Sampling lower bounds

Emanuele Viola

Northeastern University

September 2018

The complexity of distributions

- Leading goal: lower bounds for computing a function on a given input
- This talk: lower bounds for sampling distributions, given uniform bits
- Several papers, connections, still uncharted

The complexity of distributions

 2-source extractors [Chattopadhyay Zuckerman, ..., Ben-Aroya Doron Ta-Shma]

Data structure lower bounds ?

for sampling

ns, given uniform bits

 Several papers, connections, still uncharted

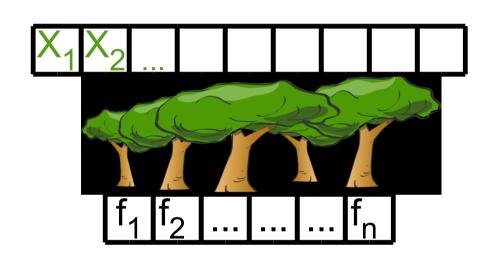
Outline

A couple of problems for decision trees

- AC⁰
 - Upper bounds
 - Lower bounds

- S = n uniform bits of weight n/2
- X uniform

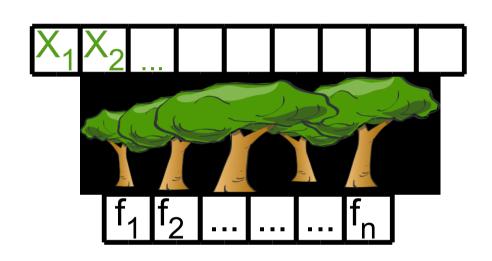
• f : {0,1}* → {0,1}n
depth-d forest



Statistical distance Δ (f(X), S) ≥ ?

- S = n uniform bits of weight n/2
- X uniform

• f : {0,1}* → {0,1}n
depth-d forest

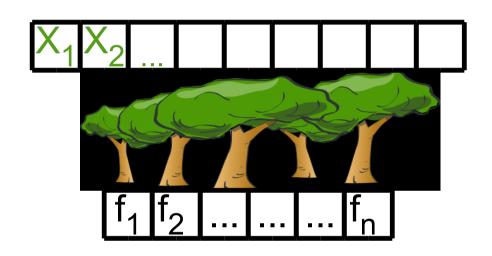


Statistical distance Δ (f(X), S) ≥ Ω(1/2^d)

[V]

- S = n uniform bits of weight n/2
- X uniform

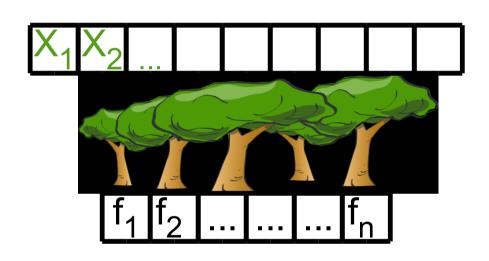
f: {0,1}* → {0,1}n
 depth-d forest



Statistical distance Δ (f(X), S) ≥ Ω(1/2^d) [V]
 ≤ 1/n for d = O(log n)
 [CKKL]

- S = n uniform bits of weight n/2
- X uniform

f: {0,1}* → {0,1}n
 depth-d forest

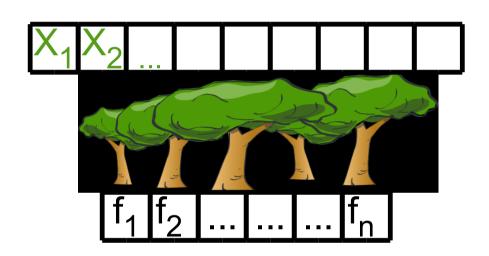


- Statistical distance Δ (f(X), S) ≥ Ω(1/2^d) [V]
 ≤ 1/n for d = O(log n)
 [CKKL]
- Open: Δ (f(X), S) for d = O(1)?

