
Polynomial Representations of Threshold
Functions and Algorithmic Applications

Ryan Williams Stanford

Joint with Josh Alman (Stanford) and
Timothy M. Chan (Waterloo)

Outline

• The Context: Polynomial Representations,
Polynomials for Algorithms, Nearest Nbrs

• The New Results

• Some Details

• Conclusion

Exact Polynomial Representations

Def. A polynomial 𝒑 : 𝑫𝒏
𝑫 is an (exact) polynomial for 𝒇 if for all

𝒙 ∈ 𝟎, 𝟏 𝒏, 𝒑 𝒙 = 𝒇 𝒙 .

Let 𝑓 : 0,1 𝑛
 0,1 ; let 𝐷 = 𝔽𝑞 or ℝ in the following.

Example: OR

𝑶𝑹 𝒙𝟏, … , 𝒙𝒏 = ቊ
𝟎 𝐢𝐟 𝒙𝟏 = ⋯ = 𝒙𝒏 = 𝟎
𝟏 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

We can write OR as a polynomial over 𝐷

𝑶𝑹 𝒙𝟏, … , 𝒙𝒏 = 𝟏 − 𝟏 − 𝒙𝟏 𝟏 − 𝒙𝟐 ⋯(𝟏 − 𝒙𝒏)

This has degree n and 𝛀(𝟐𝒏) monomials when expanded out.
We need other representations to get smaller polynomials.

Probabilistic Polynomials

Def. A distribution 𝑷 on degree d polynomials 𝒑 : 𝑫𝒏
𝑫 is a

probabilistic polynomial for 𝒇 with error at most 𝜺 if for all 𝒙 ∈ 𝟎, 𝟏 𝒏,

Pr
𝑝 ~ 𝑷

𝒑 𝒙 = 𝒇 𝒙 > 1 - 𝜺.

Let 𝑓 : 0,1 𝑛
 0,1 ; let 𝐷 = 𝔽𝑞 or ℝ in the following.

Example: OR with 𝐷 = 𝔽2
[R’87] Pick a uniformly random 𝑹 ⊆ {𝟏, 𝟐, … , 𝒏}, then pick the polynomial

𝒑 𝒙𝟏, … , 𝒙𝒏 =෍

𝒊∈𝑹

𝒙𝒊 .

𝒑(𝒙) = 𝟎 when 𝒙𝟏 = ⋯ = 𝒙𝒏 = 𝟎 Odd with probability 1/2 otherwise

Can amplify to error 𝝐 with degree 𝒌 = 𝑶(𝐥𝐨𝐠(𝟏/𝝐)):

𝒑 𝒙𝟏, … , 𝒙𝒏 = 𝟏 − 𝟏 − ෍

𝒊∈𝑹𝟏

𝒙𝒊 ⋯ 𝟏 − ෍

𝒊∈𝑹𝒌

𝒙𝒊 .

Polynomial Threshold Functions (PTF)
Let 𝑓 : 0,1 𝑛

 0,1 ; let 𝐷 = 𝔽𝑞 or ℝ in the following.

Example: OR Just take a sum!
𝒑 𝒙𝟏, … , 𝒙𝒏 = 𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒏 − 𝟏/𝟐.

Def. A polynomial 𝒑 : ℝ𝒏
ℝ is a polynomial threshold function (PTF)

for 𝒇 if for all 𝒙 ∈ 𝟎, 𝟏 𝒏,

• 𝒑 𝒙 ≥ 𝟎 𝐰𝐡𝐞𝐧 𝒇 𝒙 = 𝟏
• 𝒑 𝒙 < 𝟎 𝐰𝐡𝐞𝐧 𝒇 𝒙 = 𝟎

Def. A distribution 𝑷 on degree d polynomials 𝒑 : ℝ𝒏
ℝ is a

probabilistic PTF for 𝒇 with error at most 𝜺 if for all 𝒙 ∈ 𝟎, 𝟏 𝒏,

• Pr
𝑝 ~ 𝑷

𝒑 𝒙 ≥ 𝟎 > 𝟏 − 𝜺 𝐰𝐡𝐞𝐧 𝒇 𝒙 = 𝟏

• Pr
𝑝 ~ 𝑷

𝒑 𝒙 < 𝟎 > 𝟏 − 𝜺 𝐰𝐡𝐞𝐧 𝒇 𝒙 = 𝟎

reduction

low complexity “nice” polynomials “classical” algorithm

Multipoint evaluation
of polynomials (MM/FFT)
 faster algorithm!

