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Large Scale graphs / matrices

• Network science:
centrality, partitioning …

• Image/video processing: 
segmentation, denoising …

• Scientific computing:
stress/strain, heat/fluid, waves …



Tools for large graphs / matrices

• \ (linear system solve)

• CVX (convex optimization)

• Eigenvector / SVD / spectral algorithms

Most basic: solving Ax = b

• Optimization: interior point method

• Eigenvector: inverse power method



x=Solve(A, b) vs. sorting

qsort x := b \ A

Space 2n Super-linear 

Parallel yes sometimes

LOC 30 104 (LAPACK)

Time 20n* ???

* Wall clock times

[Kyng-Rao-Sachdeva `15]
we suggest rerunning the
program a few times and / or
using a different solver. An
alternate solver based on
incomplete Cholesky is provided
with the code.



On a laptop: many instance with 
m ≈ 106 solvable in seconds

Open: provably solve ALL graphs / matrices problems this fast

This talk: recent progresses and the central 
role of high dimensional concentration

Focus: linear case, but most have non-linear extensions

Works on solving Ax = b

• matrix decompositions,
• QR factorization,
• Krylov space methods (e.g. conjugate gradient)



Direct Methods (combinatorial)

M(2)
 Eliminate(M(1), x1)

M(3)
 Eliminate(M(2), x1)

…

• Combinatorial scientific computing

• Matrix multiplication

• Parallel graph algorithms

• Sparsified squaring (e.g. connectivity in L)



Iterative Methods (numerical)

Solve Ax = b by

x x + (Ax – b)

• Conjugate gradient (pcg)

• Convex optimization algorithms

• Krylov space methods

• Simple B: B = I, many iterations
• B = A: 1 iteration, but same problem

• Fixed point: Ax – b = 0

Preconditioning:

Solve B-1Ax = B-1b by:

x x + B-1(Ax – b)



Difficulties in scaling

Highly connected, 
need global steps

Long paths / trees, 
need many steps

Must handle both simultaneously, but 
avoid paying n iterations ⨉m per iteration

Each easy on its own

Iterative methods Direct methods

High performance computing: nonzeros edges



Hybrid algorithms

• Approximate Gaussian elimination (pcg + ichol)

• [Vaidya `89] precondition with graphs

Algorithmic view:

• Operator error as another resource

• Fined grained coupling of discrete/continuous



Graph Structured Matrices

n rows / columns
O(m) non-zeros

1

1

n vertices

m edges

graph Laplacian Matrix L

• Diagonal: degree

• Off-diagonal: -edge weights

2   -1  -1
-1    1   0
-1    0   1

Laplacians arise in:
• Spectral algorithms
• Inference on graphs
• Hessian matrices of IPM



Laplacian Paradigm
[Spielman-Teng `04] find x s.t. Lx = b in nearly-linear time

2014: mlog1/2n

2011: mlogn

2006: mlog30n

2004: mlog70n 2009: mlog15n

2010: mlog2n

Non-linear: min f(Bx) + <b, x>
Where B = edge-vertex incidence matrix

2008: mincost-flow in m1.5

2011: approx maxflow in m4/3

2013: approx maxflow in m1+o(1)

2013: bipartite matching in m7/4

2016: approx maxflow in m

2017: matrix rescaling in m

Zeno’s paradox?

2016: max weighted 
matching in m7/4

2014: maxflow in mn1/2



Laplacian Paradigm(s)
• [Vaidya `89, Spielman-Teng `04, Koutis-Miller-P `10, `11…,

Kelner-Orecchia-Sidford-Zhu `13, Lee-Sidford `14…]
Turn graph into tree by removing off-tree edges

• [Gremban-Miller `96, P-Spielman `14, Kyng-Lee-P-Sachdeva-
Spielman `16, Kyng-Sachdeva `16, Cohen et al.  `16, `17, `18]: 
Turn graph into clique(s) while eliminating vertices

