Unbiased estimates for linear regression via volume sampling

> Michał Dereziński UC Berkeley

Joint work with Manfred Warmuth, Daniel Hsu

Simons Institute, September 26, 2018

[Introduction](#page-1-0)

[Basic results](#page-18-0)

[Unbiased estimators and matrix formulas](#page-30-0)

[Algorithms and extensions](#page-43-0)

Least squares regression

$$
w^* = \operatorname*{argmin}_{w} \sum_{i} (x_i w - y_i)^2
$$

How many labels needed to get close to optimum?

- All x_i given
- But labels y_i unknown

Guess how many needed?

How many labels needed to get close to optimum?

- All x_i given
- But labels y_i unknown

Guess how many needed?

How good is one label?

Loss of estimate $= 2 \times$ Loss of optimum

- x_{max} (furthest from 0) is bad - any deterministic choice is bad

- x_{max} (furthest from 0) is bad - any deterministic choice is bad

$$
\mathbb{E}_{i} \sum_{j} \left(\frac{y_{i}}{x_{j}} x_{j} - y_{j} \right)^{2} = 2 \sum_{j} \left(w^{*} x_{j} - y_{j} \right)^{2}
$$
\n
$$
\mathbb{E}_{i} w_{i}^{*} = \sum_{i} \frac{x_{i}^{2}}{\|\mathbf{x}\|^{2}} \frac{y_{i}}{x_{i}} = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|^{2}} = w^{*}
$$

- x_{max} (furthest from 0) is bad - any deterministic choice is bad

- x_{max} (furthest from 0) is bad - any deterministic choice is bad

General: sub-sampling for linear regression

Given: *n* points $\mathbf{x}_i \in \mathbb{R}^d$ with hidden labels $y_i \in \mathbb{R}$ **Goal**: Minimize loss $L(\mathbf{w}) = \sum_i (\mathbf{x}_i^{\top} \mathbf{w} - y_i)^2$ over all *n* points

Strategy: Solve subproblem (X_5, y_5) , obtaining:

$$
\mathbf{w}^*(S) = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i \in S} (\mathbf{x}_i^{\top} \mathbf{w} - y_i)^2 = (\mathbf{X}_S)^+ \mathbf{y}_S
$$

$$
(\mathbf{X}_S)^+ = (\mathbf{X}_S^{\top} \mathbf{X}_S)^{-1} \mathbf{X}_S^{\top} \quad \text{- pseudo-inverse of } \mathbf{X}_S
$$

General: sub-sampling for linear regression

Given: *n* points $\mathbf{x}_i \in \mathbb{R}^d$ with hidden labels $y_i \in \mathbb{R}$ **Goal**: Minimize loss $L(\mathbf{w}) = \sum_i (\mathbf{x}_i^{\top} \mathbf{w} - y_i)^2$ over all *n* points

Strategy: Solve subproblem (X_5, y_5) , obtaining:

$$
\mathbf{w}^*(S) = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i \in S} (\mathbf{x}_i^{\top} \mathbf{w} - y_i)^2 = (\mathbf{X}_S)^+ \mathbf{y}_S
$$

$$
(\mathbf{X}_S)^+ = (\mathbf{X}_S^{\top} \mathbf{X}_S)^{-1} \mathbf{X}_S^{\top} \quad \text{- pseudo-inverse of } \mathbf{X}_S
$$

General: sub-sampling for linear regression

Given: *n* points $\mathbf{x}_i \in \mathbb{R}^d$ with hidden labels $y_i \in \mathbb{R}$ **Goal**: Minimize loss $L(\mathbf{w}) = \sum_i (\mathbf{x}_i^{\top} \mathbf{w} - y_i)^2$ over all *n* points

Strategy: Solve subproblem (X_5, y_5) , obtaining:

$$
\mathbf{w}^*(S) = \operatorname*{argmin}_{\mathbf{w}} \sum_{i \in S} (\mathbf{x}_i^{\top} \mathbf{w} - y_i)^2 = (\mathbf{X}_S)^+ \mathbf{y}_S
$$

$$
(\mathbf{X}_S)^+ = (\mathbf{X}_S^{\top} \mathbf{X}_S)^{-1} \mathbf{X}_S^{\top} \quad \text{- pseudo-inverse of } \mathbf{X}_S
$$