Polynomials For Algorithms

Has led to faster algorithms for:
• All-pairs shortest paths [W’14]
• All-points nearest neighbors in Hamming metric [AW’15]
• #k-SAT [CW’16]
• Circuit-SAT in many regimes (and thus, circuit lower bounds)
• Succinct stable matching [MPS’16]
• Partial match queries [AWY’15] …

randomized
reduction

low complexity “nice” polynomials “classical” algorithm

Multipoint evaluation
of polynomials (MM/FFT)
 faster algorithm!

Polynomials For Algorithms

Has led to faster algorithms for:
• All-pairs shortest paths [W’14]
• All-points nearest neighbors in Hamming metric [AW’15]
• #k-SAT [CW’16]
• Circuit-SAT in many regimes (and thus, circuit lower bounds)
• Succinct stable matching [MPS’16]
• Partial match queries [AWY’15] …

Multipoint Evaluation

𝒑 𝒙, 𝒚 = 𝟐𝒙𝟏𝒚𝟏 + 𝟑𝒙𝟒𝒙𝟕𝒚𝟖 − 𝟏𝟐𝒚𝟗𝒚𝟏𝟑 +⋯

Reduce multipoint polynomial evaluation to matrix multiplication

Suppose we want to evaluate polynomial 𝒑(𝒙𝟏, … , 𝒙𝒎, 𝒚𝟏, … , 𝒚𝒎) on all
pairs of 𝒙 ∈ 𝑨 and 𝒚 ∈ 𝑩.

First expand 𝒑 out in terms of monomials, for instance:

𝒑 𝒙, 𝒚 = 𝟐𝒙𝟏, 𝟑𝒙𝟒𝒙𝟕, −𝟏𝟐,… ⋅ (𝒚𝟏, 𝒚𝟖, 𝒚𝟗𝒚𝟏𝟑, …)

Then 𝒑 can also be written as an inner product:

Evaluation Lemma [C’82,W’14] Given sets 𝑨,𝑩 ⊆ {𝟎, 𝟏}𝒎, 𝑨 = 𝑩 = 𝒏, and
a polynomial 𝒑 𝒙𝟏, … , 𝒙𝒎, 𝒚𝟏, … , 𝒚𝒎 , with 𝒑 ≤ (𝒏)𝟎.𝟏, can evaluate 𝒑 on all

𝒙, 𝒚 ∈ 𝑨 × 𝑩 in 𝒏𝟐 + 𝒏𝟏.𝟏 ⋅ 𝒎 𝒑𝒐𝒍𝒚 𝒍𝒐𝒈𝒏 time.

Hence we can evaluate 𝒑 on a combinatorial rectangle using fast
(rectangular) matrix multiplication [Coppersmith’82]

All-Points (Hamming) Nearest Neighbors
Given: Sets 𝑨,𝑩 of 𝒏 points in 𝟎, 𝟏 𝒅, 𝒅 = 𝒄 ⋅ 𝐥𝐨𝐠 𝒏
Task: For all 𝒙 ∈ 𝑨, output 𝒚 ∈ 𝑩 that minimizes 𝒉(𝒙, 𝒚)

Can easily be computed in 𝑶 𝒏 ⋅ 𝟐𝒅 time and 𝑶 𝒏𝟐 ⋅ 𝒅 time

Thm [AW’15] All-Points Hamming Nearest Neighbors can be solved on

𝒏 points in 𝒄 log 𝒏 dimensions in randomized 𝒏
𝟐 −

𝟏

𝑶 𝒄 log𝟐 𝒄 time.

Idea 1: Set 𝒑 to be a PTF for testing whether two vectors of length 𝒅
have Hamming distance ≤ 𝒅 − 𝒌, for each 𝒌 = 𝒅, 𝒅 − 𝟏,… , 𝟐, 𝟏.