Sampling permutations

□ := uniform permutations of [n]

•
$$f:[n]^* \rightarrow [n]^n$$



- Statistical distance Δ (f(X), Π) ≥ ?
- Δ ≥ 1-o(1) → data structure lower bound

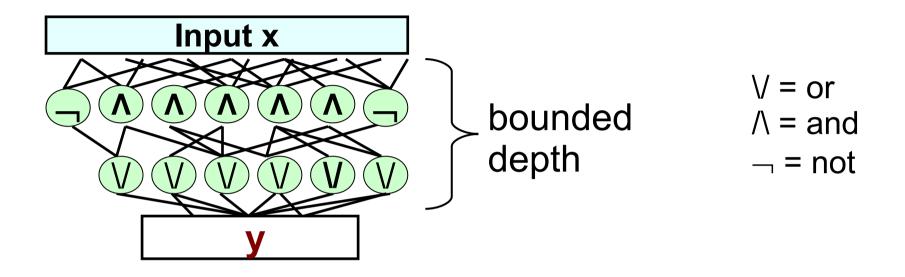
Outline

A couple of problems for decision trees

• AC⁰

- Some upper bounds
- Lower bounds

Bounded-depth circuits (AC⁰)

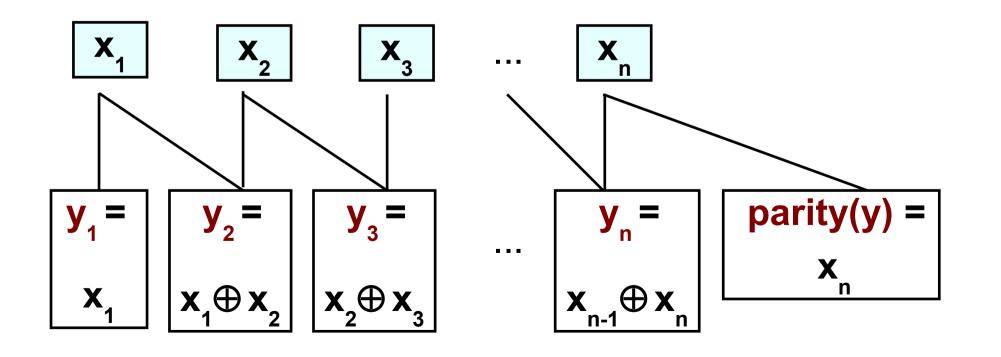


AC⁰ cannot compute parity
 [1980's: Furst Saxe Sipser, Ajtai, Yao, Hastad,]

Sampling (Y, parity(Y))

Theorem [Babai '87; Boppana Lagarias '87]

There is $f: \{0,1\}^n \rightarrow \{0,1\}^{n+1}$, in AC^0 Distribution $f(X) \equiv (Y, parity(Y))$ $(X, Y \in \{0,1\}^n uniform)$



• (Y, Inner-Product(Y))

[Impagliazzo Naor]

Permutations

(error 2⁻ⁿ) [Matias Vishkin, Hagerup]

(Y, f(Y)), any symmetric f (error 2⁻ⁿ)
 e.g. f=Majority

[V]

Open: (Y, Majority(Y)) with error 0?

(Y, Inner-Product(Y))

Next

[Impagliazzo Naor]

Permutations

(error 2⁻ⁿ) [Matias Vishkin, Hagerup]

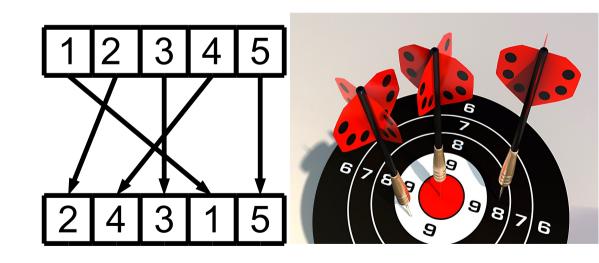
(Y, f(Y)), any symmetric f (error 2⁻ⁿ)
 e.g. f=Majority

Open: (Y, Majority(Y)) with error 0?