For $d=1$: pick set $S = \{i\}$ w.p. $P(S) \propto x_i^2$ *For any d:* pick *d*-element S w.p. $P(S) \propto \det(\mathbf{X}_S)^2$

Distribution over all s-element subsets S (for fixed $s \geq d$):

$$
P(S) = \frac{\det(\mathbf{X}_S^{\top}\mathbf{X}_S)}{Z}
$$

$$
Z = \sum_{S:|S|=s} \det(\mathbf{X}_S^{\top} \mathbf{X}_S) = \binom{n-d}{s-d} \det(\mathbf{X}^{\top} \mathbf{X})
$$

For $d=1$: pick set $S = \{i\}$ w.p. $P(S) \propto x_i^2$ *For any d:* pick *d*-element S w.p. $P(S) \propto \det(\mathbf{X}_S)^2$

Distribution over all s-element subsets S (for fixed $s \geq d$):

$$
P(S) = \frac{\det(\mathbf{X}_S^{\top} \mathbf{X}_S)}{Z}
$$

$$
Z = \sum_{S:|S|=s} \det(\mathbf{X}_S^{\top} \mathbf{X}_S) = \binom{n-d}{s-d} \det(\mathbf{X}^{\top} \mathbf{X})
$$

For $d=1$: pick set $S = \{i\}$ w.p. $P(S) \propto x_i^2$ *For any d:* pick *d*-element S w.p. $P(S) \propto \det(\mathbf{X}_S)^2$

Distribution over all s-element subsets S (for fixed $s \geq d$):

$$
P(S) = \frac{\det(\mathbf{X}_{S}^{\top}\mathbf{X}_{S})}{Z}
$$

$$
Z = \sum_{S:|S|=s} \det(\mathbf{X}_S^{\top} \mathbf{X}_S) = \binom{n-d}{s-d} \det(\mathbf{X}^{\top} \mathbf{X})
$$

For $d=1$: pick set $S = \{i\}$ w.p. $P(S) \propto x_i^2$ *For any d:* pick *d*-element S w.p. $P(S) \propto \det(\mathbf{X}_S)^2$

Distribution over all s-element subsets S (for fixed $s \geq d$):

$$
P(S) = \frac{\det(\mathbf{X}_{S}^{\top}\mathbf{X}_{S})}{Z}
$$

$$
Z = \sum_{S:|S|=s} \det(\mathbf{X}_S^{\top} \mathbf{X}_S) = {n-d \choose s-d} \det(\mathbf{X}^{\top} \mathbf{X})
$$

[Introduction](#page-1-0)

[Basic results](#page-18-0)

[Unbiased estimators and matrix formulas](#page-30-0)

[Algorithms and extensions](#page-43-0)

Theorem ([DW17])

For a volume-sampled d-element set S,

$$
\mathbb{E}\big[L(\mathbf{w}^*(S))\big] = (d+1) \; L(\underbrace{\mathbf{w}^*}_{\mathbb{E}[\mathbf{w}^*(S)]})
$$

if X is in general position

 \triangleright Sampling distribution does not depend on the labels

 \blacktriangleright No range restrictions

leverage score of $\mathbf{x}_i \quad \propto \quad \mathbf{x}_i^\top (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{x}_i$

Problems with iid sampling:

- 1. requires at least $d \log d$ labels (coupon collector problem)
- 2. produces biased estimators

leverage score of
$$
\mathbf{x}_i \propto \mathbf{x}_i^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{x}_i
$$

Leverage scores are marginals of size d volume sampling

Problems with iid sampling:

- 1. requires at least $d \log d$ labels (coupon collector problem)
- 2. produces biased estimators

leverage score of
$$
\mathbf{x}_i \propto \mathbf{x}_i^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{x}_i
$$

Leverage scores are marginals of size d volume sampling

Problems with iid sampling:

