Polynomial Representations of Threshold
Functions and Algorithmic Applications

Ryan Williams Stanford

Joint with Josh Alman (Stanford) and
Timothy M. Chan (Waterloo)

Outline

e The Context: Polynomial Representations,
Polynomials for Algorithms, Nearest Nbrs

e The New Results
e Some Details
e Conclusion

Exact Polynomial Representations

Let f:{0,1}" = {0,1}; let D = F, or R in the following.

Def. A polynomial p : D™ D is an (exact) polynomial for f if for all
x €{0,1}", p(x) = f(x).

Example: OR

0Oifx;=-=x,=0

OR(x4, ..., = :
(X1, . Xn) {1 otherwise

We can write OR as a polynomial over D

OR(x{,....,x) =1 —(1—x)A—x3) - (1 —x,,)

This has degree n and Q(2™) monomials when expanded out.
We need other representations to get smaller polynomials.

Probabilistic Polynomials

Let f:{0,1}" = {0,1}; let D = F, or R in the following.

Def. A distribution P on degree d polynomials p : D" D is a
probabilistic polynomial for f with error at most ¢ if for all x € {0, 1}",

Pr[p(x) =f(x)]>1-e&.
p~P

Example: ORwith D = TF,
Pick a uniformly random R C {1, 2, ..., n}, then pick the polynomial

(X1, ., X)) = z X;.

i€R
p(x) =0whenx; =--=x,=0 Odd with probability 1/2 otherwise
Can amplify to error € with degree k = O(log(1/¢)):

p(xX1,) = 1 — <1 _ z xi>--~<1 - z x,->.

iERl iERk

Polynomial Threshold Functions (PTF)

Let f:{0,1}" = {0,1}; let D = Ee+R in the following.

Def. A polynomial p : R*> R is a polynomial threshold function (PTF)
for f if for allx € {0,1}",

« p(x) >0 when f(x) =1
« p(x) <0 when f(x) =0

Example: OR Just take a sum!

p(xq, ..., Xp) =X1+x2 +-+x,—1/2.

Def. A distribution P on degree d polynomials p : R*>Ris a
probabilistic PTF for f with error at most ¢ if for all x € {0,1}",

. pPNrP[p(x) >0]>1—¢ when f(x) =1

. plirp[p(x) <0]>1—-—¢ when f(x) =0

Polynomials For Algorithms

low complexity “nice” polynomials “classical” algorithm

L—{u] e ii
1 -
@il [L.i8 i
M o T
i - I
‘A
!
Al ‘.I. - S [TTH
1l ol gy el
Iy ¢ gl "
4 = AN 3
w B e =
] i it
) L el a—=
ol |
" &
2 i
"
i

reduction

Multipoint evaluation

Has led to faster algorithms for: of polynomials (MM/FFT)

1 /
All-pairs shortest paths [W’14] = faster algorithm!

All-points nearest neighbors in Hamming metric [AW’15]
#k-SAT [CW’16]

Circuit-SAT in many regimes (and thus, circuit lower bounds)
Succinct stable matching [MPS’16]

Partial match queries [AWY’15] ...

Polynomials For Algorithms

low complexity “nice” polynomials “classical” algorithm
¢ randomized
<7 reduction
Multipoint evaluation
Has led to faster algorithms for: of polynomials (MM/FFT)

All-pairs shortest paths [W’14] > faster algorithm!

All-points nearest neighbors in Hamming metric [AW’15]
#k-SAT [CW’16]

Circuit-SAT in many regimes (and thus, circuit lower bounds)
Succinct stable matching [MPS’16]

Partial match queries [AWY’15] ...

Multipoint Evaluation

Reduce multipoint polynomial evaluation to matrix multiplication

Suppose we want to evaluate polynomial p(x4, ..., X;, Y1, .-+, Ym) On all
pairsof x € Aand y € B.

