
Randomized Riemannian Preconditionning for
Canonical Correlation Analysis

(More generally: optimization with quadratic equality constraints)

Haim Avron (Tel Aviv University)
Joint work with Boris Shustin (TAU)

Workshop on Randomized Numerical Linear Algebra and
Applications,

Simons Institute, September 2018

Two Approaches for Introducing Randomization in NLA

Sketch-and-Solve
1 Sketch the input
2 ... to form a smaller problem
3 ... and solve it exactly
4 ... use solution to form an

approximate solution to the
original problem

Sketch-to-Precondition
1 Sketch the input
2 Use the sketch to form a

preconditioner
3 Use an iterative method +

preconditioner

Example: minx ‖Ax− b‖2

Sketch-and-Solve
1 B← SA, c← Sb
2 New problem:

miny ‖By − c‖2
3 y← B+c (via QR or SVD)
4 x← y

Sketch-to-Precondition
1 B← SA
2 [Q,R]← qr(B)

3 x← LSQR(A,b,R)

Two Approaches for Introducing Randomization in NLA

Sketch-and-Solve
1 High success rate
2 Polynomial accuracy

dependence (e.g. ε−2)
3 No iterations

Pros:

1 Very fast
2 Deterministic running time

Cons:

1 Only crude accuracy
2 “Monte-Carlo” algorithm

Sketch-to-Precondition
1 High success rate
2 Exponential accuracy

dependence (e.g. log(1/ε))
3 Iterations

Pros:

1 Very high accuracy possible
2 Success = good solution

Cons:

1 Slower than sketch-and-solve
2 Iterations (no streaming)

Two Approaches for Introducing Randomization in NLA

Sketch-and-Solve
1 Linear regression

(ordinary, ridge, robust, ...)
2 Constrained linear regression
3 Principal Component Analysis
4 Canonical Correlations Analysis

5 Kernelized methods
(KRR, KSVM, KPCA,...)

6 Low-rank approximations
7 Structured decompositions

(CUR, NMF, ...)

Non exhaustive list...

Sketch-to-Precondition
1 Linear regression

(only: ordinary, ridge, some
robust)

2 Kernel ridge regression
3 Laplacian solvers
4 Systems with hierarchical

structure
5 Linear systems with tensor

product structure (Kressner et
al. 2016)

Essentially an exhaustive list...

Two Approaches for Introducing Randomization in NLA

Sketch-and-Solve
1 Linear regression

(ordinary, ridge, robust, ...)
2 Constrained linear regression
3 Principal Component Analysis
4 Canonical Correlations Analysis

5 Kernelized methods
(KRR, KSVM, KPCA,...)

6 Low-rank approximations
7 Structured decompositions

(CUR, NMF, ...)

Non exhaustive list...

Sketch-to-Precondition
1 Linear regression

(only: ordinary, ridge, some
robust)

2 Kernel ridge regression
3 Laplacian solvers
4 Systems with hierarchical

structure
5 Linear systems with tensor

product structure (Kressner et
al. 2016)

Essentially an exhaustive list...

Can randomized preconditioning be
used beyond regression?

Executive Summary

This talk: Randomized preconditioning for CCA
(and more generally: problems w/ quadratic equality constrains).

How? Riemannian optimization + Sketching

Key Observations:
1 CCA is an optimization problem with manifold constraints.
2 The metric selection matters.
3 We want to use a specific metric, but using it is expensive.
4 Use sketching to approximate that metric.

(Regularized) Canonical Correlations Analysis (CCA)

Inputs
1 Data matrices X ∈ Rn×dx and Y ∈ Rn×dy

2 Regularization parameter λ ≥ 0

Goal
Maximize

f (u, v) = uTXTYv

subject to uT(XTX + λIdx)u = 1 and vT(YTY + λIdy)v = 1

Remarks
1 The above is only the leading correlation.
2 If λ = 0 we get principal angles and vectors.

Solving CCA

Direct Method (λ = 0)
(Björck-Golub Algorithm)

1 [Qx ,Rx]← qr (X)

2 [Qy ,Ry]← qr (Y)

3 [M,Σ,N]← svd(QT
x Qy)

4 u? ← R−1
x M:,1

v? ← R−1
y N:,1

Cost: O(n(d2
x + d2

y))

Solving CCA

Direct Method (λ = 0)
(Björck-Golub Algorithm)

1 [Qx ,Rx]← qr (X)

2 [Qy ,Ry]← qr (Y)

3 [M,Σ,N]← svd(QT
x Qy)

4 u? ← R−1
x M:,1

v? ← R−1
y N:,1

Cost: O(n(d2
x + d2

y))

Sketch-and-Solve
(A., Boutsidis, Toledo, Zouzias 2014)

1 Xs ← SX
2 Ys ← SY
3 [ũ, ṽ]←

BjorckGolub(Xs ,Ys)

Features:

Improved dependence on n.
ε−2 dependence.

