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Two Approaches for Introducing Randomization in NLA

Sketch-and-Solve Sketch-to-Precondition
@ Sketch the input @ Sketch the input
@ ... to form a smaller problem @ Use the sketch to form a
© ... and solve it exactly preconditioner
@ ... use solution to form an © Use an iterative method +
approximate solution to the preconditioner

original problem



Example: miny [[Ax — b||,

Sketch-and-Solve Sketch-to-Precondition
@ B~ SA,c+Sb @ B+ SA
@ New problem: Q [Q,R] « qr(B)
miny || By — cl|2 © x + LSQR(A,b,R)

® y «+ B'c (via QR or SVD)
Q x«+y



Two Approaches for Introducing Randomization in NLA

Sketch-and-Solve
@ High success rate

@ Polynomial accuracy
dependence (e.g. ¢ 2)

© No iterations
Pros:

@ Very fast

@ Deterministic running time
Cons:

@ Only crude accuracy
@ “"Monte-Carlo” algorithm

Sketch-to-Precondition
@ High success rate

@ Exponential accuracy
dependence (e.g. log(1/¢))

© lterations

Pros:

@ Very high accuracy possible

@ Success = good solution
Cons:

@ Slower than sketch-and-solve

@ lterations (no streaming)



Two Approaches for Introducing Randomization in NLA

Sketch-and-Solve

o
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©
o
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Linear regression
(ordinary, ridge, robust, ...)

Constrained linear regression
Principal Component Analysis

Canonical Correlations Analysis

Kernelized methods
(KRR, KSVM, KPCA,...)
Low-rank approximations

Structured decompositions
(CUR, NMF, ..)

Non exhaustive list...

Sketch-to-Precondition

o

© 60600

Linear regression

(only: ordinary, ridge, some
robust)

Kernel ridge regression
Laplacian solvers

Systems with hierarchical
structure

Linear systems with tensor

product structure (Kressner et
al. 2016)

Essentially an exhaustive list...
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Linear regression
(ordinary, ridge, robust, ...)

Constrained linear regression
Principal Component Analysis

Canonical Correlations Analysis

Kernelized methods
(KRR, KSVM, KPCA,...)
Low-rank approximations

Structured decompositions
(CUR, NMF, ..)

Non exhaustive list...

Sketch-to-Precondition

o
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Linear regression

(only: ordinary, ridge, some
robust)

Kernel ridge regression
Laplacian solvers

Systems with hierarchical
structure

Linear systems with tensor

product structure (Kressner et
al. 2016)

Essentially an exhaustive list...

Can randomized preconditioning be
used beyond regression?



Executive Summary

This talk: Randomized preconditioning for CCA
(and more generally: problems w/ quadratic equality constrains).

How? Riemannian optimization + Sketching

Key Observations:
@ CCA is an optimization problem with manifold constraints.
@ The metric selection matters.
©® We want to use a specific metric, but using it is expensive.

@ Use sketching to approximate that metric.



(Regularized) Canonical Correlations Analysis (CCA)

@ Data matrices X € R"*% and Y € R"™*%
@ Regularization parameter A\ > 0

Maximize

f(u,v) =u"XTYv
subject to uT(X'X + Mg )u=1and vI(Y'Y + Al )v=1

@ The above is only the leading correlation.

@ If A = 0 we get principal angles and vectors.




Solving CCA

Direct Method (A = 0)
(Bjorck-Golub Algorithm)
O [Q Ry« ar (X)
2 Q)R] «ar (Y)
© [M, %, N] « svd(QrQ,)
Q v +R;'M,
v RN,

Cost: O(n(dZ + d?))



Solving CCA

Direct Method (A = 0)
(Bjorck-Golub Algorithm)
® [Q. R« ar (X)
9 [Q,.R)] «ar (Y)
© M, %, N] « svd(Q]Q,)
Q v +R;'M,
v RN,

Cost: O(n(d? + d2))

Sketch-and-Solve
(A., Boutsidis, Toledo, Zouzias 2014)
O X, + SX
Q Y, SY
O [u,V] +
BjorckGolub(Xs,Ys)

Features:

@ Improved dependence on n.

@ ¢ 2 dependence.



