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Two Approaches for Introducing Randomization in NLA

Sketch-and-Solve
1 Sketch the input
2 ... to form a smaller problem
3 ... and solve it exactly
4 ... use solution to form an

approximate solution to the
original problem

Sketch-to-Precondition
1 Sketch the input
2 Use the sketch to form a

preconditioner
3 Use an iterative method +

preconditioner



Example: minx ‖Ax− b‖2

Sketch-and-Solve
1 B← SA, c← Sb
2 New problem:

miny ‖By − c‖2
3 y← B+c (via QR or SVD)
4 x← y

Sketch-to-Precondition
1 B← SA
2 [Q,R]← qr(B)

3 x← LSQR(A,b,R)



Two Approaches for Introducing Randomization in NLA

Sketch-and-Solve
1 High success rate
2 Polynomial accuracy

dependence (e.g. ε−2)
3 No iterations

Pros:

1 Very fast
2 Deterministic running time

Cons:

1 Only crude accuracy
2 “Monte-Carlo” algorithm

Sketch-to-Precondition
1 High success rate
2 Exponential accuracy

dependence (e.g. log(1/ε))
3 Iterations

Pros:

1 Very high accuracy possible
2 Success = good solution

Cons:

1 Slower than sketch-and-solve
2 Iterations (no streaming)



Two Approaches for Introducing Randomization in NLA

Sketch-and-Solve
1 Linear regression

(ordinary, ridge, robust, ...)
2 Constrained linear regression
3 Principal Component Analysis
4 Canonical Correlations Analysis

5 Kernelized methods
(KRR, KSVM, KPCA,...)

6 Low-rank approximations
7 Structured decompositions

(CUR, NMF, ...)

Non exhaustive list...

Sketch-to-Precondition
1 Linear regression

(only: ordinary, ridge, some
robust)

2 Kernel ridge regression
3 Laplacian solvers
4 Systems with hierarchical

structure
5 Linear systems with tensor

product structure (Kressner et
al. 2016)

Essentially an exhaustive list...
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3 Laplacian solvers
4 Systems with hierarchical

structure
5 Linear systems with tensor
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Essentially an exhaustive list...

Can randomized preconditioning be
used beyond regression?



Executive Summary

This talk: Randomized preconditioning for CCA
(and more generally: problems w/ quadratic equality constrains).

How? Riemannian optimization + Sketching

Key Observations:
1 CCA is an optimization problem with manifold constraints.
2 The metric selection matters.
3 We want to use a specific metric, but using it is expensive.
4 Use sketching to approximate that metric.



(Regularized) Canonical Correlations Analysis (CCA)

Inputs
1 Data matrices X ∈ Rn×dx and Y ∈ Rn×dy

2 Regularization parameter λ ≥ 0

Goal
Maximize

f (u, v) = uTXTYv

subject to uT(XTX + λIdx )u = 1 and vT(YTY + λIdy )v = 1

Remarks
1 The above is only the leading correlation.
2 If λ = 0 we get principal angles and vectors.



Solving CCA

Direct Method (λ = 0)
(Björck-Golub Algorithm)

1 [Qx ,Rx ]← qr (X)

2 [Qy ,Ry ]← qr (Y)

3 [M,Σ,N]← svd(QT
x Qy )

4 u? ← R−1
x M:,1

v? ← R−1
y N:,1

Cost: O(n(d2
x + d2

y ))
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Sketch-and-Solve
(A., Boutsidis, Toledo, Zouzias 2014)

1 Xs ← SX
2 Ys ← SY
3 [ũ, ṽ]←

BjorckGolub(Xs ,Ys)

Features:

Improved dependence on n.
ε−2 dependence.



