Scalable Algorithmic Primitives for Data Science

Richard Peng Sep 25, 2018

Large Scale graphs / matrices

- Network science: centrality, partitioning …
- Image/video processing: segmentation, denoising …
- Scientific computing: stress/strain, heat/fluid, waves …

Tools for large graphs / matrices

- \ (linear system solve)
- CVX (convex optimization)
- Eigenvector / SVD / spectral algorithms

Most basic: solving **Ax** = **b**

- Optimization: interior point method
- Eigenvector: inverse power method

$x=$ Solve (A, b) vs. sorting

[Kyng-Rao-Sachdeva `15] we suggest rerunning the program a few times and / or using a different solver. An alternate solver based on incomplete Cholesky is provided with the code.

Works on solving $Ax = b$

from *SIAM News*, Volume 33, Number 4

The Best of the 20th Century: Editors Name Top 10 Algorithms

- matrix decompositions,
- QR factorization,
- Krylov space methods (e.g. conjugate gradient)

On a laptop: many instance with $m \approx 10^6$ solvable in seconds

Open: provably solve ALL graphs / matrices problems this fast

This talk: recent progresses and the central role of high dimensional concentration

Focus: linear case, but most have non-linear extensions

Direct Methods (combinatorial)

 $M^{(2)} \leftarrow$ Eliminate(M⁽¹⁾, x1) $M^{(3)} \leftarrow$ Eliminate($M^{(2)}$, x1)

…

- Combinatorial scientific computing
- Matrix multiplication
- Parallel graph algorithms
- Sparsified squaring (e.g. connectivity in L)

- Fixed point: $Ax b = 0$
- Simple **B**: **B** = **I**, many iterations
- **B** = **A**: 1 iteration, but same problem
	- Conjugate gradient (pcg)
	- Convex optimization algorithms
	- Krylov space methods

Difficulties in scaling

High performance computing: nonzeros \Leftrightarrow edges

Must handle both simultaneously, but avoid paying n iterations \times m per iteration

Hybrid algorithms

- Approximate Gaussian elimination (pcg + ichol)
- [Vaidya `89] precondition with graphs

- Operator error as another resource
- Fined grained coupling of discrete/continuous

Graph Structured Matrices

graph Laplacian Matrix **L**

- Diagonal: degree
- Off-diagonal: -edge weights

Laplacians arise in:

- Spectral algorithms
- Inference on graphs
- Hessian matrices of IPM

Laplacian Paradigm

[Spielman-Teng `04] find **x** s.t. **Lx** = **b** in nearly-linear time

Laplacian Paradigm(s)

• [Vaidya `89, Spielman-Teng `04, Koutis-Miller-P `10, `11…, Kelner-Orecchia-Sidford-Zhu `13, Lee-Sidford `14…] Turn graph into tree by removing off-tree edges

• [Gremban-Miller `96, P-Spielman `14, Kyng-Lee-P-Sachdeva-Spielman `16, Kyng-Sachdeva `16, Cohen et al. `16, `17, `18]: Turn graph into clique(s) while eliminating vertices

Hybrid algorithms at a glance

Core step: gradual transfer between sizes and numerical complexities

Can work on A' instead: $f(A'x) \approx f(Ax) \; \forall x$: \Leftrightarrow min f(Ax) + <**b**, x \ge \approx min f(A'x) + <**b**, x

Functional analysis (e.g. (Talagrande `90]): for many f, including p-norms with $1 \le p \le 2$, any n-dimensional Banach space embeds with constant error into R^{O(nlogn)}

p-norm: \parallel **y** \parallel _q := (Σ|**y**_i|^p)^{1/p}

Edge-vertex incidence matrix

graph Laplacian Matrix **L**

- Diagonal: degree
- Off-diagonal: edge weights

edge-vertex incidence matrix $B_{eu} = -1/1$ for endpoints u 0 everywhere else

Implications of $\left\| \mathbf{B}_{G}\mathbf{x} \right\|_{2} \approx \left\| \mathbf{B}_{H}\mathbf{x} \right\|_{2}$

G ≈ **H** on all cuts: $x = \{0, 1\}^{\vee}$:

- For edge e = uv, $(B_{e} \cdot x)^2 = (x_u x_v)^2$
- $\|\mathbf{B}_{\mathbf{G}}\mathbf{x}\|_2^2$ = size of cut given by **x**

Operation approximations:

\n- $$
\mathbf{L}_{G} = \mathbf{B}_{G}^{\top} \mathbf{B}_{G}
$$
\n- $\mathbf{x}^{\top} \mathbf{L}_{G} \mathbf{x} = ||\mathbf{B}_{G} \mathbf{x}||_{2}^{2} \Leftrightarrow \mathbf{L}_{G} \approx \mathbf{L}_{H}$
\n

- Undirected graph have sparse approximations
- Key: outputs of randomized methods structured

Fine Grained Incorporation of ≈ Schur complement, SC(**A**, C) **A**[CC] – **A**[CF] **A**[FF]-1**A**[FC] eliminate all variables in $F = V \setminus C$

[Strassen `69]: suffices to invert:

- **A**[FF]:|F|-by-|F|
- SC(**A**, C):|C|-by-|C|

SC(**A**, C) is another graph Laplacian! [Kyng-Lee-P-Sachdeva-Spielman `16]: Sparsify(SC(**L**, C)) without building it

- O(mlogn + nlog²n) overall
- extensions to connection Laplacians

Algorithmic issues

- How to construct / sample SC(L, C) efficiently
- Similar issues in the graph \rightarrow tree approach

Algorithmic kitchen sink applicable:

- Embeddings: **Lx** = **b**, max-flow, sketching,
- Spanners: **Lx** = **b**, max-flow, sketching
- Data structures: **Lx** = **b**, streaming settings
- Matrix martingales: **Lx = b**, directed graphs
- Recursion: **Lx** = **b**, max-flow, row sampling, directed graphs, connection Laplacians

ELIMINATING MORE

Linear elasticity problems: physical forces on trusses

[Kyng-P-Schweiterman-Zhang STOC`18]: $O(n^{5/3})$ time for trusses on well-shaped simplicial complexes

[Kyng-Zhang FOCS`17]: **any** PSD matrix is the partially eliminated state of:

- A generalized 2-D truss matrix
- A 2-commodity flow matrix

Reversibility of eliminations \rightarrow trusses are 'complete' for all **Mx** = **b**!

DIRECTED SPECTRAL METHODS

[Cohen-Kelner-Peebles-P-Rao-Sidford-Vladu `16, 17] sparse approx. of directed graph, and solving directed **Lx** = **b** in nearly-linear time

Difficult in general:

- Undirected : connected components
- Directed reachability: $\Omega(n^2)$ bits

Key: use states of iterative methods to restrict the information that need to be preserved

Questions / Future directions

- Generalizations of high-dimensional concentration?
- How much of these work in non-linear cases?
- Dynamic / streaming via. adaptive sampling?