First expand p out in terms of monomials, for instance:

p(x,y) = 2x1y1 + 3x4%x7yg — 12Y9yq3 + -+

Then p can also be written as an inner product:

p(x,y) = (2x1,3x4x7,—12,..) - (1, Y8 Y9Y13) ---)

Hence we can evaluate p on a combinatorial rectangle using fast
(rectangular) matrix multiplication [Coppersmith’82]

Evaluation Lemma [C’82,W’14] Given sets A,B < {0,1}™, |A| = |B| = n, and
a polynomial p(x1, ..., X;1, Y1, -, Ym)» With |p] < (1)1, can evaluate p on all
(x,¥) € A X Bin (n? + n'1-m)poly(log n) time.

All-Points (Hamming) Nearest Neighbors

Can easily be computed in O(n - Zd) time and ()(n2 - d) time

Thm [AW’15] All-Points Hamming Nearest Neighbors can be solved on
1

2 e
o [d [[o [2 [
n points in ¢ log n dimensions in randomized n = 9(clog”¢) time.

“Truly subquadratic time” for O(log n) dimensions

Idea 1: Set p to be a PTF for testing whether two vectors of length d
have Hamming distance < d — k,foreachk=d,d - 1, ...,2,1.

P(X1, s Xg, V1, - V) = k———z xyi+(1—x)(1— yl)

|
EQ(x;y;)

When you eval p on all pairs of vectors, only gives Q(nz) time...

All-Points (Hamming) Nearest Neighbors

Idea 2: Group A, B into ~n/s groups of size s, and let p determine
whether there is a close pair among a group from A and a group from B.

Let ATLk(x) output 1 iff sum of the bits in x is at least k.
Consider the circuit Cj, defined on s vectors from A and B:

v o(s?)

N L

d ATLk ATLk
~—~——

EQ] EQ |--| EQ

X1 Y1 X2 Y2 Xgq Yd

.| ATLk

C, outputs 1 iff some pair of points in the input
has Hamming distance
atmostd — k

Goal: Construct polynomial
representing C; with few
monomials

All-Points (Hamming) Nearest Neighbors

Thm [AW’15] All-Points Hamming Nearest Neighbors can be solved on

1

2 —_
L] L] [] L] L] L] 2 L]
n points in ¢ log n dimensions in randomized n 2(c1°g“ <) time.

Consider the circuit Cy:

v

N Lo

()

.| ATLk

d ATLk ATLk
\/’
EQ] EQ EQ
X1 Y1 X2 Y2 X4 Yd

C, outputs 1 iff

some pair of points has

Hamming distance
atmostd — k

Goal: Construct a “nice”
probabilistic polynomial
simulating Cy,

Thm [AW’15] Every symmetric function on d inputs has a probabilistic

polynomial of degree O (\/d log (%)) with error at most €

Replace each AT Lk in C;, with a prob. polynomial having error < 513:

obtain a “somewhat sparse” probabilistic polynomial for Cj,

All-Points (Hamming) Nearest Neighbors

Thm [AW’15] All-Points Hamming Nearest Neighbors can be solved on
1

2 —_
L] L] [] L] L] L] 2 L]
n points in ¢ log n dimensions in randomized n 2(c1°g“ <) time.

Consider the circuit C: | V | 0(52) C,. outputs 1 iff
\/ some pair of points has
ATLk ATLk | ...| ATLE Hamming distance
d atmostd — k

\/’

EQ] EQ |- EQ Goal: Construct a “nice”
X1 V1 X2 Y2 Xq YVd probabilistic polynomial
simulating Cy,

nZ
g2

Nearest Neighbors on n points reduces to Evaluating C;, on O () points, Vk

Evaluation Lemma [C’82,W’14] Given sets A, B < {0,1}™, |A| = |B| = n/s,
and a polynomial g(xq, ..., X;p, Y1, .., Ym) over F, with |q] < (n/5)%1, can

2
evaluategonall (x,y) €A X Bin ((g) + (2) : m) poly(log n) time.

New Results

All allow you to compute an
OR of s At-Least-K functions!

Prob Polys with less randomness:
Thm: Every symmetric function on d inputs has a prob. poly. of degree

0 (\/d log(s)) and error 1/s, using O(log d - log(d - s)) random bits

* degree O (\/d log(s)) using (d) random bits was known [AW’15]
* degree lower bound Q (\/d log(s)) [R’87,5°87]

New Results

All allow you to compute an
OR of s At-Least-K functions!

