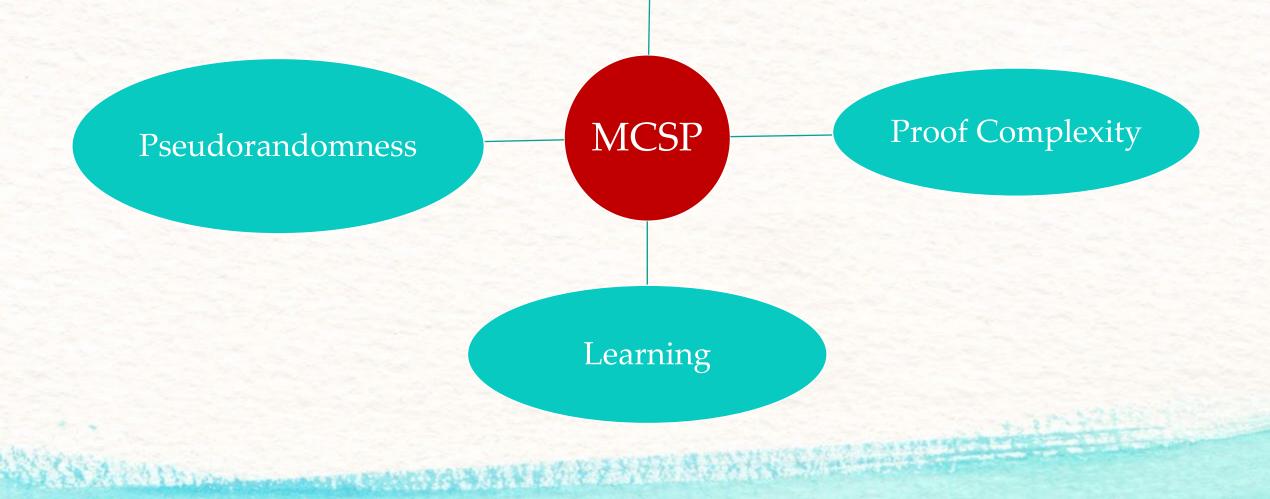
Natural Properties, MCSP, and Proving Circuit Lower Bounds

Valentine Kabanets

(based on joint works with Marco Carmosino, Russell Impagliazzo, Antonina Kolokolova & Ilya Volkovich)

Circuit Lower Bounds



Minimum Circuit Size Problem (MCSP):

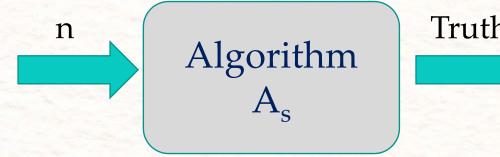
MCSP (def)

Given: truth table T of $f: \{0,1\}^n \rightarrow \{0,1\}$, and $0 < s < 2^n$ Decide: is there a Boolean circuit C, of size s, computing f?

MCSP \in NP, but not known to be NP- complete.

Circuit Lower Bounds from an MCSP Algorithm

Generating Hard Functions

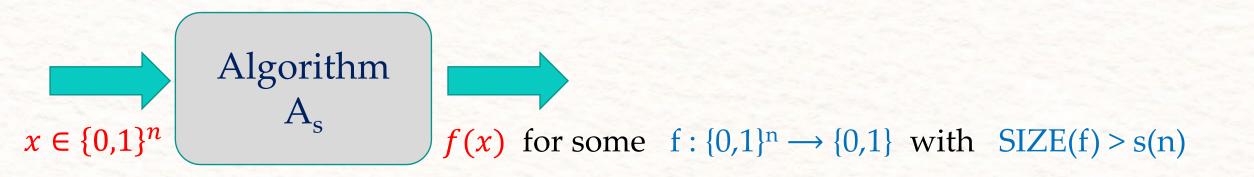


Truth Table of $f: \{0,1\}^n \rightarrow \{0,1\}$ with SIZE(f) > s(n)

- A_s in BPTIME (2^n) for s(n) = $2^n/n$ [Shannon 1949]
- A_s in DTIME(poly(2ⁿ)) \Leftrightarrow EXP \nsubseteq SIZE (s)
- A_s in pseudo-DTIME (poly(2ⁿ)) \Leftrightarrow BPEXP \nsubseteq SIZE (s)

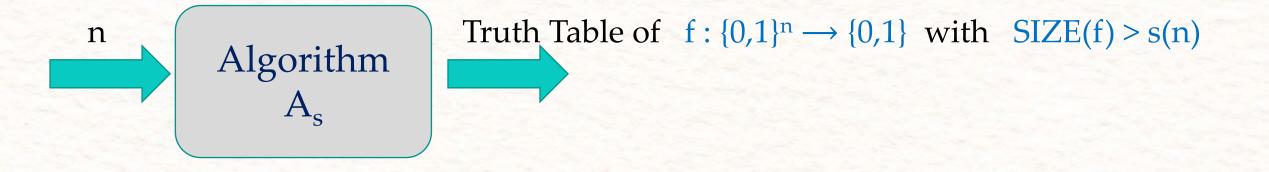
weakly explicit

Generating Hard Functions



• A_s in DTIME (poly(n)) • A_s in NTIME (poly(n)) ⇔ $P \nsubseteq SIZE (s)$ strongly explicit

Generating Hard Functions if MCSP Were Easy



- A_s in ZPTIME (2ⁿ) for $s(n) = 2^n/n$ if MCSP $\in P$. (MCSP $\in P \Rightarrow$ BPP = ZPP)
- BPEXP \nsubseteq SIZE (poly) if MCSP \in BPP [Impagliazzo, K, Volkovich 2018].