• Dart throwing Place i = 1..n in A[1..n] uniformly

Dart throwing Place i = 1..n in A[1..n] uniformly

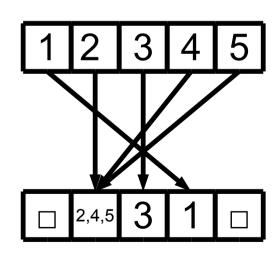
• If no collisions, done



Dart throwing Place i = 1..n in A[1..n] uniformly

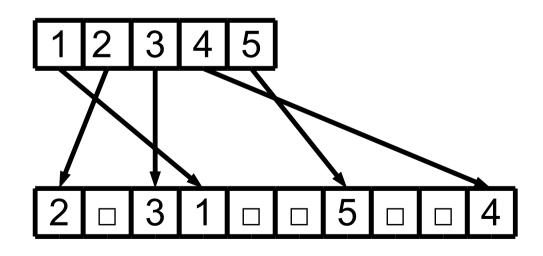
If no collisions, done

There will be collisions



Dart throwing Place i = 1..n in A[1..m] uniformly

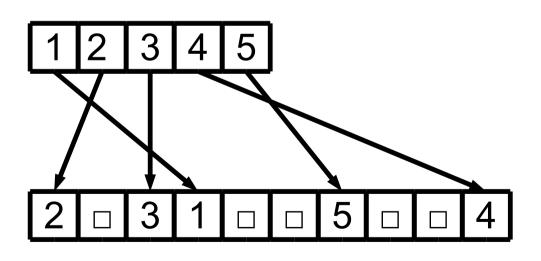
Enlarge A.
 No collisions,
 and I just need
 to remove the □



Dart throwing Place i = 1..n in A[1..m] uniformly

Enlarge A.



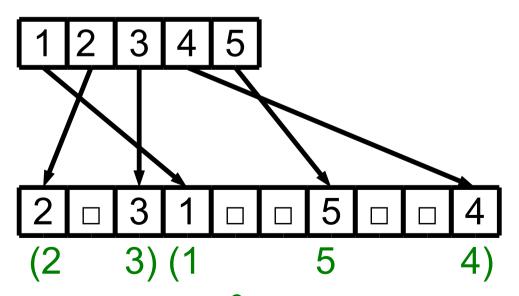


Dart throwing Place i = 1..n in A[1..m] uniformly

Cycle format.

Each cycle starts with least element.

Least elements sorted.



Next element in cycle computable in AC⁰

Qed

Outline

A couple of problems for decision trees

• AC⁰

- Some upper bounds
- Lower bounds

Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]

Z = uniform on good binary code ⊆ {0,1}ⁿ

$$AC^0$$
 circuit $C: \{0,1\}^* \to \{0,1\}^n$

→ Statistical-Distance(Z, C(X)) ≥ 1 - exp(- $n^{0.1}$)

Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]

```
Z = uniform on good binary code \subseteq \{0,1\}^n
AC<sup>0</sup> circuit C : \{0,1\}^* \rightarrow \{0,1\}^n
```

- → Statistical-Distance(Z, C(X)) ≥ 1 exp(- $n^{0.1}$)
- (Y, f(Y)) for bit-block extractor $f: \{0,1\}^n \to \{0,1\}$ Statistical-Distance((Y, f(Y), C(X)) > 0 [V 2011]

Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]

```
Z = uniform on good binary code \subseteq \{0,1\}^n
AC<sup>0</sup> circuit C : \{0,1\}^* \rightarrow \{0,1\}^n
```

- Statistical-Distance(Z, C(X)) ≥ 1 exp(-n^{0.1})

"Cannot compute f better than tossing a coin, even if you can sample the input yourself"

- Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]
 - Z = uniform on good binary code $\subseteq \{0,1\}^n$

$$AC^0$$
 circuit $C: \{0,1\}^* \to \{0,1\}^n$

→ Statistical-Distance(Z, C(X)) ≥ 1 - exp(- $n^{0.1}$)

Next

• (Y, f(Y)) for bit-block extractor $f: \{0,1\}^n \rightarrow \{0,1\}$

Statistical-Distance((Y, f(Y), C(X)) > 0 > $1/2 - 1/n^{\omega(1)}$ [V 2011]

[now]

"Cannot compute f better than tossing a coin, even if you can sample the input yourself"

- Theorem: AC⁰ circuit C
 min-entropy C(X) ≥ k (∀ a, Pr[C(X) = a] ≤ 2^{-k})
 - → C(X) close to convex combination of bit-block sources with min-entropy $\ge k^2/n^{1.01}$
- Bit-block source: each bit is either constant or literal Example: (0, 1, z₅, 1-z₃, z₃, z₃, 0, z₂)
- Corollary: f bit-block extractor → C(X) ≠ (Y, f(Y))
- Proof:

- Theorem: AC⁰ circuit C
 min-entropy C(X) ≥ k (∀ a, Pr[C(X) = a] ≤ 2^{-k})
 - → C(X) close to convex combination of bit-block sources with min-entropy $\ge k^2/n^{1.01}$
- Bit-block source: each bit is either constant or literal Example: (0, 1, z₅, 1-z₃, z₃, z₃, 0, z₂)
- Corollary: f bit-block extractor → C(X) ≠ (Y, f(Y))
- Proof: C(X) = (Y, f(Y)) → min-entropy C(X) ≥ |Y| = n
 → convex combination high min-entropy bit-block sources can fix "f(Y)" bit leaving high min-entropy
 contradicts extractor property

Theorem: AC⁰ circuit C
 min-entropy C(X) > k (Y a Pr(C(X) = a1 ≤ 2-k))
 Heads up:
 Heads up:
 Rules out Statistical-Distance 0, but not 0.1

 Bit-block sour Example: (0, 1)

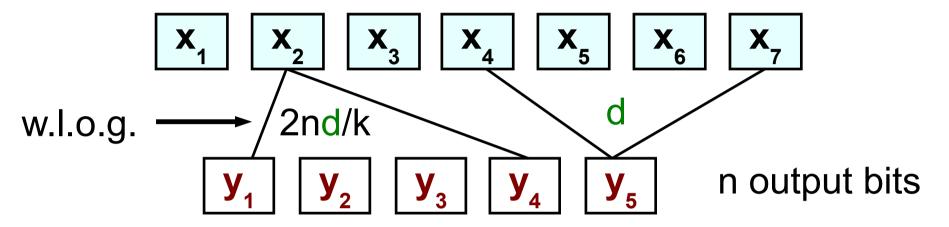
- Colollary: f bit-block extractor → C(X) ≠ (Y, f(Y))
- Proof: C(X) = (Y, f(Y)) → min-entropy C(X) ≥ |Y| = n
 → convex combination high min-entropy bit-block sources can fix "f(Y)" bit leaving high min-entropy contradicts extractor property

- Theorem: AC⁰ circuit C
 min-entropy C(X) ≥ k (∀ a, Pr[C(X) = a] ≤ 2^{-k})
 - → C(X) close to convex combination of bit-block sources with min-entropy $\ge k^2/n^{1.01}$

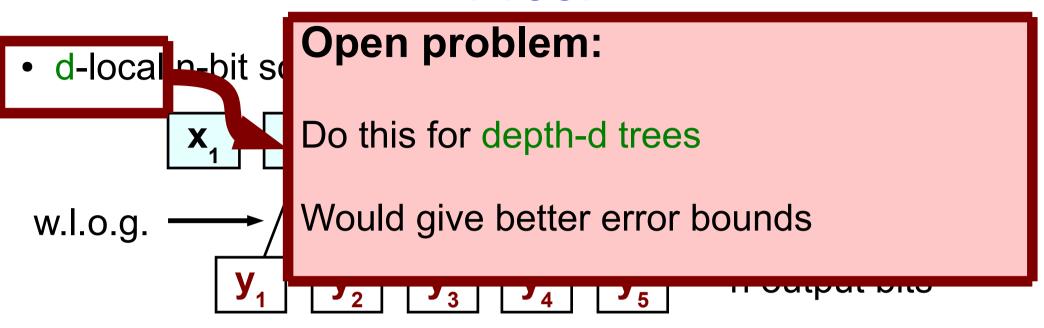
- (1) Prove when C is d-local (each output bit depends on d input bits)
- (2) For AC⁰ use random restrictions
- switching lemma collapses AC⁰ to d-local
- New: entropy is preserved

Proof

d-local n-bit source min-entropy k: convex combo bit-block



- Output entropy $> \Omega(k) \rightarrow \exists y$ with variance $> \Omega(k/n)$
- Isoperimetry $\rightarrow \exists x_i$ with influence $> \Omega(k/nd)$
- Set uniformly $N(N(\mathbf{x}_j)) \setminus \{\mathbf{x}_j\}$ (N(v) = neighbors of v) with prob. > $\Omega(k/nd)$, $N(\mathbf{x}_j)$ non-constant block of size 2nd/k
- Repeat $\Omega(k)$ / $|N(N(\mathbf{x}_j))|$ times \rightarrow expect $\Omega(k^3/n^2d^3)$ blocks