- 1. requires at least $d \log d$ labels (coupon collector problem)
- 2. produces biased estimators

leverage score of
$$
\mathbf{x}_i \propto \mathbf{x}_i^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{x}_i
$$

Leverage scores are marginals of size d volume sampling

Problems with iid sampling:

- 1. requires at least $d \log d$ labels (coupon collector problem)
- 2. produces biased estimators

Volume sampling

Volume sampling vs iid leverage scores

 λ indicates the amount of ℓ_2 -regularization used for sampling and prediction

\blacktriangleright New loss bounds which avoid coupon collector problem

- \triangleright New expectation formulas can be extended to matrix identities
- \blacktriangleright Unbiased estimators easy to combine via averaging
- \blacktriangleright Surprising closure properties
	- volume sampling is closed under:
		- 1. subsampling
		-

\blacktriangleright New loss bounds

which avoid coupon collector problem

 \blacktriangleright New expectation formulas can be extended to matrix identities

 \blacktriangleright Unbiased estimators easy to combine via averaging

 \blacktriangleright Surprising closure properties

volume sampling is closed under:

- 1. subsampling
-

\blacktriangleright New loss bounds

which avoid coupon collector problem

 \blacktriangleright New expectation formulas can be extended to matrix identities

 \blacktriangleright Unbiased estimators easy to combine via averaging

 \blacktriangleright Surprising closure properties

volume sampling is closed under:

- 1. subsampling
-

\blacktriangleright New loss bounds

which avoid coupon collector problem

 \blacktriangleright New expectation formulas can be extended to matrix identities

 \blacktriangleright Unbiased estimators easy to combine via averaging

 \blacktriangleright Surprising closure properties

volume sampling is closed under:

- 1. subsampling
- 2. adding uniform/i.i.d. samples

Volume sampling is closed under subsampling

Hierarchical sampling $(t \geq s)$:

[Introduction](#page-1-0)

[Basic results](#page-18-0)

[Unbiased estimators and matrix formulas](#page-30-0)

[Algorithms and extensions](#page-43-0)

Expectation formulas for the pseudoinverse

Variance of pseudoinverse estimator:

 $\mathbb{E}\big[(\mathbf{I}_S\mathbf{X})^+\big]=\mathbf{X}^+$

$$
\mathbb{E}\left[\underbrace{(\mathbf{I}_\mathcal{S}\mathbf{X})^+(\mathbf{I}_\mathcal{S}\mathbf{X})^{+\top}}_{(\mathbf{X}_\mathcal{S}^\top\mathbf{X}_\mathcal{S})^{-1}}\right]-\mathbf{X}^+\mathbf{X}^{+\top}=\frac{n-s}{s-d+1}\mathbf{X}^+\mathbf{X}^{+\top}
$$

 $w^*(S)$ - unbiased estimator of w^* $\mathbb{E}\big[\mathsf{w}^*\!(S)\big]=\mathbb{E}\big[(\mathsf{I}_S\mathsf{X})^+\big]\,\mathsf{y}=\mathsf{X}^+\mathsf{y}=\mathsf{w}^*$

Expectation formulas for the pseudoinverse

Expected pseudoinverse

Variance of pseudoinverse estimator:

 $\mathbb{E}\big[(\boldsymbol{\mathsf{I}}_{\mathcal{S}}\boldsymbol{\mathsf{X}})^+\big]=\boldsymbol{\mathsf{X}}^+$

$$
\mathbb{E}\left[\underbrace{(\mathbf{I}_{\mathcal{S}}\mathbf{X})^+(\mathbf{I}_{\mathcal{S}}\mathbf{X})^{+\top}}_{(\mathbf{X}_{\mathcal{S}}^\top\mathbf{X}_{\mathcal{S}})^{-1}}\right] - \mathbf{X}^+\mathbf{X}^{+\top} = \frac{n-s}{s-d+1}\mathbf{X}^+\mathbf{X}^{+\top}
$$

 $w^*(S)$ - unbiased estimator of w^* $\mathbb{E}\big[\mathsf{w}^*\!(S)\big]=\mathbb{E}\big[(\mathsf{I}_S\mathsf{X})^+\big]\,\mathsf{y}=\mathsf{X}^+\mathsf{y}=\mathsf{w}^*$