Open Question: EXP \nsubseteq SIZE (poly) if MCSP \in P ?

STORE AND A STREET AND A STREET

Interlude:

Explicit Constructions of Pseudorandom Objects

Pseudor	andom Object	Property	Decision Complexity
Linear E Codes (F	rror-Correcting Binary)	Min-Distance	NP-complete [Vardy 1997]
Expander Graphs		Expansion	coNP-complete [Blum, Karp, Vornberger, Papadimitriou, Yannakakis 1981]

- 1. There are explicit constructions of good Codes and Expanders despite the NP-hardness of testing Min-Distance and (Non-) Expansion.
- 2. The NP-hardness proofs for Min-Distance and (Non-) Expansion use explicit constructions of good Codes and Expanders.

Why Proving Hardness of MCSP is Hard

- SAT $<_p^m$ MCSP (via ``standard'' reductions) \Rightarrow EXP \nsubseteq P/poly [K. & Cai 2000]
- SAT $<_p^m$ MCSP \Rightarrow EXP \neq ZPP [Murray, Williams 2015; Hitchcock, Pavan 2015]

- SAT \measuredangle_p^{local} MCSP [Murray, Williams 2015] (local reduction: each output bit in time $\lt n^{0.49}$)
- SAT $\measuredangle_p^{oracle-independent}$ MCSP, unless P = NP [Hirahara, Watanabe 2016]

日本の日本の日本の日本の日本の日本の日本の日本の日本の日本

(oracle-independent reduction from L to MCSP: $L \in P^{MCSP^A}$ for every oracle A, where $MCSP^A$ asks about the A-oracle circuit size).

MCSP Algorithms from **Constructive Proofs of** Circuit Lower Bounds

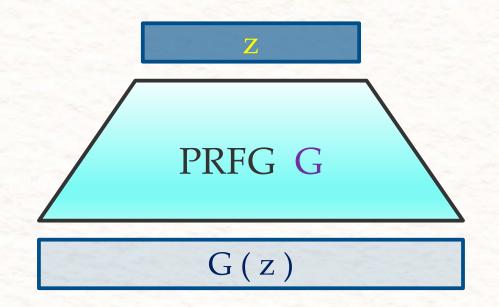
Natural Properties

Most known proofs of s(n) circuit lower bounds for weak circuit classes **C** yield efficient (poly(2ⁿ)-time) algorithms for "Average-Case s(n)-MCSP" (aka Natural Property with usefulness s(n)): [Razborov, Rudich 1997]

Given: Truth table T of $f: \{0,1\}^n \rightarrow \{0,1\}$ Output: "Easy" if C-SIZE(f) $\leq s(n)$, "Hard" for at least $\frac{1}{2}$ of functions f with C-SIZE(f) > s(n). Natural Properties Yield MCSP Algorithms Average-Case s(n)-MCSP (aka Natural Property with usefulness s(n)): Given: Truth table T of $f: \{0,1\}^n \rightarrow \{0,1\}$ Output: "Easy" if SIZE(f) $\leq s(n)$, "Hard" for at least $\frac{1}{2}$ of functions f with SIZE(f) > s(n).

(easy, hard) - GapMCSP:
Given: Truth table T of *f*: {0,1}ⁿ → {0,1}
Output: "Easy" if SIZE(f) ≤ easy(n), "Hard" if SIZE(f) ≥ hard(n).

Theorem ([Carmosino, Impagliazzo, K, Kolokolova 2016], [Hirahara 2018]): If Average-Case $2^{0.1 n}$ -MCSP is in BPP, then $(2^{0.01 n}, 2^{0.99 n})$ –GapMCSP is in BPP. MCSP Algorithms Yield Learning Algorithms



Def: Function Generator G is s-local if, for every seed z, MCSP(G(z), s) is True, where $s \ll |G(z)|$.

Observation: MCSP(, s) will "break" every s-local Function Generator G.

• [Razborov, Rudich 1997]: If MCSP ∈ BPP, the every candidate One-Way Function can be inverted in BPP (by locality of the GGM PRFG construction).

• [Carmosino, Impagliazzo, K, Kolokolova 2016]: If MCSP ∈ BPP, then every f ∈ SIZE(poly) can be PAC-learned (with membership queries, under uniform distribution) in BPP (by locality of the NW PRG construction).

MCSP Algorithms Yield SAT Algorithms

SAT Algorithm from MCSP, assuming IO exist

Theorem [Impagliazzo, K, Volkovich 2018]: Suppose Indistinguishability Obfuscators exist. Then $MCSP \in BPP \iff SAT \in BPP$.