𝒑 𝐱𝟏, … , 𝒙𝒅, 𝒚𝟏, … , 𝒚𝒅 = 𝒌 −
𝟏

𝟐
−෍

𝒊=𝟏

𝒅

𝒙𝒊𝒚𝒊 + (𝟏 − 𝒙𝒊)(𝟏 − 𝒚𝒊)

When you eval 𝒑 on all pairs of vectors, only gives 𝛀 𝒏𝟐 time...

𝑬𝑸(𝒙𝒊, 𝒚𝒊)

“Truly subquadratic time” for O(log n) dimensions

All-Points (Hamming) Nearest Neighbors
Given: Sets 𝑨,𝑩 of 𝒏 points in 𝟎, 𝟏 𝒅, 𝒅 = 𝒄 ⋅ 𝐥𝐨𝐠 𝒏
Task: For all 𝒙 ∈ 𝑨, output 𝒚 ∈ 𝑩 that minimizes 𝒉(𝒙, 𝒚)

Idea 2: Group 𝑨,𝑩 into ~𝒏/𝒔 groups of size 𝒔, and let 𝒑 determine
whether there is a close pair among a group from 𝑨 and a group from 𝑩.

Let 𝑨𝑻𝑳𝒌(𝒙) output 1 iff sum of the bits in 𝒙 is at least 𝒌.
Consider the circuit 𝑪𝒌 defined on 𝒔 vectors from 𝑨 and 𝑩:

∨

EQ

ATL𝒌 ATL𝒌 ATL𝒌…

𝑂 𝑠2

EQ EQ…

𝑑

𝒙𝟏 𝒚𝟏 𝒙𝟐 𝒚𝟐 𝒙𝒅 𝒚𝒅

𝑪𝒌 outputs 1 iff some pair of points in the input
has Hamming distance
at most 𝒅 − 𝒌

Goal: Construct polynomial
representing 𝑪𝒌 with few

monomials

All-Points (Hamming) Nearest Neighbors

Consider the circuit 𝑪𝒌: ∨

EQ

ATL𝒌 ATL𝒌 ATL𝒌…

𝑂 𝑠2

EQ EQ…

𝑑

𝒙𝟏 𝒚𝟏 𝒙𝟐 𝒚𝟐 𝒙𝒅 𝒚𝒅

𝑪𝒌 outputs 1 iff
some pair of points has
Hamming distance

at most 𝒅 − 𝒌

Goal: Construct a “nice”
probabilistic polynomial

simulating 𝑪𝒌

Thm [AW’15] Every symmetric function on 𝒅 inputs has a probabilistic

polynomial of degree 𝑶 𝒅 log
𝟏

𝝐
with error at most 𝝐

Replace each 𝑨𝑻𝑳𝒌 in 𝑪𝒌 with a prob. polynomial having error ≤
𝟏

𝒔𝟑
:

obtain a “somewhat sparse” probabilistic polynomial for 𝑪𝒌

Thm [AW’15] All-Points Hamming Nearest Neighbors can be solved on

𝒏 points in 𝒄 log 𝒏 dimensions in randomized 𝒏
𝟐 −

𝟏

𝑶 𝒄 log𝟐 𝒄 time.

All-Points (Hamming) Nearest Neighbors

Consider the circuit 𝑪𝒌: ∨

EQ

ATL𝒌 ATL𝒌 ATL𝒌…

𝑂 𝑠2

EQ EQ…

𝑑

𝒙𝟏 𝒚𝟏 𝒙𝟐 𝒚𝟐 𝒙𝒅 𝒚𝒅

𝑪𝒌 outputs 1 iff
some pair of points has
Hamming distance

at most 𝒅 − 𝒌

Thm [AW’15] All-Points Hamming Nearest Neighbors can be solved on

𝒏 points in 𝒄 log 𝒏 dimensions in randomized 𝒏
𝟐 −

𝟏

𝑶 𝒄 log𝟐 𝒄 time.