Alternating Least Squares Algorithm (Golub and Zha 1995)

Denote Σxx = XTX + λI and Σyy = YTY + λI. Consider the iteration:

ũk+1 = argmin
u
‖Xu−Yvk‖22 + λ‖u‖22 = Σ−1

xx XTYvk

uk+1 = ũk+1/ũT
k+1Σxxũk+1

ṽk+1 = argmin
v
‖Yv −Xuk‖22 + λ‖v‖22 = Σ−1

yy YTXuk

vk+1 = ṽk+1/ṽT
k+1Σyyṽk+1

Theorem (Wang, Wang, Garber and Srebro 2016)

Let µ ≡ min((uT
0 Σxxu?)2, (vT

0 Σyyv?)2) > 0. Then, for

t ≥
⌈

ρ2
1

ρ2
1 − ρ2

2

⌉
log
(

1
µε

)
we have

min((uT
t Σxxu?)2, (vT

t Σyyv?)2) ≥ 1− ε, uT
t XTYvt ≥ ρ1(1− 2ε) .

Alternating Least Squares - Costs

Costs:
Setup time: O(n(d2

x + d2
y))

Iteration cost: O(n(dx + dy))

#iterations:
⌈

ρ2
1

ρ2
1−ρ2

2

⌉
log
(

1
µε

)

Alternating Least Squares - Costs

Costs:
Setup time: O(n(d2

x + d2
y))

Iteration cost: O(n(dx + dy))

#iterations:
⌈

ρ2
1

ρ2
1−ρ2

2

⌉
log
(

1
µε

)
Good: very good iteration complexity.

Alternating Least Squares - Costs

Costs:
Setup time: O(n(d2

x + d2
y))

Iteration cost: O(n(dx + dy))

#iterations:
⌈

ρ2
1

ρ2
1−ρ2

2

⌉
log
(

1
µε

)
Good: very good iteration complexity.

Bad: Setup time is too large; as expensive as direct method.

Alternating Least Squares - Costs

Costs:
Setup time: O(n(d2

x + d2
y))

Iteration cost: O(n(dx + dy))

#iterations:
⌈

ρ2
1

ρ2
1−ρ2

2

⌉
log
(

1
µε

)
Good: very good iteration complexity.

Bad: Setup time is too large; as expensive as direct method.

Observation: ALS is actually Riemannian steepest descent!

Riemannian Optimization

Riemannian Steepest Descent
Problem:

min f (x) s.t. x ∈M

whereM is a manifold.
Iteration:

xk+1 = Rxk (−ηkgrad(M,g)f (x))

R·(·) is a retraction defined onM.
grad(M,g)· is the Riemannian
gradient. Important: it depends on
the metric choice.

ALS is Riemannian Steepest Descent

Components Alternating Least Squares

Function f to optimize f (u, v) = −uTXTYv

Manifold domainM M =

{[
u
v

]
s.t. uTΣxxu = 1, vTΣyyv = 1

}
(i.e. product manifold of two generalized Stiefel

manifolds)

Retraction R(u,v)(ξ, ν) =

[
(u + ξ)/‖u + ξ‖Σxx
(v + ν)/‖v + ν‖Σyy

]
Metric g g

([
ξ1
ν1

]
,

[
ξ2
ν2

])
= ξT1 Σxxξ2 + νT

1 Σyyν2

Gradient grad(M,g)f grad(M,g)f (u, v) = −
[

Σ−1
xx XTYv − f (u, v)u

Σ−1
yy YTXu− f (u, v)v

]
Step size ηk ηk = −f (uk , vk)

ALS is Riemannian Steepest Descent

Components Alternating Least Squares

Function f to optimize f (u, v) = −uTXTYv

Manifold domainM M =

{[
u
v

]
s.t. uTΣxxu = 1, vTΣyyv = 1

}
(i.e. product manifold of two generalized Stiefel

manifolds)

Retraction R(u,v)(ξ, ν) =

[
(u + ξ)/‖u + ξ‖Σxx
(v + ν)/‖v + ν‖Σyy

]
Metric g g

([
ξ1
ν1

]
,

[
ξ2
ν2

])
= ξT1 Σxxξ2 + νT

1 Σyyν2

Gradient grad(M,g)f grad(M,g)f (u, v) = −
[

Σ−1
xx XTYv − f (u, v)u

Σ−1
yy YTXu− f (u, v)v

]
Step size ηk ηk = −f (uk , vk)