- Output entropy $> \Omega(k) \rightarrow \exists y$ with variance $> \Omega(k/n)$
- Isoperimetry $\rightarrow \exists x_i$ with influence $> \Omega(k/nd)$
- Set uniformly $N(N(\mathbf{x}_{j})) \setminus \{\mathbf{x}_{j}\}$ (N(v) = neighbors of v) with prob. > $\Omega(k/nd)$, $N(\mathbf{x}_{j})$ non-constant block of size 2nd/k
- Repeat $\Omega(k)$ / $|N(N(\mathbf{x}_j))|$ times \rightarrow expect $\Omega(k^3/n^2d^3)$ blocks

- Theorem: AC⁰ circuit C
 min-entropy C(X) ≥ k (∀ a, Pr[C(X) = a] ≤ 2^{-k})
 - → C(X) close to convex combination of bit-block sources with min-entropy $\ge k^2/n^{1.01}$
- Proof:
- (1) Prove when C is d-local (each output bit depends on dinput bits)
 - (2) For AC⁰ use random restrictions
 - switching lemma collapses AC⁰ to d-local
 - New: entropy is preserved

The effect of restrictions on entropy

- Theorem f: {0,1}* → {0,1}ⁿ: f(X) has min-entropy k
 Let R be random restriction with Pr[*] = p
 W.h.p. f |_R (X) has min-entropy Ω(pk)
- Proof:
- Bound collision probability $Pr[f|_{R}(X) = f|_{R}(X)]$
- Isoperimetric inequality for noise [Lovett V]
 ∀ A ⊆ {0,1}^L of density α, uniform X, p-noise vector N :

$$\alpha^2 \le \Pr[X \in A \land (X+N) \in A] \le \alpha^{1+p}$$

Proof of isoperimetric inequality

• \forall $A \subseteq \{0,1\}^L$ of density α random X, p-noise vector N: $Pr[X \in A \land (X+N) \in A] \leq \alpha^{1+p}$

```
f := 1_{A}
E_{X,N}[f(X) \cdot f(X+N)]
= E_{X}[f(X) \cdot E_{N}[f(X+N)]]
```

Proof of isoperimetric inequality

• \forall $A \subseteq \{0,1\}^L$ of density α random X, p-noise vector N: $Pr[X \in A \land (X+N) \in A] \leq \alpha^{1+p}$

```
\begin{split} f &:= 1_{A} \\ & E_{X,N}[ \ f(X) \bullet f(X+N) \ ] \\ &= E_{X}[ \ f(X) \bullet E_{N}[f(X+N)] \ ] \\ &\leq \sqrt{E_{X}[ \ f^{2}(X) \ ]} \bullet \sqrt{E_{X}[ E_{N}^{2}[f(X+N)] \ ]} \quad \text{Cauchy-Schwarz} \end{split}
```

Proof of isoperimetric inequality

• $\forall A \subset \{0,1\}^L$ of density α random X, p-noise vector N: $Pr[X \in A \land (X+N) \in A] \leq \alpha^{1+p}$

```
f := 1_{\Delta}
E_{X.N}[f(X) \cdot f(X+N)]
    = E_X[f(X) \cdot E_N[f(X+N)]]
    \leq \sqrt{E_X[f^2(X)]} \cdot \sqrt{E_X[E_N^2[f(X+N)]]}
                                                               Cauchy-Schwarz
    \leq \sqrt{\frac{1}{2}} [f^2(X)] \cdot E_X[f^{2-O(p)}(X)]^{1/(2-O(p))} Hypercontractivity
    =\sqrt{\alpha} \cdot \alpha^{1/(2-O(p))}
                                                                                      Qed
```

Recap

- Showed high-entropy AC⁰ → high-entropy bit-block sources
- Implies sampling lower bounds
- But only Statistical-Distance Δ > 0, not 0.1

Possible:

$$\Delta$$
 (C(X), (Y,f(Y)) \leq 0.1, but min-entropy C(X) = O(1)

Example next

Example

Circuit C: "On input x:

If first 4 bits are 0 output the all-zero string Otherwise sample (Y, f(Y)) exactly"

 Statistical-Distance(C(X), (Y, f(Y)) ≤ 0.1, but min-entropy C(X) = O(1)

 Observation: If you fix first 4 bits, min-entropy polarizes: either zero or very large
 We show this happens for every AC⁰ circuit

