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Perspectives on the talk

Randomized Numerical Linear Algebra
Random Matrix Theory
Foundations of Data Science
Practical Theory for Learning/Optimization
Understanding Why Deep Neural Networks Work
Exploiting Phenomena Like the Generalization Gap
Engineering Better Learning Algorithms
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Motivations: towards a Theory of Deep Learning
Theoretical: deeper insight into Why Deep Learning Works?

convex versus non-convex optimization?

explicit/implicit regularization?

is / why is / when is deep better?

VC theory versus Statistical Mechanics theory?

. . .

Practical: use insights to improve engineering of DNNs?
when is a network fully optimized?

can we use labels and/or domain knowledge more efficiently?

large batch versus small batch in optimization?

designing better ensembles?

. . .
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Motivations: towards a Theory of Deep Learning

DNNs as
spin glasses,
Choromanska
et al. 2015

Looks exactly
like old protein
folding results
(late 90s)

Energy Landscape Theory

Completely
different
picture
of DNNs

Raises broad questions about Why Deep Learning Works
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Set up: the Energy Landscape
Energy/Optimization function:

EDNN = hL(WL × hL−1(WL−1 × hL−2(· · · ) + bL−1) + bL)

Train this on labeled data {di , yi} ∈ D, using Backprop, by minimizing loss L:

min
Wl ,bl

L

(∑
i

EDNN(di)− yi

)

EDNN is “the” Energy Landscape:

The part of the optimization problem parameterized by the heretofore
unknown elements of the weight matrices and bias vectors, and as defined
by the data {di , yi} ∈ D

Pass the data through the Energy function EDNN multiple times, as we run
Backprop training

The Energy Landscape∗ is changing at each epoch

∗i.e., the optimization function that is nominally being optimized
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Problem: How can this possibly work?

Expected

Highly non-convex?

Observed

Apparently not!

It has been known for a long time that local minima are not the issue.
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Problem: Local Minima?

Duda, Hart and Stork, 2000

Solution: add more capacity and regularize, i.e., over-parameterization
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Motivations: what is regularization?

(a) Dropout. (b) Early Stop-
ping.

(c) Batch Size. (d) Noisify Data.

Every adjustable knob and switch—and there are many†—is regularization.

†https://arxiv.org/pdf/1710.10686.pdf
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Problem: regularization in DNNs?

ICLR 2017 Best paper
Large neural network models can easily overtrain/overfit on randomly
labeled data
Popular ways to regularize (basically minx f (x) + λg(x)) may or may
not help.

Understanding deep learning requires rethinking generalization??
https://arxiv.org/abs/1611.03530

Rethinking generalization requires revisiting old ideas: statistical
mechanics approaches and complex learning behavior!!

https://arxiv.org/abs/1710.09553
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Basics of Regularization

Ridge Regression / Tikhonov-Phillips Regularization

Ŵx = y
X̂ = ŴTŴ
x =

(
X̂ + αI

)−1
ŴTy

{
Moore-Penrose pseudoinverse (1955)
Ridge regularization (Phillips, 1962)

min
Wij
‖Ŵx− y‖22 + α‖Ŵ‖22 familiar optimization problem

Softens the rank of X to focus on large eigenvalues.

Related to Truncated SVD, which performs hard truncation of rank of X

Early stopping, truncated random walks, etc. often implicitly solve
regularized optimiation problems.
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How we will study regularization
The Energy Landscape is determined by layer weight matrices WL:

EDNN = hL(WL × hL−1(WL−1 × hL−2(· · · ) + bL−1) + bL)

Traditional regularization is applied to WL:

min
Wl ,bl

L
(∑

i
EDNN(di)− yi

)
+ α

∑
l
‖Wl‖

Different types of regularization, e.g., different norms ‖ · ‖, leave different
empirical signatures on WL.

What we do:
Turn off “all” regularization.
Systematically turn it back on, explicitly with α or implicitly with
knobs/switches.
Study empirical properties of WL.
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Energy Landscape: and Information flow

Information bottleneck 
Entropy collapse

local minima 

k=1 saddle points

floor / ground state

k = 2 saddle points

Information / Entropy

Question: What happens to the layer weight matrices WL?
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Lots of DNNs Analyzed
Question: What happens to the layer weight matrices WL?