ALS is Riemannian Steepest Descent

Components Alternating Least Squares

Function f to optimize f (u, v) = −uTXTYv

Manifold domainM M =

{[
u
v

]
s.t. uTΣxxu = 1, vTΣyyv = 1

}
(i.e. product manifold of two generalized Stiefel

manifolds)

Retraction R(u,v)(ξ, ν) =

[
(u + ξ)/‖u + ξ‖Σxx
(v + ν)/‖v + ν‖Σyy

]
Metric g g

([
ξ1
ν1

]
,

[
ξ2
ν2

])
= ξT1 Σxxξ2 + νT

1 Σyyν2

Gradient grad(M,g)f grad(M,g)f (u, v) = −
[

Σ−1
xx XTYv − f (u, v)u

Σ−1
yy YTXu− f (u, v)v

]
Step size ηk ηk = −f (uk , vk)

This metric is common, leads to provable convergence bounds, but leads to expensive
setup time.

Riemannian Preconditioning (Mishra-Sepulchre ’16):
Change the Metric

Components Suggested Algorithm

Function f to optimize f (u, v) = −uTXTYv

Manifold domainM M =

{[
u
v

]
s.t. uTΣxxu = 1, vTΣyyv = 1

}
Retraction R(u,v)(ξ, ν) =

[
(u + ξ)/‖u + ξ‖Σxx
(v + ν)/‖v + ν‖Σyy

]
Metric g g

([
ξ1
ν1

]
,

[
ξ2
ν2

])
= ξT1 Mxxξ2 + νT

1 Myyν2

Gradient grad(M,g)f grad(M,g)f (u, v) =

−
[

(In − (uTΣxxM−1
xx Σxxu)−1M−1

xx ΣxxuuTΣxx)M−1
xx XTYv

(In − (vTΣyyM−1
yy Σyyv)−1M−1

yy ΣyyvvTΣyy)M−1
yy YTXu

]

Step size ηk use line search or Riemannian CG

Sketching Based Preconditioning Strategies

1 Subspace Embedding Preconditioners: generate a sketch
transform (SRFT, CountSketch, etc.) S and factor

[Qx,Rx] = qr(SX), [Qy,Ry] = qr(SY)

Implicitly define

Mxx = RT
x Rx, Myy = RT

y Ry

This is the strategy used in randomized least squares solvers
(e.g. Blendenpik). Theory for bounding the condition number
(with respect to number of rows) is well understood.

Warm-start: This strategy also allows for an easy warm-start -
solve CCA on (SX,SY) and use as starting vectors.

Sketching Based Preconditioning Strategies

2. Approximate Dominant Subspace Preconditioning (Gonen et
al. 2016): approximate the k dominant right singular vectors
v1, . . . , vk of X and corresponding singular values σ1, . . . , σk .
Then

Mxx =
k∑

i=1

(σ2i − σ2k)vivTi + (λ+ σ2k)Idx

Repeat for Y. Can efficiently multiply by a vector, and apply
inverse.

Only for λ > 0. No warm-start. Very efficient preconditioners
(low iteration complexity).

Preliminary Experimental Results

MNIST dataset (60, 000× 784) split into two halves.
Plotting suboptimality of objective: |σ1 − uT

k Σxyvk |/σ1.
Use warm start for subspace embedding (right graph).
Riemannian CG (via Manopt).
Baselines -

Identity preconditioners - 205 iterations.
Exact inverses (“best”) - 47 iterations.

0 20 40 60 80 100

Iteration

10
-10

10
-5

10
0

S
u
b
o
p
ti
m

a
lit

y

Dominant Subspace Preconditioning

k = 10

k = 20

k = 30

k = 40

0 10 20 30 40 50

Iteration

10
-10

10
-5

10
0

S
u

b
o

p
ti
m

a
lit

y

Subspace Embedding Preconditioning

s = 500

s = 1000

s = 1500

s = 2000

Second Order Methods

We calculated the Riemannian Hessian (omitted - rather long
expression).
Allows the use of a Riemannian Trust Region Method.
Very few iterations, but iterations have varying costs.
x-axis is the number of matvecs with X and Y.
Less matvec products than Riemannian CG.