Evaluation Lemma [C’82,W’14] Given sets 𝑨,𝑩 ⊆ {𝟎, 𝟏}𝒎, 𝑨 = 𝑩 = 𝒏/𝒔,
and a polynomial 𝒒 𝒙𝟏, … , 𝒙𝒎, 𝒚𝟏, … , 𝒚𝒎 over 𝔽, with 𝒒 ≤ (𝒏/𝒔)𝟎.𝟏, can

evaluate 𝒒 on all 𝒙, 𝒚 ∈ 𝑨 × 𝑩 in
𝒏

𝒔

𝟐
+

𝒏

𝒔
⋅ 𝒎 𝒑𝒐𝒍𝒚 𝒍𝒐𝒈𝒏 time.

Nearest Neighbors on 𝒏 points reduces to Evaluating 𝑪𝒌 on 𝑶
𝒏𝟐

𝒔𝟐
points, ∀𝒌

Goal: Construct a “nice”
probabilistic polynomial

simulating 𝑪𝒌

New Results

Prob Polys with less randomness:
Thm: Every symmetric function on 𝒅 inputs has a prob. poly. of degree

𝑶 𝒅 log 𝒔 and error 𝟏/𝒔, using 𝑶 log 𝒅 ⋅ log 𝒅 ⋅ 𝒔 random bits

All allow you to compute an
𝑶𝑹 of 𝒔 At-Least-K functions!

• degree 𝑶 𝒅 log 𝒔 using 𝛀(𝒅) random bits was known [AW’15]

• degree lower bound 𝛀 𝒅 log 𝒔 [R’87,S’87]

New Results

Prob Polys with less randomness:
Thm: Every symmetric function on 𝒅 inputs has a prob. poly. of degree

𝑶 𝒅 log 𝒔 and error 𝟏/𝒔, using 𝑶 log 𝒅 ⋅ log 𝒅 ⋅ 𝒔 random bits

A “Nice” PTF for the At-Least-K (threshold) function:

Thm: For all 𝒔 > 𝟎, there is a PTF 𝑷 𝒙𝟏, … , 𝒙𝒅 of degree 𝑶 𝒅 log 𝒔

for 𝑨𝑻𝑳𝒌 on 𝒅 variables such that for all 𝒙,
• 𝑨𝑻𝑳𝒌 𝒙 = 𝟎 ⇒ −𝟏 < 𝑷 𝒙 < 𝟎
• 𝑨𝑻𝑳𝒌 𝒙 = 𝟏 ⇒ 𝑷 𝒙 > 𝒔

An “Even Nicer” Probabilistic PTF for At-Least-K:
Thm: For all 𝒔 > 𝟎, there is a probabilistic PTF 𝑷 𝒙𝟏, … , 𝒙𝒅, 𝒚 of degree

𝑶 𝒅
𝟏

𝟑 ⋅ log
𝟐

𝟑 (𝒅𝒔) for 𝑨𝑻𝑳𝒌 on 𝒅 variables such that for all 𝒙,

• 𝑨𝑻𝑳𝒌 𝒙 = 𝟎 ⇒ 𝐏𝐫𝐲 −𝟏 < 𝑷 𝒙, 𝒚 < 𝟎 ≥ 𝟏 −
𝟏

𝒔

• 𝑨𝑻𝑳𝒌 𝒙 = 𝟏 ⇒ 𝐏𝐫𝒚 𝑷 𝒙, 𝒚 > 𝒔 ≥ 𝟏 −
𝟏

𝒔

All allow you to compute an
𝑶𝑹 of 𝒔 At-Least-K functions!

Main Applications
All-Points Nearest Neighbors in Hamming, ℓ𝟏, and ℓ𝟐

Given 𝒏 red and 𝒏 blue points in 𝑫𝒄 log 𝒏, we can:

Circuit Complexity
• ACC∘THR∘THR circuits can be evaluated on all 𝟐𝒏 inputs in

𝟐𝒏 ⋅ 𝒑𝒐𝒍𝒚(𝒏) (deterministic) time*
*circuits with 𝒏𝟐−𝜺 bottom THR gates, and 𝟐𝒏

𝜺
gates elsewhere

Implies analogous lower bounds for this circuit class

• Satisfiability of subexp-size MAJORITY∘AC0∘THR∘AC0∘THR circuits
can be decided in randomized << 𝟐𝒏 time*
*where MAJORITY and THR gates have fan-in 𝒏𝟔/𝟓−𝜺

