Locating Linear Decision Lists within TC⁰

Meena Mahajan

The Institute of Mathematical Sciences, HBNI, Chennai.

Workshop on Boolean Devices, Simons Institute for the Theory of Computing. 10-14 Sep, 2018

≣ ∽ < (~ Meena Mahajan

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Single tests: Linear Threshold Functions LTF, LTF

• $f: \{0,1\}^n \to \{0,1\}$ is an LTF if $\exists a_0, a_1, \ldots, a_n \in \mathbb{R}, \forall x \in \{0, 1\}^n, f(x) = 1 \iff a_0 + \sum_i a_i x_i \ge 0.$

> ≣ ∽ < (~ Meena Mahajan

Single tests: Linear Threshold Functions LTF, $\widehat{\text{LTF}}$

• $f: \{0,1\}^n \to \{0,1\}$ is an LTF if $\exists a_0, a_1, \dots, a_n \in \mathbb{R}, \forall x \in \{0,1\}^n, f(x) = 1 \iff a_0 + \sum_i a_i x_i \ge 0.$

• \forall LTF f, $\exists a_0, a_1, \dots, a_n \in \mathbb{Z}$ describing f, with $|a_i| \leq 2^{O(n \log n)}$. [Muroga 1971]

Single tests: Linear Threshold Functions LTF, $\widehat{\text{LTF}}$

- $f: \{0,1\}^n \to \{0,1\}$ is an LTF if $\exists a_0, a_1, \dots, a_n \in \mathbb{R}, \forall x \in \{0,1\}^n, f(x) = 1 \iff a_0 + \sum_i a_i x_i \ge 0.$
- \forall LTF f, $\exists a_0, a_1, \dots, a_n \in \mathbb{Z}$ describing f, with $|a_i| \leq 2^{O(n \log n)}$. [Muroga 1971]
- LTF: those LTFs described by vectors ã with each |a_i| ≤ n^{O(1)}.
 (i.e. Closure of MAJ under polynomial projection-reductions.)
- GreaterThan GT is an LTF. (GT(x, y) = 1 ⇔ ∑_i 2ⁱ(x_i y_i) ≥ 1.) GT is not an LTF. (All rows of communication matrix of GT are distinct. So all ⟨a, x⟩ values must be distinct.)

◆□ > ◆□ > ◆臣 > ◆臣 > □臣 - の

Sequential Tests: Linear Decision Lists LDL

• A decision list DL of length ℓ computing $f : \{0,1\}^n \to \{0,1\}$: a sequence $(f_1, b_1), (f_2, b_2), \dots, (f_{\ell-1}, b_{\ell-1}), (1, b_l)$ such that $f(x) = \text{if} \quad f_1(x) \quad \text{then } b_1$ elseif $f_2(x) \quad \text{then } b_2$ $\vdots \quad \vdots \quad \vdots$ elseif $f_{\ell-1}(x)$ then $b_{\ell-1}$ else b_{ℓ} .

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ うへぐ

Meena Mahajan

Sequential Tests: Linear Decision Lists LDL

- A decision list DL of length ℓ computing $f : \{0,1\}^n \to \{0,1\}$: a sequence $(f_1, b_1), (f_2, b_2), \dots, (f_{\ell-1}, b_{\ell-1}), (1, b_\ell)$ such that $f(x) = \text{if} \quad f_1(x) \quad \text{then } b_1$ elseif $f_2(x) \quad \text{then } b_2$ $\vdots \quad \vdots \quad \vdots$ elseif $f_{\ell-1}(x)$ then $b_{\ell-1}$ else b_{ℓ} .
- LDL: All *f_i* are LTFs.
- $\widehat{\text{LDL}}$: All f_i are $\widehat{\text{LTFs}}$.

Perhaps better notation: DL(LTF) and $DL(\widehat{LTF})$?