Expectation formulas for the pseudoinverse

Expected pseudoinverse

Variance of pseudoinverse estimator:

$$
\mathbb{E}\big[(\textbf{I}_{\mathcal{S}}\textbf{X})^+\big]=\textbf{X}^+
$$

$$
\mathbb{E}\left[\underbrace{(\mathbf{I}_{\mathcal{S}}\mathbf{X})^+(\mathbf{I}_{\mathcal{S}}\mathbf{X})^{+\top}}_{(\mathbf{X}_{\mathcal{S}}^\top\mathbf{X}_{\mathcal{S}})^{-1}}\right] - \mathbf{X}^+\mathbf{X}^{+\top} = \frac{n-s}{s-d+1}\mathbf{X}^+\mathbf{X}^{+\top}
$$

 $w^*(S)$ - unbiased estimator of w*

 $\mathbb{E}\big[\mathsf{w}^*\!(\mathcal{S})\big]=\mathbb{E}\big[(\mathsf{I}_\mathcal{S}\mathsf{X})^+\big]\,\mathsf{y}=\mathsf{X}^+\mathsf{y}=\mathsf{w}^*$

To each subset S assign a formula $F(S)$

Goal: Show that $\mathbb{E}_{S}[F(S)] = F(\{1..n\})$ for size s volume sampling

Idea: Use closure under subsampling:

For fixed S of size s , sample: Suffices to show:

 $S: \stackrel{s-1}{\sim} X_S$ $\big[\mathsf{F}(S_{-i})\,|\,S\big]=\mathsf{F}(S)\quad\text{for all }S$

Example: Use formula $F(S) = (I_S X)^+$. Follows from the Sherman-Morrison formula

To each subset S assign a formula $F(S)$

Goal: Show that $\mathbb{E}_{S}[F(S)] = F(\{1..n\})$ for size s volume sampling

Idea: Use closure under subsampling:

For fixed S of size s, sample: $\overline{}$ $S: \overset{s-1}{\sim} X_S$ Suffices to show: $\big[\mathsf{F}(S_{-i})\,|\,S\big]=\mathsf{F}(S)\quad\text{for all }S$

Example: Use formula $F(S) = (I_S X)^+$. Follows from the Sherman-Morrison formula

To each subset S assign a formula $F(S)$

Goal: Show that $\mathbb{E}_{S}[F(S)] = F(\{1..n\})$ for size s volume sampling

Idea: Use closure under subsampling:

For fixed S of size s, sample: $\overline{}$ $S: \overset{s-1}{\sim} X_S$ Suffices to show: $\big[\mathsf{F}(S_{-i})\,|\,S\big]=\mathsf{F}(S)\quad\text{for all }S$

Example: Use formula $F(S) = (I_S X)^+$.

Follows from the Sherman-Morrison formula

Unbiased estimators are easy to combine

Simple Strategy:

- 1. Compute independent estimators $w(S_i)$ for $j = 1, ..., k$,
- 2. Predict with the average estimator $\frac{1}{k}\sum_{j=1}^k\mathsf{w}(\mathcal{S}_j)$

If we have

 $\mathbb{E}[L(\mathsf{w}(S))] \leq (1+c)L(\mathsf{w}^*)$ and $\mathbb{E}[\mathsf{w}(S)] = \mathsf{w}^*,$

then for k independent samples S_1, \ldots, S_k

$$
\mathbb{E}\bigg[L\Big(\frac{1}{k}\sum_{j=1}^k \mathbf{w}(S_j)\Big)\bigg] \le \left(1 + \frac{c}{k}\right)L(\mathbf{w}^*)
$$

Motivation:

- \blacktriangleright Ensemble methods
- \blacktriangleright Distributed optimization

Unbiased estimators are easy to combine

Simple Strategy:

- 1. Compute independent estimators $w(S_i)$ for $j = 1, ..., k$,
- 2. Predict with the average estimator $\frac{1}{k}\sum_{j=1}^k\mathsf{w}(\mathcal{S}_j)$

