!
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Libsvm dataset: YearPredictionMSD (n = 463715, d = 90)
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Efficiency of volume sampling

Libsvm dataset: YearPredictionMSD (n = 463715, d = 90)
computing leverage scores: 10 seconds (preprocessing step)

volume sampling runtime
first polynomial algorithm: age of the universe  [LJS17]
Mar. 2017

our volume sampling algorithms

reverse iterative sampling: 24 hours [DW17]
May 2017
fast reverse iterative sampling: 30 seconds [DW18a]
Oct. 2017
leveraged volume sampling: 3 seconds [DWH18]
May 2018
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We showed

» Volume sampling is fundamental, elegant, quite fast

» |eads to unbiased estimators
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We showed

» Volume sampling is fundamental, elegant, quite fast

» |eads to unbiased estimators

And what is next?
» Introducing controlled bias into volume sampling
» Subsampled Newton's method
» Applications in distributed computing

» Connections to Determinantal Point Processes
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