Prob Polys with less randomness:
Thm: Every symmetric function on d inputs has a prob. poly. of degree

o (\/d log(s)) and error 1/s, using 0(log d-log(d - s)) random bits

A “Nice” PTF for the At-Least-K (threshold) function:

Thm: For all s > 0, there is a PTF P(x4, ..., x) of degree O (\/d log(s))

for AT Lk on d variables such that for all x,

e ATLk(x)=0=>-1<Px)<0

e ATLk(x)=1=>P(x)> s

An “Even Nicer” Probabilistic PTF for At-Least-K:

Thm: For all s > 0, there is a probabilistic PTF P(x4, ..., x4, y) of degree
2

1
o (d§ -logs (ds)) for AT Lk on d variables such that for all x,
+ ATLk(x) = 0 > Pry[-1 < P(x,y) <0] > 1 -1

© ATLk(x) =1=Pr,[P(x,y) >s] 21—

Main Applications

All-Points Nearest Neighbors in Hamming, 4, and £,
Given n red and n blue points in D€1°8™ we can:

* Find a Hamming nearest blue nbr, for all red points,

— Inrandomized dn + n2~1/0(c<"®) time

- In deterministicdn + n%* ~1/ 0(9) time (“derandomizes” [AW’15]))
* Find (1 + £)-approximate nearest blue nbr for all red points in

randomized dn + n2 ~2¢"*) time, in Hamming, £, and £, metrics

(improving over Locality Sensitive Hashing [IM’98], G. Valiant [V'13])

Circuit Complexity
 ACC-oTHRoTHR circuits can be evaluated on all 2" inputs in
2" - poly(n) (deterministic) time*
*circuits with n2~¢ bottom THR gates, and 2™ gates elsewhere
Implies analogous lower bounds for this circuit class

e Satisfiability of subexp-size MAJORITY°cACOoTHRoACO-THR circuits
can be decided in randomized << 2™ time*
*where MAJORITY and THR gates have fan-in n%/>—¢

Prob. Polys With Less Randomness

Thm: ATL,, on d inputs has a prob. poly. of degree O (\/d log(s)) and
error 1/s, using 0(log d -log(d - s)) random bits

Sketch: Let’s outline the construction from [AW’15] for ATL,,.

1/2
Letd =0 (mil%).

Recursive construction. For an input x € {0, 1}¢, we have two cases:
1. If|x| ¢ [k — éd,k + &d]: Construct a shorter input X by random sampling
a 1—10-fraction of x. Let k = k/10. By Chernoff-Hoeffding and our choice of §,

it’s likely that ATL;; (X) = ATLy(x), so use the polynomial ATL;, (X).
2. If|x| €k — 6d,k + &d]: Use an exact polynomial A of degree 0(6d)
that’s guaranteed to give the correct answer (polynomial interpolation).
To determine which of the cases we’re in, use ATL i, 54)(X) and ATL j_sq)(%).
ATL,(x) =~

(1= ATL, 50) () ATL_50) (@) - AC0) + <1 — (1= ATL(g50)®)) ATL g (’i)) ATLg (%)

Observation: In the analysis, we only need O (log d)-wise
independence to generate a good random sample X of x

“Nice” PTFs for Threshold Functions
A “Nice” PTF for the At-Least-K function:

Thm: For all s > 0, there is a PTF P(x4, ..., x;) of degree O (\/d log(s))

for AT Lk on d variables such that for all x,
e ATLk(x)=0=>-1<P(x)<0
e ATLk(x) =1=>P(x)> s

Idea: Use Chebyshev polynomials!

lq/2] q _
1= 3 (£ - e
i=0
Tq(®) = 25Ty 1 () — Tq_2(0),
To(x) =1,
Tl(.X') = X.
.

cos(q - arccos(x)),|x| < 1

(x—\/xz—l)q+1(x+ xz—l)q,lxl > 1

2

Te(x) =41
\2

“Nice” PTFs for Threshold Functions
A “Nice” PTF for the At-Least-K function:

Thm: For all s > 0, there is a PTF P(x4, ..., x;) of degree O (\/d log(s))

for AT Lk on d variables such that for all x,
e ATLk(x)=0=>-1<P(x)<0
e ATLk(x) =1=>P(x)> s

Idea: Use Chebyshev polynomials!