If we have

$$
\mathbb{E}[L(\mathbf{w}(S))] \leq (1+c)L(\mathbf{w}^*) \quad \text{and} \quad \mathbb{E}[\mathbf{w}(S)] = \mathbf{w}^*,
$$

then for k independent samples S_1, \ldots, S_k ,

$$
\mathbb{E}\bigg[L\Big(\frac{1}{k}\sum_{j=1}^k \mathbf{w}(S_j)\Big)\bigg] \le \left(1+\frac{c}{k}\right)L(\mathbf{w}^*)
$$

Motivation:

- \blacktriangleright Ensemble methods
- \blacktriangleright Distributed optimization

Unbiased estimators are easy to combine

Simple Strategy:

- 1. Compute independent estimators $w(S_i)$ for $j = 1, ..., k$,
- 2. Predict with the average estimator $\frac{1}{k}\sum_{j=1}^k\mathsf{w}(\mathcal{S}_j)$

If we have

$$
\mathbb{E}[L(\mathbf{w}(S))] \leq (1+c)L(\mathbf{w}^*) \quad \text{and} \quad \mathbb{E}[\mathbf{w}(S)] = \mathbf{w}^*,
$$

then for k independent samples S_1, \ldots, S_k ,

$$
\mathbb{E}\bigg[L\Big(\frac{1}{k}\sum_{j=1}^k \mathbf{w}(S_j)\Big)\bigg] \le \left(1+\frac{c}{k}\right)L(\mathbf{w}^*)
$$

Motivation:

- \blacktriangleright Ensemble methods
- \blacktriangleright Distributed optimization

Open: Is there a size $O(d/\epsilon)$ unbiased estimator that achieves

$$
\mathbb{E}\big[\textit{L}(\textbf{w}(\textit{S}))\big] \leq (1+\epsilon)\textit{L}(\textbf{w}^*) \ ?
$$

Our progress so far:

1. size $O(d^2/\epsilon)$ (averaging size d volume sampling) [DW17] 2. size $O(d/\epsilon)$ (only if **y** is linear plus white noise) [DW18a] 3. size $O(d \log d + d/\epsilon)$ (leveraged volume sampling) [DWH18]

Also biased estimators of size $O(d/\epsilon)$ are known [CP18]

Open: Is there a size $O(d/\epsilon)$ unbiased estimator that achieves

$$
\mathbb{E}\big[\textit{L}(w(\textit{S}))\big] \leq (1+\epsilon)\textit{L}(w^*) \ ?
$$

Our progress so far:

- 1. size $O(d^2/\epsilon)$ (averaging size d volume sampling) [DW17] 2. size $O(d/\epsilon)$ (only if **y** is linear plus white noise) [DW18a]
- 3. size $O(d \log d + d/\epsilon)$ (leveraged volume sampling) [DWH18]

Also biased estimators of size $O(d/\epsilon)$ are known [CP18]

Open: Is there a size $O(d/\epsilon)$ unbiased estimator that achieves

$$
\mathbb{E}\big[\textit{L}(w(\textit{S}))\big] \leq (1+\epsilon)\textit{L}(w^*) \ ?
$$

Our progress so far:

- 1. size $O(d^2/\epsilon)$ (averaging size d volume sampling) [DW17]
- 2. size $O(d/\epsilon)$ (only if **y** is linear plus white noise) [DW18a]
- 3. size $O(d \log d + d/\epsilon)$ (leveraged volume sampling) [DWH18]

Also biased estimators of size $O(d/\epsilon)$ are known [CP18]

[Introduction](#page-1-0)

[Basic results](#page-18-0)

[Unbiased estimators and matrix formulas](#page-30-0)

[Algorithms and extensions](#page-43-0)

Reverse iterative volume sampling

Start with $S = \{1..n\}$

Sample index $i \in S$ Go to set $S_{-i} = S - \{i\}$

Repeat until desired size

 $\textsf{Simple algorithm: }$ Update distribution $P(S_{-i} | S)$ at every step

Problem: Quadratic dependence on n

Faster algorithm via rejection sampling

Recall:
$$
P(S_{-i}|S) \sim 1 - \mathbf{x}_i^{\top}(\mathbf{X}_S^{\top}\mathbf{X}_S)^{-1}\mathbf{x}_i
$$

Idea: Rejection sampling from distribution $P(S_{-i} | S)$ 1. Sample i uniformly from set S , 2. Compute $h_i = 1 - \mathbf{x}_i^{\top} (\mathbf{X}_S^{\top} \mathbf{X}_S)^{-1} \mathbf{x}_i$, one trial 3. With probability $1 - h_i$ reject and go back to 1.