Alternating Least Squares Algorithm (Golub and Zha 1995)

Denote ¥, = XX + AI and Yy = YTY + AL Consider the iteration:

U1 = arg muin [ Xu — Y3 + AMul2 = 21X TYv,
Uepr = Ogpr /Ty Tl
Viy1 = arg mvin YV — Xugl3 + \|v|3 = Zy_leTXuk
Vil = Vi1 /U Ty

Theorem (Wang, Wang, Garber and Srebro 2016)

Let 1 = min((ud Tuxu*)?, (v§ Zyyv*)?) > 0. Then, for
2 1
P1— P2 ke

min((uf Tet®)?, (vi Zyyv*)?) > 1 — €, ul X Y, > pi(1—2€).

we have




Alternating Least Squares - Costs

Costs:
o Setup time: O(n(d? + d7))
e lteration cost: O(n(dx + dy))

2
1

: : p 1
° : | =
#iterations L?-PJ og <#E)
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2
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2

Good: very good iteration complexity.
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Good: very good iteration complexity.

Bad: Setup time is too large; as expensive as direct method.



Alternating Least Squares - Costs

Costs:
o Setup time: O(n(d? + d7))
e lteration cost: O(n(dx + dy))

H H . P1 1
° : | =
#iterations L?-PJ og <#E)

2
Good: very good iteration complexity.
Bad: Setup time is too large; as expensive as direct method.

Observation: ALS is actually Riemannian steepest descent!



Riemannian Optimization

I ———
Riemannian Steepest Descent
Problem:

min f(x)s.t.x € M

where M is a manifold.
Iteration:

Xkr1 = Ry, (_ngrad(./\/l,g) f(x))

R.(%) is a retraction defined on M.
grad(rg)- is the Riemannian
gradient. Important: it depends on
the metric choice.




ALS is Riemannian Steepest Descent

’ Components ‘ Alternating Least Squares ‘
Function f to optimize f(u,v) = —uTXTYv
Manifold domain M M= {[ : J st.uTXu=1, vTZyyv = 1}

(i.e. product manifold of two generalized Stiefel

manifolds)

(Ut &)/ut el
(v + )/l + v,

Metric g g ( &1 , &2 = ] Tuxéa + ] Tyyr2

V1 V2

[ TodXTYv — f(u,v)u ]
| Zy_leTXu — f(u,v)v |
Step size 7y e = —F (U, Vi)

Retraction R(u,v)(£7 v)=

Gradient grad o ¢)f grad(p( g)f(u,v) = —
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ALS is Riemannian Steepest Descent

’ Components

Alternating Least Squares

Function f to optimize

f(u,v) = —uTXTYv

Manifold domain M

M= {[ 3 J st.uTXu=1, vTZyyv = 1}

(i.e. product manifold of two generalized Stiefel

manifolds)
. _ | w+8/lu+Ells,,
Retraction Ruw(&v) = (v +0)/Ilv + vz,
Metric g g < ii , iz = Tuxo + 1] Tyyro

Gradient grad pqg)f

grad(rq g) flu,v) =—

[ ot XTYv — f(u,v)u |
I Z)TleTXu — f(u,v)v

Step size ny

K =

—f(uk, Vk)

This metric is common, leads to provable convergence bounds, but leads to expensive

setup time.




Riemannian Preconditioning (Mishra-Sepulchre '16):

Change the Metric

’ Components ‘ Suggested Algorithm ‘

Function f to optimize f(u,v) = —uTXTYv

Manifold domain M M= { 3 st.uTXu=1, vTZyyv = 1}

2 T
Rua &)= | (vt o)/l + vl
g< &1 &2

_ TM T
, = vy Myyv:
vi |7 v &1 Mixx€2 + vy Myyra

Retraction

Metric g

Gradient grad(M,g)f grad(pq g)f(u,v) =

@ = T Mg ) T M g T S )M X T Yy
(T — (VT oy My P oypv) T IM Ty w T 5y )M Y T X

Step size 7k

use line search or Riemannian CG




Sketching Based Preconditioning Strategies

@ Subspace Embedding Preconditioners: generate a sketch
transform (SRFT, CountSketch, etc.) S and factor

[Qx Ra] = ar(8X), [Qy, Ry] = ar(SY)
Implicitly define
My = Ry Ry, Myy = Ry Ry

This is the strategy used in randomized least squares solvers
(e.g. Blendenpik). Theory for bounding the condition number
(with respect to number of rows) is well understood.