□ > < @ > < E > < E > < E

• GT not in $\widehat{\text{LTF}}$, but GT has short (poly-size) $\widehat{\text{LDL}}$. $(x_1 > y_1?, 1), (x_1 < y_1?, 0), \dots, (x_n > y_n?, 1), (1, 0)$

<ロト < 回 > < E > < E > E ののの Meena Mahajan

- GT not in $\widehat{\text{LTF}}$, but GT has short (poly-size) $\widehat{\text{LDL}}$. $(x_1 > y_1?, 1), (x_1 < y_1?, 0), \dots, (x_n > y_n?, 1), (1, 0)$
- PARITY is not an LTF.

(An LTF is either monotone or anti-monotone in each of its variables.) But PARITY has short $\widehat{\text{LDL}}.$

- GT not in $\widehat{\text{LTF}}$, but GT has short (poly-size) $\widehat{\text{LDL}}$. $(x_1 > y_1?, 1), (x_1 < y_1?, 0), \dots, (x_n > y_n?, 1), (1, 0)$
- PARITY is not an LTF.

(An LTF is either monotone or anti-monotone in each of its variables.) But PARITY has short $\widehat{\text{LDL}}$.

イロト イピト イヨト イヨト 三日

• In fact, all symmetric functions have short LDLs. $f(x) = 1 \iff (SUM = \sum_i x_i) \in \bigcup_{j=1}^k [A_j, B_j].$ $\widehat{LDL} : (SUM < A_1?, 0), (SUM \le B_1?, 1), \dots, (SUM \le B_k?, 1), (1, 0).$

Parallel tests: Depth-2 threshold circuits

- Perform tests in parallel, combine results.
- All symmetric functions in MAJ MAJ. $f(x) = 1 \iff \text{SUM} = \sum_{i} x_i \in \bigcup_{j=1}^{k} [A_j, B_j].$ Parallel tests: SUM $\ge A_i$?, SUM $\le B_i$?. Combination: Number of successful tests $\ge k + 1$?

・ロト・西ト・ヨト・ヨー うへぐ

Meena Mahajan

Parallel tests: Depth-2 threshold circuits

- Perform tests in parallel, combine results.
- All symmetric functions in MAJ \circ MAJ. $f(x) = 1 \iff \text{SUM} = \sum_{i} x_i \in \bigcup_{j=1}^{k} [A_j, B_j].$ Parallel tests: SUM $\ge A_i$?, SUM $\le B_i$?. Combination: Number of successful tests $\ge k + 1$?

[Goldmann,Håstad,Razborov 1992]

- LTF \subseteq MAJ \circ MAJ. (\subsetneq because of PARITY.)
- $MAJ \circ LTF = MAJ \circ MAJ$.

(If top-weight small, bottom weights don't matter.)

• $MAJ \circ MAJ \subsetneq LTF \circ MAJ$.

(If bottom-weights small, top weights matter.)

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- LDL \subseteq LTF LTF. [Turán,Vatan 1997] (To implement LDL $(f_1, b_1), \ldots, (f_{\ell-1}, b_{\ell-1}), (1, b_\ell);$ Bottom layer: all f_i s. Top gate: $\sum_i (-1)^{b_i+1} 2^{\ell-i} [f_i] > 0$?)
- LTF ∘ LTF with top gate weights ±2ⁱ on ith edge equals LDL.
 LDL ⊆ LTF ∘ MAJ.

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

Meena Mahajan

• OddMaxBit OMB(z) = 1 if last 1 is in an odd-numbered position.

OddMaxBit OMB(z) = 1 if last 1 is in an odd-numbered position. OMB \circuits AND2 not in MAJ \circuits MAJ. (MAJ \circuits have inverse-polynomial discriminators. [Hajnal,Maas,Pudlák,Szegedy,Turán 1993]. OMB \circuits AND2 has inverse exponential discrepancy. [Buhrman,Vereschagin,deWolf 2007].)

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト 二 臣 - つへぐ

Meena Mahajan

 OddMaxBit OMB(z) = 1 if last 1 is in an odd-numbered position. OMB \circuits AND2 not in MAJ \circuits MAJ. (MAJ \circuits have inverse-polynomial discriminators. [Hajnal,Maas,Pudlák,Szegedy,Turán 1993]. OMB \circuits AND2 has inverse exponential discrepancy. [Buhrman,Vereschagin,deWolf 2007].)