3
la/2] q i _ Chebyshev gives degree
T,(x) = z (Zi) (x2 — 1) x272% 0 (\/Elog(s))
i=0

If x € [—1, 1] then L
s [N AN

If x > 1+ £then 1-\‘7 \j‘5 / v \jl.ﬂ
Te(x) = %eq\/z -

Computed by Wolfram |&lpha

“Nice” PTFs for Threshold Functions
A “Nice” PTF for the At-Least-K function:

Thm: For all s > 0, there is a PTF P(x4, ..., x;) of degree O (\/d log(s))

for AT Lk on d variables such that for all x,
e ATLk(x)=0=>-1<P(x)<0
e ATLk(x) =1=>P(x)> s

Better degree: use Discrete Cr1|ebyshev polynomials! [Chebyshev’99]

| |
Dg:(x) 400000 |
q _
g\ [t—x\ (x |
- Z(—W(_)(.)(.)/cq,t_
. i/\q—i)\i
=0 200000 f
where c,, = (t +1)7/q! | \ /
Ifx € {0,1,...,t} then U I | A S I
Dq,t(x) €[-1,1] | 2 4 6 8 10 1P
Ifx>1+tthen —200000;
Dy (x) = e’ /8t

Computed by Wolfram |alpha

“Nice” PTFs for Threshold Functions
A “Nice” PTF for the At-Least-K function:

Thm: For all s > 0, there is a PTF P(x4, ..., x;) of degree O (\/d log(s))
for AT Lk on d variables such that for all x,

e ATLk(x)=0=>-1<P(x)<0

e ATLk(x) =1=>P(x)> s

Fact [Chebyshev'99] For all g € [ﬂ ((t log t)0'5) , t],
- Ifx€e{0,1,..,tjthenD ,(x) € [-1,1]

2

* Ifx<-1thenD, . (x) = exp (8(::1+1))'

Define P(xy, ..., xq) = Dg g4 ((k —-1) — Zix,-),
where g: = O((d log 5)%)
Then:
Yixi<k= P(x)e|-1, 1]
2.iXi=k=>P(x) =e"0O(dlog(s)/d) = e*(O(log(s)) = poly(s)
Shift P a little, to get the desired properties in the theorem.

“Even Nicer” Probabilistic PTF

An “Even Nicer” Probabilistic PTF for At-Least-K:

Thm: For all s > 0, there is a probabilistic PTF P(x4, ..., X4, y) of degree
2

o (d% -logs (ns)) for ATLk on d variables such that for all x,
+ ATLk(x) = 0 = Pr,[-1 < P(x,y) < 0] > 1 —%
+ ATLk(x) = 1= Pry[P(x,y) > s] = 1 —%

Idea: Combine the previous two constructions!

Really Really Sketchy Sketch: Let § > 0.
Construct X by random sampling 6d bits of x.

Let Q(X) be a probabilistic polynomial for ATL, with error at most 2_15

(here the parameter k'’ is slightly smaller than k)
Take a modified discrete Chebyshev polynomial D, ;,(x) which
* “blows up”to>swhen);x; >k—1
* And otherwise stays in the interval [—1, 1].
Set P(x) = Dy, ,(x) - Q(X) for t' = d/\éd
Careful case analysis and new setting of § (and q') yields the result!

Conclusion

e What is the power/limit of probabilistic PTFs
representing Boolean functions?

— How easy/difficult is it to prove degree lower bounds
for such representations?

e Can our SAT algorithm for
MAJ o ACO o THR o ACO o THR
be derandomized?

— Would imply stronger circuit lower bounds

e How much can the n2 ~2E"*) runtime for (1+ &)-
approximate batch nearest neighbor be improved?

Thank you!