Definition (IO): A randomized polytime transformation of circuits to circuits is an IO if

- **correctness:** For every circuit C, $IO(C) \equiv C$.
- polynomial slowdown: |IO(C)| < poly(|C|).

CONTRACTOR ENGINEERS OF A THE F

• **indistinguishability:** for all pairs of circuits C, C', if $C \equiv C'$, and |C| = |C'|, then the distributions IO(C) and IO(C') are computationally indistinguishable.

MCSP yields Hard Tautologies

Constructive Circuit Lower Bound Proofs

Most known proofs of s(n) circuit lower bounds for weak circuit classes **C** are constructive: can be formalized in V_1^1 (bounded arithmetic system with "polytime reasoning") [Razborov 1995]

Theorem: If V_1^1 proves Shannon's counting argument that " there exists a truth table of $f: \{0,1\}^n \rightarrow \{0,1\}$ with SIZE(f) > s(n)", then EXP^{NP} \nsubseteq SIZE (s(n)).

OED

Proof: Buss's Witnessing Theorem.

THE REAL PROPERTY AND A MILLEY OF

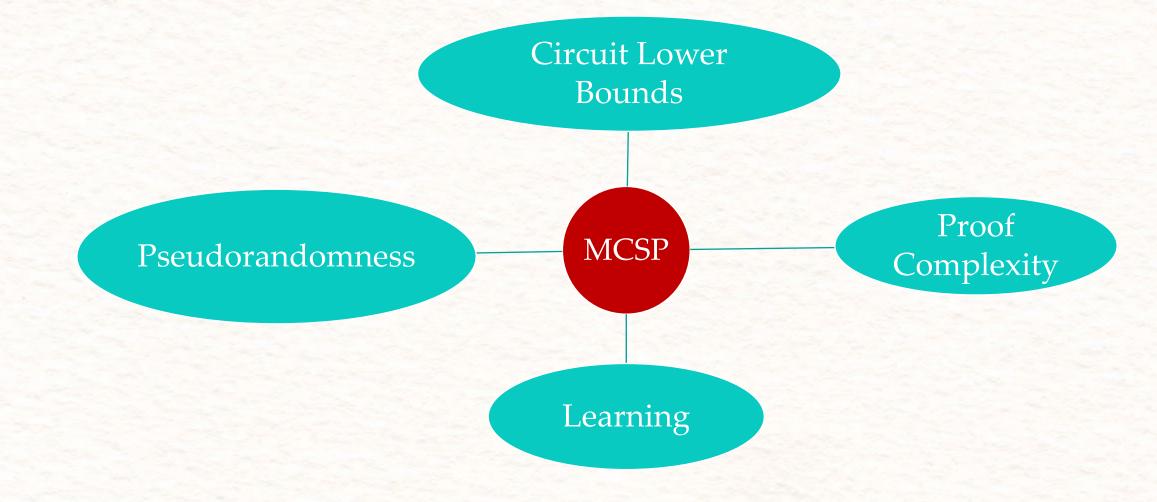
Candidate Hard Tautologies for Extended Frege \neg MCSP(f_n , s) = "function f_n requires SIZE(f_n) > s "

Question: Are there $poly(2^n)$ -size Extended Frege proofs of $\neg MCSP(f_n, 2^{n^{\varepsilon}})$?

Lower Bounds for Res($\epsilon \log n$) [Razborov 2015] (uses the "PRGs against Proof Systems" approach [Alekhnovich, Ben-Sasson, Razborov, Wigderson 2004, Krajicek 2004, ...])

So far the strongest proof system where the unprovability of NP ⊈ P/poly is known.

A POSTAL AND A PROPERTY AND A PROPER



$MCSP \in BPP \Leftrightarrow SAT \in BPP ?$

 $MCSP \notin AC^0[2]?$

More connections ?

Thank you !

Proof of Theorem

The second second and the second seco

Theorem: Suppose Indistinguishability Obfuscators exist. Then MCSP \in BPP \Leftrightarrow SAT \in BPP.

Proof: ⇐ is trivial. For ⇒, consider $f_s(\mathbf{r}) = IO(\bot_s, \mathbf{r})$, where \bot_s is a canonical unsatisfiable circuit of size \mathbf{s} , and \mathbf{r} is internal randomness of IO. (similar idea in [Goldwasser, Rothblum 2007; Komargodski, Moran, Naor, Pass, Rosen, Yogev 2014])

 $MCSP \in BPP \implies f_s$ can be inverted in BPP [Allender et al. 2006]

Algorithm for SAT: Given a circuit **C** of size **s**, let C' = IO(C, r), for random **r**.

Attempt to invert f_s to find $r' = f_s^{-1} (C')$. If $IO(\bot_s, r') = C'$, output ``Unsat'' else ``Sat''.

Analysis: If C is satisfiable, then so is C' and IO(\perp_s , r') \neq C' by correctness of IO.

If C is unsatisfiable, IO(C) and IO(\perp_s) are indistinguishable by the inverting algorithm, and so inverting succeeds with high probability.

Hence, SAT ∈ BPP. QED