(Don’t evaluate your method on one/two/three NN, evaluate it on a dozen/hundred.)

Retrained LeNet5 on MINST using Keras.

Two other small models:
3-Layer MLP
Mini AlexNet

Conv2D  MaxPool Conv2D MaxPool       FC1 FC2 FC

Wide range of state-of-the-art pre-trained models:
AlexNet, Inception, etc.
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A Warmup to Lots of DNNs Analyzed

3-Layer MLP:
3 fully connected (FC) / dense layers with 512 nodes and ReLU
activation, with a final FC layer with 10 nodes and softmax activation:

W1 = (· × 512)
W2 = (512× 512) (Layer FC1) (Q = 1)
W3 = (512× 512) (Layer FC2) (Q = 1)
W4 = (512× 10).
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Matrix complexity: Matrix Entropy and Stable Rank

W = UΣVT νi = Σii pi = ν2i /
∑

i ν
2
i

S(W) = −1
log(R(W))

∑
i pi log pi Rs(W) = ‖W‖

2
F

‖W‖22
=
∑

i ν
2
i

ν2max

(e) MLP3 Entropies. (f) MLP3 Stable Ranks.

Figure: Matrix Entropy & Stable Rank show transition during Backprop training.
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Matrix complexity: Scree Plots

W = UΣVT νi = Σii pi = ν2i /
∑

i ν
2
i

S(W) = −1
log(R(W))

∑
i pi log pi Rs(W) = ‖W‖

2
F

‖W‖22
=
∑

i ν
2
i

ν2max

(a) Initial Scree Plot. (b) Final Scree Plot.

Figure: Scree plots for initial and final configurations for MLP3.
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Matrix complexity: Singular/Eigen Value Densities

W = UΣVT νi = Σii pi = ν2i /
∑

i ν
2
i

S(W) = −1
log(R(W))

∑
i pi log pi Rs(W) = ‖W‖

2
F

‖W‖22
=
∑

i ν
2
i

ν2max

(a) Singular val. density (b) Eigenvalue density

Figure: Histograms of the Singular Values νi and associated Eigenvalues λi = ν2i .
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ESD: detailed insight into WL
Empirical Spectral Density (ESD: eigenvalues of X = WT

L WL)

import keras
import numpy as np

import matplotlib.pyplot as plt

…

W = model.layers[i].get_weights()[0]

…

X = np.dot(W, W.T)

evals, evecs = np.linalg.eig(W, W.T)

plt.hist(X, bin=100, density=True)
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ESD: detailed insight into WL

Empirical Spectral Density (ESD: eigenvalues of X = WT
L WL)

Eopch 0:
Random
Matrix

Eopch 36:
Random
+ Spiles

Entropy decrease corresponds to:
modification (later, breakdown) of random structure and
onset of a new kind of self-regularization.
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Random Matrix Theory 101: Wigner and Tracy-Widom

Wigner: global bulk statistics approach universal semi-circular form
Tracy-Widom: local edge statistics fluctuate in universal way

Problems with Wigner and Tracy-Widom:
Weight matrices usually not square
Typically do only a single training run
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Random Matrix Theory 102: Marchenko-Pastur

Let W be an N ×M random matrix, with elements Wij ∼ N(0, σ2mp).

Then, the ESD of X = WTW, converges to a deterministic function:

ρN(λ) := 1
N

M∑
i=1

δ (λ− λi)

N→∞−−−−→
Q fixed


Q

2πσ2mp

√
(λ+ − λ)(λ− λ−)

λ
if λ ∈ [λ−, λ+]

0 otherwise.

with well-defined edges (which depend on Q, the aspect ratio):

λ± = σ2mp

(
1± 1√

Q

)2
Q = N/M ≥ 1.
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Random Matrix Theory 102’: Marchenko-Pastur

(a) Vary aspect ratios (b) Vary variance parameters

Figure: Marchenko-Pastur (MP) distributions.

Important points:

Global bulk stats: The overall shape is deterministic, fixed by Q and σ.

Local edge stats: The edge λ+ is very crisp, i.e.,
∆λM = |λmax − λ+| ∼ O(M−2/3), plus Tracy-Widom fluctuations.

We use both global bulk statistics as well as local edge statistics in our theory.