0 100 200 300 400 500 600

Products w/ X and Y

10
-15

10
-10

10
-5

10
0

S
u
b
o
p
ti
m

a
lit

y

Dominant Subspace Preconditioning

k = 10

k = 20

k = 30

k = 40

0 50 100 150 200 250 300

Products w/ X and Y

10
-15

10
-10

10
-5

10
0

S
u
b
o
p
ti
m

a
lit

y

Subspace Embedding Preconditioning

s = 500

s = 1000

s = 1500

s = 2000

Riemannian Preconditioning (Mishra-Sepulchre ’16):
Change the Metric

Components Suggested Algorithm

Function f to optimize f (u, v) = −uTXTYv

Manifold domainM M =

{[
u
v

]
s.t. uTΣxxu = 1, vTΣyyv = 1

}
Retraction R(u,v)(ξ, ν) =

[
(u + ξ)/‖u + ξ‖Σxx
(v + ν)/‖v + ν‖Σyy

]
Metric g g

([
ξ1
ν1

]
,

[
ξ2
ν2

])
= ξT1 Mxxξ2 + νT

1 Myyν2

Gradient grad(M,g)f grad(M,g)f (u, v) =

−
[

(In − (uTΣxxM−1
xx Σxxu)−1M−1

xx ΣxxuuTΣxx)M−1
xx XTYv

(In − (vTΣyyM−1
yy Σyyv)−1M−1

yy ΣyyvvTΣyy)M−1
yy YTXu

]

Step size ηk use line search or Riemannian CG

Riemannian Preconditioning (Mishra-Sepulchre ’16):
Change the Metric

Components Suggested Algorithm

Function f to optimize f (u, v) = −uTXTYv

Manifold domainM M =

{[
u
v

]
s.t. uTΣxxu = 1, vTΣyyv = 1

}
Retraction R(u,v)(ξ, ν) =

[
(u + ξ)/‖u + ξ‖Σxx
(v + ν)/‖v + ν‖Σyy

]
Metric g g

([
ξ1
ν1

]
,

[
ξ2
ν2

])
= ξT1 Mxxξ2 + νT

1 Myyν2

Gradient grad(M,g)f grad(M,g)f (u, v) =

−
[

(In − (uTΣxxM−1
xx Σxxu)−1M−1

xx ΣxxuuTΣxx)M−1
xx XTYv

(In − (vTΣyyM−1
yy Σyyv)−1M−1

yy ΣyyvvTΣyy)M−1
yy YTXu

]

Step size ηk use line search or Riemannian CG

Q: What constitutes a “good” Mxx and Myy?

Fixed Step Gradient Descent

Definitions
f :M→ R has Lipschitz-type continuous gradient with constant L
on C ⊆ M w/ respect to R if for every x ∈ C, η ∈ TxM∣∣f (Rx(η))− f (x)− g(η, grad(M,g)f (x))

∣∣ ≤ L

2
g(η, η) .

It is τ -gradient dominated on C if for every x ∈ C

f (x)− f (x?) ≤ τ · g(grad(M,g)f (x), grad(M,g)f (x))

Fact
Assume the above hold, and consider xk+1 = Rxk (− 1

Lgrad(M,g)f (xk)).
Assume all iterations belong to C. Then

f (xk+1)− f (x?) ≤
(
1− 1

2Lτ

)k

(f (x0)− f (x?))

Example: Generalized Eigenvalue Computation

Lemma

Assume A and B are PSD. Consider f (x) = −1
2x

TAx, on the
manifold xTBx = 1 with the natural metric (B inner product). Let
λ1 ≥ · · · ≥ λmin be the singular values of B−1/2AB−1/2. Let
δ ≡ λ1 − λ2 (the eigengap). Then:

1 f has Lipschitz-type continuous gradient with L = λ1.

2 f is min
(1
2ε2δ ,

1
δ

)
-gradient dominated inside (Corollary of a

Theorem of Sra et al. 2016)

C =
{
x s.t. xTBx? ≥ ε

}

CCA: The effect of preconditioning

Lemma

M =

{[
u
v

]
s.t.uTΣxxu = 1, vTΣyyv = 1

}
g1

([
ξ1
ν1

]
,

[
ξ2
ν2

])
= ξT

1 Σxxξ2 + νT
1 Σyyν2

g2

([
ξ1
ν1

]
,

[
ξ2
ν2

])
= ξT

1 Mxxξ2 + νT
1 Myyν2

Lipschitz-type continuous gradient with constant L w/ g2 =⇒
Lipschitz-type L ·min(λmin(Mxx,Σxx), λmin(Myy,Σyy))−1 w/ g2.
τ -gradient dominated w/ g1 =⇒
τ ·max(λmax(Mxx,Σxx), λmax(Myy,Σyy))-gradient dominated w/ g2.

In short: we can expect a factor of
κ (diag (Mxx,Myy) ,diag (Σxx,Σyy)) increase in #iterations.

Conclusions and Future Work

1 RandNLA achieves high accuracy when used for preconditioning.
2 High accuracy “beyond regression” requires preconditioned methods
3 Riemannian optimization is well suited for this.
4 Can be precondiioned by changing metric (Riemannian

preconditioning).

5 i.e. for quadratic constraints (focused on CCA in this talk).
6 Still work in progress.