• Find a Hamming nearest blue nbr, for all red points,

− In randomized 𝒅𝒏 + 𝒏𝟐 − 𝟏/෩𝑶 𝒄𝟎.𝟓 time

− In deterministic 𝒅𝒏 + 𝒏𝟐 − 𝟏/෩𝑶 𝒄 time (“derandomizes” [AW’15])

• Find 𝟏 + 𝜺 -approximate nearest blue nbr for all red points in

randomized 𝒅𝒏 + 𝒏𝟐 −
෩𝛀(𝜺𝟏/𝟑) time, in Hamming, ℓ𝟏, and ℓ𝟐 metrics

(improving over Locality Sensitive Hashing [IM’98], G. Valiant [V’13])

Prob. Polys With Less Randomness
Thm: 𝑨𝑻𝑳𝒌 on 𝒅 inputs has a prob. poly. of degree 𝑶 𝒅 log 𝒔 and

error 𝟏/𝒔, using 𝑶 log 𝒅 ⋅ log 𝒅 ⋅ 𝒔 random bits

Sketch: Let’s outline the construction from [AW’15] for 𝑨𝑻𝑳𝒌.

Let 𝜹 = 𝚯
log𝟏/𝟐 𝒔

𝒅𝟏/𝟐
.

Recursive construction. For an input 𝒙 ∈ 𝟎, 𝟏 𝒅, we have two cases:
1. If 𝒙 ∉ 𝒌 − 𝜹𝒅, 𝒌 + 𝜹𝒅 : Construct a shorter input ෥𝒙 by random sampling

a
𝟏

𝟏𝟎
-fraction of 𝒙. Let ෩𝒌 = 𝒌/𝟏𝟎. By Chernoff-Hoeffding and our choice of 𝜹,

it’s likely that 𝑨𝑻𝑳෩𝒌 ෥𝒙 = 𝑨𝑻𝑳𝒌 𝒙 , so use the polynomial 𝑨𝑻𝑳෩𝒌 ෥𝒙 .
2. If 𝒙 ∈ 𝒌 − 𝜹𝒅, 𝒌 + 𝜹𝒅 : Use an exact polynomial 𝑨 of degree 𝑶 𝜹𝒅

that’s guaranteed to give the correct answer (polynomial interpolation).
To determine which of the cases we’re in, use 𝑨𝑻𝑳 ෩𝒌+𝜹𝒅 ෥𝒙 and 𝑨𝑻𝑳 ෩𝒌−𝜹𝒅 ෥𝒙 .

𝑨𝑻𝑳𝒌 𝒙 ≈

𝟏 − 𝑨𝑻𝑳 ෩𝒌+𝜹𝒅 ෥𝒙 𝑨𝑻𝑳 ෩𝒌−𝜹𝒅 ෥𝒙 ⋅ 𝑨 𝒙 + 𝟏 − 𝟏 − 𝑨𝑻𝑳 ෩𝒌+𝜹𝒅 ෥𝒙 𝑨𝑻𝑳 ෩𝒌−𝜹𝒅 ෥𝒙 ⋅ 𝑨𝑻𝑳෩𝒌 ෥𝒙

Observation: In the analysis, we only need 𝑶(log 𝒅)-wise
independence to generate a good random sample ෥𝒙 of 𝒙

A “Nice” PTF for the At-Least-K function:

Thm: For all 𝒔 > 𝟎, there is a PTF 𝑷 𝒙𝟏, … , 𝒙𝒅 of degree 𝑶 𝒅 log 𝒔

for 𝑨𝑻𝑳𝒌 on 𝒅 variables such that for all 𝒙,
• 𝑨𝑻𝑳𝒌 𝒙 = 𝟎 ⇒ −𝟏 < 𝑷 𝒙 < 𝟎
• 𝑨𝑻𝑳𝒌 𝒙 = 𝟏 ⇒ 𝑷 𝒙 > 𝒔

“Nice” PTFs for Threshold Functions

Idea: Use Chebyshev polynomials!