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 26 / 64



Random Matrix Theory 103: Heavy-tailed RMT

Go beyond the (relatively easy) Gaussian Universality class:
model strongly-correlated systems (“signal”) with heavy-tailed random matrices.

Generative Model
w/ elements from
Universality class

Finite-N
Global shape
ρN (λ)

Limiting
Global shape
ρ(λ), N →∞

Bulk edge
Local stats
λ ≈ λ+

(far) Tail
Local stats
λ ≈ λmax

Basic MP Gaussian MP
distribution MP TW No tail.

Spiked-
Covariance

Gaussian,
+ low-rank
perturbations

MP +
Gaussian
spikes

MP TW Gaussian

Heavy tail,
4 < µ

(Weakly)
Heavy-Tailed

MP +
PL tail MP Heavy-Tailed∗ Heavy-Tailed∗

Heavy tail,
2 < µ < 4

(Moderately)
Heavy-Tailed

(or “fat tailed”)

PL∗∗

∼ λ−(aµ+b)
PL

∼ λ−( 12µ+1) No edge. Frechet

Heavy tail,
0 < µ < 2

(Very)
Heavy-Tailed

PL∗∗

∼ λ−( 12µ+1)
PL

∼ λ−( 12µ+1) No edge. Frechet

Basic MP theory, and the spiked and Heavy-Tailed extensions we use, including known, empirically-observed, and conjectured

relations between them. Boxes marked “∗” are best described as following “TW with large finite size corrections” that are likely

Heavy-Tailed, leading to bulk edge statistics and far tail statistics that are indistinguishable. Boxes marked “∗∗” are

phenomenological fits, describing large (2 < µ < 4) or small (0 < µ < 2) finite-size corrections on N →∞ behavior.



Fitting Heavy-tailed Distributions

Figure: The log-log histogram plots of the ESD for three Heavy-Tailed random
matrices M with same aspect ratio Q = 3, with µ = 1.0, 3.0, 5.0, corresponding to
the three Heavy-Tailed Universality classes (0 < µ < 2 vs 2 < µ < 4 and 4 < µ).
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Non-negligibe finite size effects

(a) M = 1000,N = 2000. (b) Fixed M. (c) Fixed N.

Figure: Dependence of α (the fitted PL parameter) on µ (the hypothesized
limiting PL parameter).
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Experiments: just apply this to pre-trained models
https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-...

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 31 / 64

https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more- ... 


Experiments: just apply this to pre-trained models
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RMT: LeNet5 (an old/small example)

Figure: Full and zoomed-in ESD for LeNet5, Layer FC1.

Marchenko-Pastur Bulk + Spikes
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RMT: AlexNet (a typical modern DNN example)

Figure: Zoomed-in ESD for Layer FC1 and FC3 of AlexNet.

Marchenko-Pastur Bulk-decay + Heavy-tailed

Mahoney (UC Berkeley) Implicit Self-regularization in DNNs September 2018 34 / 64



RMT: InceptionV3 (a particularly unusual example)

Figure: ESD for Layers L226 and L302 in InceptionV3, as distributed w/ pyTorch.

Marchenko-Pastur bulk decay, onset of Heavy Tails
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RMT-based 5+1 Phases of Training

(a) Random-like. (b) Bleeding-out. (c) Bulk+Spikes.

(d) Bulk-decay. (e) Heavy-Tailed. (f) Rank-collapse.

Figure: The 5+1 phases of learning we identified in DNN training.
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RMT-based 5+1 Phases of Training
We model “noise” and also “signal” with random matrices:

W 'Wrand + ∆sig . (1)

Operational
Definition

Informal
Description
via Eqn. (1)

Edge/tail
Fluctuation
Comments

Illustration
and

Description

Random-like ESD well-fit by MP
with appropriate λ+

Wrand random;
‖∆sig‖ zero or small

λmax ≈ λ+ is
sharp, with
TW statistics

Fig. 10(a)

Bleeding-out
ESD Random-like,
excluding eigenmass

just above λ+

W has eigenmass at
bulk edge as

spikes “pull out”;
‖∆sig‖ medium

BPP transition,
λmax and
λ+ separate

Fig. 10(b)

Bulk+Spikes
ESD Random-like
plus ≥ 1 spikes
well above λ+

Wrand well-separated
from low-rank ∆sig ;
‖∆sig‖ larger

λ+ is TW,
λmax is
Gaussian

Fig. 10(c)