Alternating Least Squares Algorithm (Golub and Zha 1995)

Denote Σxx = XTX + λI and Σyy = YTY + λI. Consider the iteration:

ũk+1 = argmin
u
‖Xu−Yvk‖22 + λ‖u‖22 = Σ−1

xx XTYvk

uk+1 = ũk+1/ũT
k+1Σxxũk+1

ṽk+1 = argmin
v
‖Yv −Xuk‖22 + λ‖v‖22 = Σ−1

yy YTXuk

vk+1 = ṽk+1/ṽT
k+1Σyyṽk+1

Theorem (Wang, Wang, Garber and Srebro 2016)

Let µ ≡ min((uT
0 Σxxu?)2, (vT

0 Σyyv?)2) > 0. Then, for

t ≥
⌈

ρ2
1

ρ2
1 − ρ2

2

⌉
log
(

1
µε

)
we have

min((uT
t Σxxu?)2, (vT

t Σyyv?)2) ≥ 1− ε, uT
t XTYvt ≥ ρ1(1− 2ε) .



Alternating Least Squares - Costs

Costs:
Setup time: O(n(d2

x + d2
y ))

Iteration cost: O(n(dx + dy ))

#iterations:
⌈

ρ2
1

ρ2
1−ρ2

2

⌉
log
(

1
µε

)
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Alternating Least Squares - Costs

Costs:
Setup time: O(n(d2

x + d2
y ))

Iteration cost: O(n(dx + dy ))

#iterations:
⌈

ρ2
1

ρ2
1−ρ2

2

⌉
log
(

1
µε

)
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Bad: Setup time is too large; as expensive as direct method.

Observation: ALS is actually Riemannian steepest descent!



Riemannian Optimization

Riemannian Steepest Descent
Problem:

min f (x) s.t. x ∈M

whereM is a manifold.
Iteration:

xk+1 = Rxk (−ηkgrad(M,g)f (x))

R·(·) is a retraction defined onM.
grad(M,g)· is the Riemannian
gradient. Important: it depends on
the metric choice.



ALS is Riemannian Steepest Descent

Components Alternating Least Squares

Function f to optimize f (u, v) = −uTXTYv

Manifold domainM M =

{[
u
v

]
s.t. uTΣxxu = 1, vTΣyyv = 1

}
(i.e. product manifold of two generalized Stiefel

manifolds)

Retraction R(u,v)(ξ, ν) =

[
(u + ξ)/‖u + ξ‖Σxx
(v + ν)/‖v + ν‖Σyy

]
Metric g g

([
ξ1
ν1

]
,

[
ξ2
ν2

])
= ξT1 Σxxξ2 + νT

1 Σyyν2

Gradient grad(M,g)f grad(M,g)f (u, v) = −
[

Σ−1
xx XTYv − f (u, v)u

Σ−1
yy YTXu− f (u, v)v

]
Step size ηk ηk = −f (uk , vk )
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This metric is common, leads to provable convergence bounds, but leads to expensive
setup time.



Riemannian Preconditioning (Mishra-Sepulchre ’16):
Change the Metric

Components Suggested Algorithm

Function f to optimize f (u, v) = −uTXTYv

Manifold domainM M =

{[
u
v

]
s.t. uTΣxxu = 1, vTΣyyv = 1

}
Retraction R(u,v)(ξ, ν) =

[
(u + ξ)/‖u + ξ‖Σxx
(v + ν)/‖v + ν‖Σyy

]
Metric g g

([
ξ1
ν1

]
,

[
ξ2
ν2

])
= ξT1 Mxxξ2 + νT

1 Myyν2

Gradient grad(M,g)f grad(M,g)f (u, v) =

−
[

(In − (uTΣxxM−1
xx Σxxu)−1M−1

xx ΣxxuuTΣxx)M−1
xx XTYv

(In − (vTΣyyM−1
yy Σyyv)−1M−1

yy ΣyyvvTΣyy)M−1
yy YTXu

]

Step size ηk use line search or Riemannian CG



Sketching Based Preconditioning Strategies

1 Subspace Embedding Preconditioners: generate a sketch
transform (SRFT, CountSketch, etc.) S and factor

[Qx,Rx] = qr(SX), [Qy,Ry] = qr(SY)

Implicitly define

Mxx = RT
x Rx, Myy = RT

y Ry

This is the strategy used in randomized least squares solvers
(e.g. Blendenpik). Theory for bounding the condition number
(with respect to number of rows) is well understood.