𝑻𝒒 𝒙 = ෍

𝒊=𝟎

⌊𝒒/𝟐⌋
𝒒

𝟐𝒊
𝒙𝟐 − 𝟏

𝒊
𝒙𝒒−𝟐𝒊

𝑻𝒒 𝒙 = 𝟐𝒙𝑻𝒒−𝟏 𝒙 − 𝑻𝒒−𝟐 𝒙 ,

𝑻𝟎 𝒙 = 𝟏,
𝑻𝟏 𝒙 = 𝒙.

𝑻𝒒 𝒙 = ൞
𝒄𝒐𝒔 𝒒 ⋅ 𝒂𝒓𝒄𝒄𝒐𝒔 𝒙 , 𝒙 ≤ 𝟏

𝟏

𝟐
𝒙 − 𝒙𝟐 − 𝟏

𝒒

+
𝟏

𝟐
𝒙 + 𝒙𝟐 − 𝟏

𝒒

, 𝒙 ≥ 𝟏

A “Nice” PTF for the At-Least-K function:

Thm: For all 𝒔 > 𝟎, there is a PTF 𝑷 𝒙𝟏, … , 𝒙𝒅 of degree 𝑶 𝒅 log 𝒔

for 𝑨𝑻𝑳𝒌 on 𝒅 variables such that for all 𝒙,
• 𝑨𝑻𝑳𝒌 𝒙 = 𝟎 ⇒ −𝟏 < 𝑷 𝒙 < 𝟎
• 𝑨𝑻𝑳𝒌 𝒙 = 𝟏 ⇒ 𝑷 𝒙 > 𝒔

“Nice” PTFs for Threshold Functions

Idea: Use Chebyshev polynomials!

𝑻𝒒 𝒙 = ෍

𝒊=𝟎

⌊𝒒/𝟐⌋
𝒒

𝟐𝒊
𝒙𝟐 − 𝟏

𝒊
𝒙𝒒−𝟐𝒊

If 𝒙 ∈ −𝟏, 𝟏 then
𝑻𝒒 𝒙 ∈ −𝟏, 𝟏

If 𝒙 ≥ 𝟏 + 𝜺 then

𝑻𝒒 𝒙 ≥
𝟏

𝟐
𝒆𝒒 𝜺

Chebyshev gives degree

𝑶 𝒅 log 𝒔

A “Nice” PTF for the At-Least-K function:

Thm: For all 𝒔 > 𝟎, there is a PTF 𝑷 𝒙𝟏, … , 𝒙𝒅 of degree 𝑶 𝒅 log 𝒔

for 𝑨𝑻𝑳𝒌 on 𝒅 variables such that for all 𝒙,
• 𝑨𝑻𝑳𝒌 𝒙 = 𝟎 ⇒ −𝟏 < 𝑷 𝒙 < 𝟎
• 𝑨𝑻𝑳𝒌 𝒙 = 𝟏 ⇒ 𝑷 𝒙 > 𝒔

“Nice” PTFs for Threshold Functions

Better degree: use Discrete Chebyshev polynomials! [Chebyshev’99]

𝑫𝒒,𝒕 𝒙

≔ ෍

𝒊=𝟎

𝒒

−𝟏 𝒊
𝒒

𝒊

𝒕 − 𝒙

𝒒 − 𝒊

𝒙

𝒊
/𝒄𝒒,𝒕

where 𝒄𝒒,𝒕 = 𝒕 + 𝟏 𝒒/𝒒!

If 𝒙 ∈ {𝟎, 𝟏, … , 𝒕} then
𝑫𝒒,𝒕 𝒙 ∈ −𝟏, 𝟏

If 𝒙 ≥ 𝟏 + 𝒕 then

𝑫𝒒,𝒕 𝒙 ≥ 𝒆𝒒
𝟐/𝟖𝒕

A “Nice” PTF for the At-Least-K function:

Thm: For all 𝒔 > 𝟎, there is a PTF 𝑷 𝒙𝟏, … , 𝒙𝒅 of degree 𝑶 𝒅 log 𝒔

for 𝑨𝑻𝑳𝒌 on 𝒅 variables such that for all 𝒙,
• 𝑨𝑻𝑳𝒌 𝒙 = 𝟎 ⇒ −𝟏 < 𝑷 𝒙 < 𝟎
• 𝑨𝑻𝑳𝒌 𝒙 = 𝟏 ⇒ 𝑷 𝒙 > 𝒔