Warm-start: This strategy also allows for an easy warm-start -
solve CCA on (SX,SY) and use as starting vectors.



Sketching Based Preconditioning Strategies

2. Approximate Dominant Subspace Preconditioning (Gonen et
al. 2016): approximate the k dominant right singular vectors
v1,...,V, of X and corresponding singular values o1, ..., 0.
Then

k
Myx = 2(01‘2 - UI%)ViV:T + (A + U%)Idx
i=1
Repeat for Y. Can efficiently multiply by a vector, and apply
inverse.

Only for A > 0. No warm-start. Very efficient preconditioners
(low iteration complexity).



Preliminary Experimental Results

MNIST dataset (60,000 x 784) split into two halves.
Plotting suboptimality of objective: |07 — uInyvk|/al.
Use warm start for subspace embedding (right graph).
Riemannian CG (via Manopt).
Baselines -

o ldentity preconditioners - 205 iterations.

o Exact inverses (“best”) - 47 iterations.

o Dominant K Preconditioning 100 Subsg Embedding Preconditioning
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Second Order Methods

@ We calculated the Riemannian Hessian (omitted - rather long
expression).

@ Allows the use of a Riemannian Trust Region Method.

@ Very few iterations, but iterations have varying costs.

@ x-axis is the number of matvecs with X and Y.

@ Less matvec products than Riemannian CG.

Preconditioning
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Riemannian Preconditioning (Mishra-Sepulchre '16):

Change the Metric

’ Components ‘ Suggested Algorithm ‘

Function f to optimize f(u,v) = —uTXTYv

Manifold domain M M= { 3 st.uTXu=1, vTZyyv = 1}
. _ | (w8 /lu+Ells,,
Retraction Ruw(&,v) = (v+ )/ v+ vl
Metric g g ( 2|2 ]) = Mt + T My

Gradient grad(M,g)f grad(pq g)f(u,v) =

@ = T Mg ) T M g T S )M X T Yy
(T — (VT oy My P oypv) T IM Ty w T 5y )M Y T X

Step size 7k

use line search or Riemannian CG

Q: What constitutes a “good” Myxx and Myy?



Fixed Step Gradient Descent

Definitions

f : M — R has Lipschitz-type continuous gradient with constant L
on C C M w/ respect to R if for every x € C, n € TeM

’f(Rx(n)) - f(x) 5(77 grad(M g)f )’ 2g n,n
It is T-gradient dominated on C if for every x € C

f(x) — f(x*) < 7 - g(grad i g)f(x), grad(ui,g)f (x))

| \

Fact

Assume the above hold, and consider X1 = Ry, (—1grad(n,g)f (xk))-
Assume all iterations belong to C. Then

k
Floes) = F0) < (1= 51 ) (7o) = 7(x)




Example: Generalized Eigenvalue Computation

Lemma

Assume A and B are PSD. Consider f(x) = —3x" Ax, on the
manifold x"Bx = 1 with the natural metric (B inner product). Let
A > - > Amin be the singular values of B-Y/2AB~1/2. Let
d = A\ — X2 (the eigengap). Then:
@ f has Lipschitz-type continuous gradient with L = ).
@ f is min (555, })-gradient dominated inside (Corollary of a
Theorem of Sra et al. 2016)

C = {x s.t.x' Bx* > e}




CCA: The effect of preconditioning

M = {{ \l: ] stoul Tyeu = 1, vTZyyv = 1}
81 ([ 61 :| 7[ 52 :|> :§IZXX£2+V]TZny2

1% 1%
& ([ o ] [ b D = & Mz + 1 Myypz

® Lipschitz-type continuous gradient with constant L w/ go —>
Lipschitz-type L - min(Amin(Mix, Zxx)s Amin(Myy, Zyy)) ™" w/ go.

e T-gradient dominated w/ g —>
7 - max(Amax(Mxx, Zxx), Amax(Myy, Zyy))-gradient dominated w/ g».

In short: we can expect a factor of
r (diag (Myx, Myy) , diag (Xxx, Zyy)) increase in #iterations.



Conclusions and Future Work

0 ©e00eC

RandNLA achieves high accuracy when used for preconditioning.
High accuracy “beyond regression” requires preconditioned methods
Riemannian optimization is well suited for this.

Can be precondiioned by changing metric (Riemannian
preconditioning).

i.e. for quadratic constraints (focused on CCA in this talk).

Still work in progress.