We show: Number of trials per step is constant w.h.p.

Result: Linear dependence on n

Faster algorithm via rejection sampling

Recall:
$$
P(S_{-i}|S) \sim 1 - \mathbf{x}_i^{\top}(\mathbf{X}_S^{\top}\mathbf{X}_S)^{-1}\mathbf{x}_i
$$

Idea: Rejection sampling from distribution $P(S_{-i} | S)$ 1. Sample i uniformly from set S , 2. Compute $h_i = 1 - \mathbf{x}_i^{\top} (\mathbf{X}_S^{\top} \mathbf{X}_S)^{-1} \mathbf{x}_i$, one trial 3. With probability $1 - h_i$ reject and go back to 1.

We show: Number of trials per step is constant w.h.p.

Result: Linear dependence on *n*

Extension: regularized volume sampling [DW18a]

Goal: Error bounds for sets of size $\ll d$

Result: With properly tuned λ , it suffices to sample d_{λ} labels

Extension: regularized volume sampling [DW18a]

Goal: Error bounds for sets of size $\ll d$

Result: With properly tuned λ , it suffices to sample d_{λ} labels

Extension: Leveraged volume sampling [DWH18]

- rescaled volume sampling
- with iid leverage scores:

$$
q_i \sim \mathbf{x}_i^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{x}_i
$$

Determinantal rejection sampling trick repeat Sample i_1, \ldots, i_s i.i.d. $\sim (q_1, \ldots, q_n)$ Sample Accept \sim Bernoulli $\left\lceil \frac{\det\left(\sum_{t=1}^s \frac{1}{q_{i_t}}\mathbf{x}_{i_t}\mathbf{x}_{i_t}^\top\right)}{\det(\mathbf{x}^\top\mathbf{x})} \right\rceil \right\rceil$ $\mathsf{det}(\mathsf{X}^{\top}\mathsf{X})$ 1 until $Accept = true$

preprocessing
$$
O(nd^2)
$$

improvable to $\widetilde{O}(\text{nnz}(\mathbf{X}) + \text{poly}(d))$

 $+$ sampling $O(d^4)$

Removes the bias from iid leverage score sampling!

Extension: Leveraged volume sampling [DWH18]

- rescaled volume sampling
- with iid leverage scores:

$$
q_i \sim \mathbf{x}_i^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{x}_i
$$

Determinantal rejection sampling trick repeat Sample i_1, \ldots, i_s i.i.d. $\sim (q_1, \ldots, q_n)$ Sample Accept \sim Bernoulli $\left\lceil \frac{\det\left(\sum_{t=1}^s \frac{1}{q_{i_t}}\mathbf{x}_{i_t}\mathbf{x}_{i_t}^\top\right)}{\det(\mathbf{x}^\top\mathbf{x})} \right\rceil \right\rceil$ $\mathsf{det}(\mathsf{X}^{\top}\mathsf{X})$ 1 until $Accept = true$

)

preprocessing
$$
O(nd^2)
$$
 + sampling $O(d^4)$
improvable to $\widetilde{O}(nnz(X)+poly(d))$ no dependence on n

Removes the bias from iid leverage score sampling!