` `



Hybrid algorithms at a glance

Core step: gradual transfer between 
sizes and numerical complexities

Ultra-sparsifiers Elimination

End goal Tree Expander

Progress #edges Condition number

Reduction / step Factor of k Factor of 2

Error / step O(k log2n) 1/O(logn)

Objects sampled Off-tree edges Walks

Building upon DFS / BFS / MST
Global Min-Cut

Multi-grid, 
Connectivity in L



Dimensionality Reduction
f(Ax): Banach space

Functional analysis (e.g. (Talagrande `90]): for many f, 
including p-norms with 1 <= p <= 2, any n-dimensional 
Banach space embeds with constant error into RO(nlogn)

║y║2 

p-norm: ‖ y ‖ q := (Σ|yi|
p)1/p

nn

A’Am
≈n

Can work on A’ instead: f(A’x) ≈ f(Ax) ∀x:
min f(Ax) + <b, x> ≈ min f(A’x) + <b, x>



Edge-vertex incidence matrix

n rows / columns
O(m) non-zeros

1

1

n vertices

m edges

graph Laplacian Matrix L

• Diagonal: degree

• Off-diagonal: -edge weights

edge-vertex incidence matrix
Beu = -1/1 for endpoints u

0 everywhere else

m rows

n columns

L is the Gram matrix of B, L = BTB

2   -1  -1
-1    1   0
-1    0   1

1   -1   0
-1    0   1



Implications of ‖BGx‖2 ≈ ‖BHx‖2

G ≈ H on all cuts: x = {0, 1}V:

• For edge e = uv, (Be:x) 2 = (xu – xv)
2

• ‖BGx‖2
2 = size of cut given by x

Operation approximations:

• LG = BG
TBG: 

• xTLGx =‖BGx‖2
2 
 LG ≈ LH

• Undirected graph have sparse approximations

• Key: outputs of randomized methods structured



Fine Grained Incorporation of ≈

F C

A[CF]

[Strassen `69]: suffices to invert:

• A[FF]:|F|-by-|F|

• SC(A, C):|C|-by-|C|

Schur complement, SC(A, C) A[CC] – A[CF] A[FF]-1A[FC]
eliminate all variables in F = V \ C

SC(A, C)

A[CC]

A[FF] A[FC]

SC(A, C) is another graph Laplacian!

[Kyng-Lee-P-Sachdeva-Spielman `16]: 
Sparsify(SC(L, C)) without building it

• O(mlogn + nlog2n) overall

• extensions to connection Laplacians



Algorithmic issues

• How to construct / sample SC(L, C) efficiently
• Similar issues in the graph  tree approach

Algorithmic kitchen sink applicable:
• Embeddings: Lx = b, max-flow, sketching,
• Spanners: Lx = b, max-flow, sketching
• Data structures: Lx = b, streaming settings
• Matrix martingales: Lx = b, directed graphs
• Recursion: Lx = b, max-flow, row sampling, 

directed graphs, connection Laplacians



[Kyng-Zhang FOCS`17]: any PSD matrix 
is the partially eliminated state of:

• A generalized 2-D truss matrix

• A 2-commodity flow matrix

ELIMINATING MORE

[Kyng-P-Schweiterman-Zhang STOC`18]: O(n5/3 ) time for 
trusses on well-shaped simplicial complexes

Linear elasticity problems: physical forces on trusses 

Reversibility of eliminations 
trusses are ‘complete’ for all Mx = b!



[Cohen-Kelner-Peebles-P-Rao-Sidford-Vladu `16, 17]
sparse approx. of directed graph,
and solving directed Lx = b in nearly-linear time

DIRECTED SPECTRAL METHODS

Difficult in general:

• Undirected : connected components

• Directed reachability: Ω(n2) bits

Key: use states of iterative methods to restrict 
the information that need to be preserved



Questions  / Future directions
• Generalizations of high-dimensional concentration?

• How much of these work in non-linear cases?

• Dynamic / streaming via. adaptive sampling?

Property Direct Iterative Hybrid

Convex functions ?  ??

Arbitrary values  ? ?!

Dynamic / streaming   ???

Sparse / low memory   

Parallelizable   

 on trees   

 on well-connected   