Bulk-decay
ESD less Random-like;
Heavy-Tailed eigenmass
above λ+; some spikes

Complex ∆sig with
correlations that

don’t fully enter spike

Edge above λ+

is not concave Fig. 10(d)

Heavy-Tailed
ESD better-described
by Heavy-Tailed RMT
than Gaussian RMT

Wrand is small;
∆sig is large and
strongly-correlated

No good λ+;
λmax � λ+ Fig. 10(e)

Rank-collapse ESD has large-mass
spike at λ = 0

W very rank-deficient;
over-regularization — Fig. 10(f)

The 5+1 phases of learning we identified in DNN training.



RMT-based 5+1 Phases of Training

Lots of technical issues ...
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Bulk+Spikes: Small Models

Low-rank perturbation

Wl 'Wrand
l + ∆large

Perturbative correction

λmax = σ2
(

1
Q + |∆|2

N

)(
1 + N

|∆|2

)
|∆| > (Q)−

1
4

Bulk → Spikes
↙

Smaller, older models can be described perturbatively with Gaussian RMT
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Bulk+Spikes: Small Models ∼ Tikhonov regularization

λ+

simple scale threshold

x =
(

X̂ + αI
)−1

ŴTy

eigenvalues > α (Spikes)
carry most of the
signal/information

Smaller, older models like LeNet5 exhibit traditional regularization
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Heavy-tailed Self-regularization

W is strongly-correlated and highly non-random

Can model strongly-correlated systems by heavy-tailed random matrices

Then RMT/MP ESD will also have heavy tails

Known results from RMT / polymer theory (Bouchaud, Potters, etc)

AlexNet
ReseNet50
Inception V3
DenseNet201
...

Larger, modern DNNs exhibit novel Heavy-tailed self-regularization
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Heavy-tailed Self-regularization

Summary of what we “suspect” today
No single scale threshold.
No simple low rank approximation for WL.
Contributions from correlations at all scales.
Can not be treated perturbatively.

Larger, modern DNNs exhibit novel Heavy-tailed self-regularization
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Spikes: carry more “information” than the Bulk

Spikes have less entropy, are more localized than bulk.

(a) Vector Entropies. (b) Localization Ratios. (c) Participation Ratios.

Figure: Eigenvector localization metrics for the FC1 layer of MiniAlexNet.

Information begins to concentrate in the spikes.
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Self-regularization: Batch size experiments

A theory should make predictions:

We predict the existence of 5+1 phases of increasing implicit
self-regularization

We characterize their properties in terms of HT-RMT

Do these phases exist? Can we find them?

There are many knobs. Let’s vary one—batch size.

Tune the batch size from very large to very small

A small (i.e., retrainable) model exhibits all 5+1 phases

Large batch sizes => decrease generalization accuracy

Large batch sizes => decrease implicit self-regularization

Generalization Gap Phenomena: all else being equal, small batch sizes lead to
more implicitly self-regularized models.
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Batch Size Tuning: Generalization Gap

Figure: Varying Batch Size: Stable Rank and MP Softrank for FC1 and FC2
Training and Test Accuracies versus Batch Size for MiniAlexNet.

Decreasing batch size leads to better results—it induces strong
correlations in W.

Increasing batch size leads to worse results—it washes out strong
correlations in W.
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Batch Size Tuning: Generalization Gap

(a) Batch Size 500. (b) Batch Size 250. (c) Batch Size 100. (d) Batch Size 32.

(e) Batch Size 16. (f) Batch Size 8. (g) Batch Size 4. (h) Batch Size 2.

Figure: Varying Batch Size. ESD for Layer FC1 of MiniAlexNet. We exhibit all 5
of the main phases of training by varying only the batch size.

Decreasing batch size induces strong correlations in W, leading to a more
implicitly-regularized model.
Increasing batch size washes out strong correlations in W, leading to a less
implicitly-regularized model.
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Applying RMT: What phase is your model in?

Q > 1 : λ− > 0
Q = 1 : λ− = 0

very crisp edges
∆λM = |λmax − λ+| ∼ O(M−2/3)
plus Tracy-Widom fluctuations

Bulk+Spikes?
Bulk-decay?
Heavy-tailed?