“Nice” PTFs for Threshold Functions

Fact [Chebyshev’99] For all 𝒒 ∈ 𝛀 𝒕 log 𝒕 𝟎.𝟓 , 𝒕 ,

• If 𝒙 ∈ {𝟎, 𝟏, … , 𝒕} then 𝑫𝒒,𝒕 𝒙 ∈ [−𝟏, 𝟏]

• If 𝒙 ≤ −𝟏 then 𝑫𝒒,𝒕 𝒙 ≥ 𝒆𝒙𝒑
𝒒𝟐

𝟖 𝒕+𝟏
.

Define 𝑷 𝒙𝟏, … , 𝒙𝒅 ≔ 𝑫𝒒,𝒅 𝒌 − 𝟏 − σ𝒊𝒙𝒊 ,

where 𝒒:= 𝚯(𝒅 log 𝒔 𝟎.𝟓)
Then:
σ𝒊𝒙𝒊 < 𝒌⇒ 𝑷 𝒙 ∈ −𝟏, 𝟏
σ𝒊𝒙𝒊 ≥ 𝒌⇒ 𝑷(𝒙) ≥ 𝒆^𝚯(𝒅 log(𝒔)/𝒅) = 𝒆^(𝚯 log 𝒔 = 𝒑𝒐𝒍𝒚(𝒔)

Shift 𝑷 a little, to get the desired properties in the theorem.

“Even Nicer” Probabilistic PTF
An “Even Nicer” Probabilistic PTF for At-Least-K:
Thm: For all 𝒔 > 𝟎, there is a probabilistic PTF 𝑷 𝒙𝟏, … , 𝒙𝒅, 𝒚 of degree

𝑶 𝒅
𝟏

𝟑 ⋅ log
𝟐

𝟑 (𝒏𝒔) for 𝑨𝑻𝑳𝒌 on 𝒅 variables such that for all 𝒙,

• 𝑨𝑻𝑳𝒌 𝒙 = 𝟎 ⇒ 𝐏𝐫𝐲 −𝟏 < 𝑷 𝒙, 𝒚 < 𝟎 ≥ 𝟏 −
𝟏

𝒔

• 𝑨𝑻𝑳𝒌 𝒙 = 𝟏 ⇒ 𝐏𝐫𝒚 𝑷 𝒙, 𝒚 > 𝒔 ≥ 𝟏 −
𝟏

𝒔

Idea: Combine the previous two constructions!

Really Really Sketchy Sketch: Let 𝜹 > 𝟎.
Construct ෥𝒙 by random sampling 𝜹𝒅 bits of 𝒙.

Let 𝑸(෥𝒙) be a probabilistic polynomial for 𝑨𝑻𝑳𝒌′ with error at most
𝟏

𝟐𝒔
.

(here the parameter 𝒌’ is slightly smaller than ෩𝒌)

Take a modified discrete Chebyshev polynomial 𝑫𝒒′,𝒕′(𝒙) which

• “blows up” to > 𝒔 when σ𝒊𝒙𝒊 > 𝒌 − 𝟏
• And otherwise stays in the interval [−𝟏, 𝟏].

Set 𝑷 𝒙 = 𝑫𝒒′,𝒕′ 𝒙 ⋅ 𝑸 ෥𝒙 for 𝒕′ ≈ 𝒅/ 𝜹𝒅

Careful case analysis and new setting of 𝜹 (and 𝒒′) yields the result!

Conclusion

• What is the power/limit of probabilistic PTFs
representing Boolean functions?

– How easy/difficult is it to prove degree lower bounds
for such representations?

• Can our SAT algorithm for
MAJ ∘ AC0 ∘ THR ∘ AC0 ∘ THR
be derandomized?
– Would imply stronger circuit lower bounds

• How much can the 𝒏𝟐 −
෩𝛀(𝜺𝟏/𝟑) runtime for 𝟏 + 𝜺 -

approximate batch nearest neighbor be improved?

Thank you!