Warm-start: This strategy also allows for an easy warm-start -
solve CCA on (SX,SY) and use as starting vectors.



Sketching Based Preconditioning Strategies

2. Approximate Dominant Subspace Preconditioning (Gonen et
al. 2016): approximate the k dominant right singular vectors
v1, . . . , vk of X and corresponding singular values σ1, . . . , σk .
Then

Mxx =
k∑

i=1

(σ2i − σ2k)vivTi + (λ+ σ2k)Idx

Repeat for Y. Can efficiently multiply by a vector, and apply
inverse.

Only for λ > 0. No warm-start. Very efficient preconditioners
(low iteration complexity).



Preliminary Experimental Results

MNIST dataset (60, 000× 784) split into two halves.
Plotting suboptimality of objective: |σ1 − uT

k Σxyvk |/σ1.
Use warm start for subspace embedding (right graph).
Riemannian CG (via Manopt).
Baselines -

Identity preconditioners - 205 iterations.
Exact inverses (“best”) - 47 iterations.
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Second Order Methods

We calculated the Riemannian Hessian (omitted - rather long
expression).
Allows the use of a Riemannian Trust Region Method.
Very few iterations, but iterations have varying costs.
x-axis is the number of matvecs with X and Y.
Less matvec products than Riemannian CG.
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Q: What constitutes a “good” Mxx and Myy?



Fixed Step Gradient Descent

Definitions
f :M→ R has Lipschitz-type continuous gradient with constant L
on C ⊆ M w/ respect to R if for every x ∈ C, η ∈ TxM∣∣f (Rx(η))− f (x)− g(η, grad(M,g)f (x))

∣∣ ≤ L

2
g(η, η) .

It is τ -gradient dominated on C if for every x ∈ C

f (x)− f (x?) ≤ τ · g(grad(M,g)f (x), grad(M,g)f (x))

Fact
Assume the above hold, and consider xk+1 = Rxk (− 1

Lgrad(M,g)f (xk)).
Assume all iterations belong to C. Then

f (xk+1)− f (x?) ≤
(
1− 1

2Lτ

)k

(f (x0)− f (x?))



Example: Generalized Eigenvalue Computation

Lemma

Assume A and B are PSD. Consider f (x) = −1
2x

TAx, on the
manifold xTBx = 1 with the natural metric (B inner product). Let
λ1 ≥ · · · ≥ λmin be the singular values of B−1/2AB−1/2. Let
δ ≡ λ1 − λ2 (the eigengap). Then:

1 f has Lipschitz-type continuous gradient with L = λ1.

2 f is min
( 1
2ε2δ ,

1
δ

)
-gradient dominated inside (Corollary of a

Theorem of Sra et al. 2016)

C =
{
x s.t. xTBx? ≥ ε

}



CCA: The effect of preconditioning

Lemma

M =

{[
u
v

]
s.t.uTΣxxu = 1, vTΣyyv = 1

}
g1

([
ξ1
ν1

]
,

[
ξ2
ν2

])
= ξT

1 Σxxξ2 + νT
1 Σyyν2

g2

([
ξ1
ν1

]
,

[
ξ2
ν2

])
= ξT

1 Mxxξ2 + νT
1 Myyν2

Lipschitz-type continuous gradient with constant L w/ g2 =⇒
Lipschitz-type L ·min(λmin(Mxx,Σxx), λmin(Myy,Σyy))−1 w/ g2.
τ -gradient dominated w/ g1 =⇒
τ ·max(λmax(Mxx,Σxx), λmax(Myy,Σyy))-gradient dominated w/ g2.

In short: we can expect a factor of
κ (diag (Mxx,Myy) ,diag (Σxx,Σyy)) increase in #iterations.



Conclusions and Future Work

1 RandNLA achieves high accuracy when used for preconditioning.
2 High accuracy “beyond regression” requires preconditioned methods
3 Riemannian optimization is well suited for this.
4 Can be precondiioned by changing metric (Riemannian

preconditioning).

5 i.e. for quadratic constraints (focused on CCA in this talk).
6 Still work in progress.