Extension: Leveraged volume sampling [DWH18]

- rescaled volume sampling
- with iid leverage scores:

 $q_i \sim \mathsf{x}_i^\top (\mathsf{X}^\top \mathsf{X})^{-1} \mathsf{x}_i$

Determinantal rejection sampling trick repeat Sample i_1, \ldots, i_s i.i.d. $\sim (q_1, \ldots, q_n)$ Sample Accept \sim Bernoulli $\left\lceil \frac{\det\left(\sum_{t=1}^s \frac{1}{q_{i_t}}\mathbf{x}_{i_t}\mathbf{x}_{i_t}^\top\right)}{\det(\mathbf{x}^\top\mathbf{x})} \right\rceil \right\rceil$ $\mathsf{det}(\mathsf{X}^{\top}\mathsf{X})$ 1 until $Accept = true$

preprocessing
$$
O(nd^2)
$$
 + sampling $O(d^4)$
improvable to $\widetilde{O}(nnz(X)+poly(d))$ no dependence on n

Removes the bias from iid leverage score sampling!

Libsym dataset: YearPredictionMSD $(n = 463715, d = 90)$

computing leverage scores: (preprocessing step)

volume sampling runtime

first polynomial algorithm: [LJS17]

our volume sampling algorithms reverse iterative sampling: $[DW17]$

fast reverse iterative sampling: $[DW18a]$

leveraged volume sampling: [DWH18]

Mar. 2017

May 2017

May 2018

Libsym dataset: YearPredictionMSD $(n = 463715, d = 90)$ computing leverage scores: 10 seconds (preprocessing step)

volume sampling runtime

first polynomial algorithm: [LJS17]

our volume sampling algorithms reverse iterative sampling: $[DW17]$

fast reverse iterative sampling: $[DW18a]$

leveraged volume sampling: [DWH18]

May 2017

May 2018

Libsym dataset: YearPredictionMSD $(n = 463715, d = 90)$ computing leverage scores: 10 seconds (preprocessing step)

26 / 28

Libsym dataset: YearPredictionMSD $(n = 463715, d = 90)$ computing leverage scores: 10 seconds (preprocessing step) volume sampling runtime first polynomial algorithm: age of the universe [LJS17] Mar. 2017

our volume sampling algorithms

reverse iterative sampling: 24 hours [DW17]

fast reverse iterative sampling: $[DW18a]$

leveraged volume sampling: [DWH18]

May 2017

Libsym dataset: YearPredictionMSD $(n = 463715, d = 90)$ computing leverage scores: 10 seconds (preprocessing step) volume sampling runtime first polynomial algorithm: age of the universe [LJS17] Mar. 2017 our volume sampling algorithms reverse iterative sampling: 24 hours [DW17] May 2017 fast reverse iterative sampling: 30 seconds [DW18a] Oct. 2017 leveraged volume sampling: [DWH18]

We showed

- \triangleright Volume sampling is fundamental, elegant, quite fast
- \blacktriangleright Leads to unbiased estimators

And what is next?

- \triangleright Introducing controlled bias into volume sampling
- ▶ Subsampled Newton's method
- \blacktriangleright Applications in distributed computing
- ▶ Connections to Determinantal Point Processes

We showed

- \triangleright Volume sampling is fundamental, elegant, quite fast
- \blacktriangleright Leads to unbiased estimators

And what is next?

- \blacktriangleright Introducing controlled bias into volume sampling
- \blacktriangleright Subsampled Newton's method
- \blacktriangleright Applications in distributed computing
- ▶ Connections to Determinantal Point Processes

References

- ā. [DRVW06] Deshpande, Rademacher, Vempala, Wang. Matrix approximation and projective clustering via volume sampling. SODA 2006.
- [AB13] Avron, Boutsidis. Faster subset selection for matrices and applications. JMAA 2013.
- 螶
- [LJS17] Li, Jegelka, Sra. Polynomial time algorithms for dual volume sampling. NIPS 2017.
- 聶
- [DW17] Dereziński, Warmuth. Unbiased estimates for linear regression via volume sampling. NIPS 2017.

[DW18a] Dereziński, Warmuth. Subsampling for ridge regression via regularized volume sampling. AISTATS 2018.

[DW18b] Dereziński, Warmuth. Reverse iterative volume sampling for linear regression. JMLR, 2018.

[DWH18] Dereziński, Warmuth, Hsu. Leveraged volume sampling for linear regression. NIPS 2018 (to appear).

[CP18] Chen, Price. Active regression via linear-sample sparsification. 2018.