Large, well-trained, modern models approach Heavy-tailed Self-regularization.
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Applying RMT: What phase is your model in?

Inception V3 Layer 226 Q ≈ 1.3

Bulk-decay?

best MP fits

bulk not captured

Heavy-tailed?

difficult to apply MP

Large, well-trained, modern models approach Heavy-tailed Self-regularization.
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Applying RMT: Heavy Tails ∼ Q = 1

DenseNet201, typical layer, Q = 1.92

MP fit is terrible near

eigenvalue minimum = 0 −→

Resembles Q = 1 fit

like a soft rank collapse best MP fit (Q fixed)
Heavy-tailed, but seemingly

within MP eigenvalue bounds

variance 1.83 is quite large

Large, well-trained, modern models approach Heavy-tailed Self-regularization.
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Applying RMT: What phase is your model in?

How to apply RMT Q = 1 and λ− = 0

standard MP theory

assumes finite variance

Long tail looks like very large variance

Large, well-trained, modern models approach Heavy-tailed Self-regularization.
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Applying RMT: Should we float Q?

Inception V3 Layer 302 Q ≈ 2.048

no hard rank

collapse but almost −→

best MP fit (Q fixed) best MP fit (Q = 1)

Heavy-tailed, but not clean power law

Heavy-tailed, Q = 1 does not fit

λmax ≈ 30 (not shown)

Large, well-trained, modern models approach Heavy-tailed Self-regularization.
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Summary

applied Random Matrix Theory (RMT)

self-regularization ∼ entropy / information decrease

5+1 phases of learning

small models ∼ Tinkhonov-like regularization

modern DNNs ∼ heavy-tailed self-regularization
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Implications: RMT and Deep Learning

Where are the local minima?
How is the Hessian behaved?
Are simpler models misleading?
Can we design better learning
strategies?

(tradeoff between Energy and Entropy minimization)

How can RMT be used to understand the Energy Landscape?
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Implications: Minimizing Frustration and Energy Funnels
As simple as can be?, Wolynes, 1997

Energy Landscape Theory: “random heteropolymer” versus “natural protein” folding
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Implications: The Spin Glass of Minimal Frustration
https://calculatedcontent.com/2015/03/25/why-does-deep-learning-work/

↖ ↗
low lying Energy state in Spin Glass ∼ spikes in RMT
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Implications: Energy Landscapes of Heavy-tailed Models?

Compare with (Gaussian) Spin Glass
model of Choromanska et al. 2015

Spin Glasses with Heavy Tails?
Local minima do not concentrate
near the ground state
(Cizeau and Bouchaud 1993)

If Energy Landscape is more funneled, then no “problems” with local minima!
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Rethinking generalization requires revisiting old ideas
Martin and Mahoney https://arxiv.org/abs/1710.09553

Very Simple Deep Learning (VSDL) model:

DNN is a black box, load-like parameters α, & temperature-like parameters τ

Adding noise to training data decreases α

Early stopping increases τ

Nearly any non-trivial model‡ exhibits “phase diagrams,” with qualitatively
different generalization properties, for different parameter values.

(e) Training/generalization
error in the VSDL model.

(f) Learning phases in τ -α
plane for VSDL model.

(g) Noisifying data and adjust-
ing knobs.

‡when analyzed via the Statistical Mechanics Theory of Generalization (SMToG)
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Finish with the Conclusions
Main Empirical Results:

Small/old NNs: Tikhonov-like self-regularization
Modern DNNs: Heavy-tailed self-regularization

Main Modeling Results: W 'Wrand + ∆sig :
Small/old NNs: model “noise” Wrand with Gaussian random matrices
Modern DNNs: model strongly-correlated “signal” ∆sig with Heavy-tailed random
matrices

Main Theoretical Results: Use Heavy-tailed RMT to:
Using global bulk stats and local edge stats, construct a operational/phenomenological
theory of DNN learning
Hypothesize 5+1 phases of learning

Evaluating the Theory:
Effect of implicit versus explicit regularization
Exhibit all 5+1 phases by adjusting batch size: explain the generalization gap

Main Methodological Contribution:
Observations → Hypotheses → Build a Theory → Test the Theory.

Many Implications:
E.g., justify claims about rugged convexity of Energy Landscape
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