Polarizing min-entropy

- Theorem: For every AC⁰ circuit C: {0,1}* → {0,1}n
 ∃ set S of ≤ 2ⁿ restrictions such that:
 - (1) preserve output distribution $\Delta(C|_{r}(X), C(X)) \leq \epsilon$, for uniform $r \in S, X$
 - (2) polarize min-entropy∀ r ∈ S, C|_r has min-entropy 0 or n^{0.8}

7777

Polarizing min-entropy

- Theorem: For every AC⁰ circuit C: {0,1}* → {0,1}ⁿ
 ∃ set S of ≤ 2ⁿ restrictions such that:
 - (1) preserve output distribution $\Delta(C|_{r}(X), C(X)) \leq \epsilon$, for uniform $r \in S, X$
 - (2) polarize min-entropy

 $\forall r \in S, C|_r$ has min-entropy 0 or $n^{0.8}$

Trivial:

S := one input for each of $\leq 2^n$ outputs, entropy always 0

Polarizing min-entropy

- Theorem: For every AC⁰ circuit C: $\{0,1\}^* \rightarrow \{0,1\}^n$
 - \exists set S of $\leq 2^{n-n^{0.9}}$ restrictions such that:
 - (1) preserve output distribution $\Delta(C|_{r}(X), C(X)) \leq \epsilon$, for uniform $r \in S, X$
 - (2) polarize min-entropy∀ r ∈ S, C|_r has min-entropy 0 or n^{0.8}

Polarization lemma

- Lemma: For every f: {0,1}* → {0,1}ⁿ
 ∃ set S of ≤ 2^{n n^{0.9}} restrictions s.t.
 Δ(f|_r (X), f(X)) ≤ ε, for uniform r ∈ S, X
- Proof:
- Pick S randomly with $\Pr[*] = n^{-0.9}$; fix $A = f^{-1}(y)$ of density α Show: $\Pr_S \left[\Pr_{r,X}[X|_r \in A] < \alpha \epsilon 2^{-n} \right] < 2^{-n}$

Note: Deviation $\varepsilon 2^{-n}$ but $|S| < 2^n$

Polarization lemma

- Lemma: For every f: {0,1}* → {0,1}ⁿ
 ∃ set S of ≤ 2^{n n^{0.9}} restrictions s.t.
 ∆(f|_r (X), f(X)) ≤ ε, for uniform r ∈ S, X
- Proof:
- Pick S randomly with $\Pr[*] = n^{-0.9}$; fix $A = f^{-1}(y)$ of density α Show: $\Pr_{S} \left[\Pr_{r,X}[X|_r \in A] < \alpha - \epsilon 2^{-n} \right] < 2^{-n}$

Note: Deviation $\varepsilon 2^{-n}$ but $|S| < 2^n$ Isoperimetric inequality \rightarrow $Pr_{r,X}[X|_r \in A]$ "small variance"

Polarization lemma

Lemma: For every f: {0,1}* → {0,1}ⁿ
 ∃ set S of ≤ 2^{n - n^{0.9}} restrictions s.t.
 Δ(f|_r (X), f(X)) ≤ ε, for uniform r ∈ S, X

- Proof:
- Pick S randomly with $\Pr[*] = n^{-0.9}$; fix $A = f^{-1}(y)$ of density α Show: $\Pr_S \left[\Pr_{r,X}[X|_r \in A] < \alpha - \epsilon 2^{-n} \right] < 2^{-n}$

Note: Deviation $\varepsilon 2^{-n}$ but $|S| < 2^n$ Isoperimetric inequality \rightarrow $\Pr_{r,X}[X|_r \in A]$ "small variance" Use specific lower-tail concentration bound Qed

Putting things together

- In the end, lower bound for sampling (Y, f(Y))
 f: {0,1}ⁿ → {0,1} bit-block extractor
- Given circuit C, statistical distance $1/2 1/n^{\omega(1)}$ witness: A U B =

```
{ z : z one of those 2^{n-n^{0.9}} restrictions s.t. C is constant}
U { (y,b) : b \neq f(y) }
```

Proof: Think of C(X) as C|_r (X) for uniform r ∈ S
 C|_r constant → C|_r (X) ∈ A, but (Y, f(Y)) not in A w.h.p.
 else Pr[C|_r (X) ∈ B] > 1/2 – 1/n^{ω(1)}, but (Y, f(Y)) never in B

More open problems and conclusion

Open problem: Statistical distance 1/2 - exp(-n^{0.1})

Derandomize entropy polarization

Much more to chart...