Meena Mahajan

 LTF ∘ MAJ ⊊ LTF ∘ LTF: [Chattopadhyay,Mande 2018]. (If top-weight large, bottom weights do matter.) • $OMB \circ AND_2$ is in \widehat{LDL} .

So discrepancy does not give lower bounds for lists.

11 Sep 2018, Simons Institute

Meena Mahajan

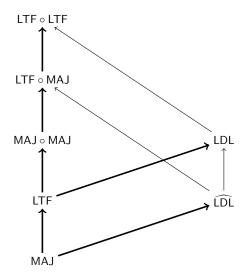
996

(□) (∅) (E) (E) (E)

- OMB ∘ AND₂ is in LDL.
 So discrepancy does not give lower bounds for lists.
- InnerProduct $IP_n(x, y) = (x_1 \land y_1) \oplus \ldots \oplus (x_n \land y_n) = PARITY \circ AND_2.$ IP_n requires LDL length at least $2^{n/2}$. [Turán,Vatan 1997]

 IP_n requires exponential size in MAJ ∘ MAJ as well. [Hajnal,Maas,Pudlák,Szegedy,Turán 1993]

Polynomial size: Picture so far



Meena Mahajan

Э

590

イロン イロン イヨン イヨン

Questions posed in [Turán, Vatan 1997] (restricted to poly-size):

- \bullet Are LDLs strictly weaker than LTF \circ LTF?
- \bullet Are LDLs incomparable with MAJ \circ MAJ?

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

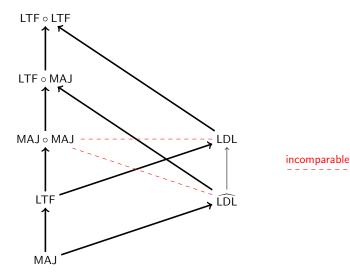
《曰》《國》《臣》《臣》 []臣]

Questions posed in [Turán, Vatan 1997] (restricted to poly-size):

- Are LDLs strictly weaker than LTF \circ LTF?
- Are LDLs incomparable with MAJ \circ MAJ?
- We answer both affirmatively, with the function MAJ ∘ XOR.
 Easy to see MAJ ∘ XOR is in MAJ ∘ MAJ.
 (Parallel tests: x_i + y_i ≤ 1?, x_i + y_i ≥ 1?, Combination: Number of successful tests ≥ 3n/2?)

We show MAJ \circ XOR has no short LDL.

Polynomial size: Updated Picture



11 Sep 2018, Simons Institute

Meena Mahajan

E

Sac

イロン イロン イヨン イヨン

- Short decision list implies large monochromatic squares.
- Upper bound on size of monochromatic squares of MAJ \circ XOR.

・ロト・日本・ヨト・ヨークへで Meena Mahajan

$$\begin{split} &f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}. \\ &\text{Monochromatic square: } A, B \subseteq \{0,1\}^n, \ |A| = |B|, \ A \times B \subseteq f^{-1}(b). \\ &(\text{Square size} = |A| = |B|) \end{split}$$

Theorem (extracted from [Turán, Vatan 1997])

If $f : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ has no monochromatic square of size t + 1, then any LDL for f must have size at least $2^n/t$.

イロト イピト イヨト イヨト 三日

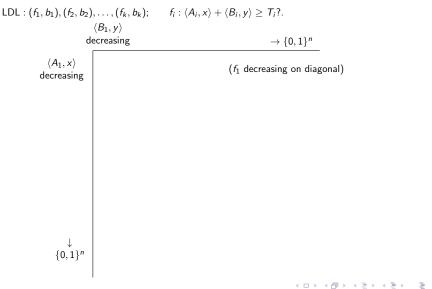
 $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$, largest monochromatic square size t.

 $\mathsf{LDL}: (f_1, b_1), (f_2, b_2), \dots, (f_k, b_k); \qquad f_i: \langle A_i, x \rangle + \langle B_i, y \rangle \geq T_i?.$

 $ightarrow \{0,1\}^n$

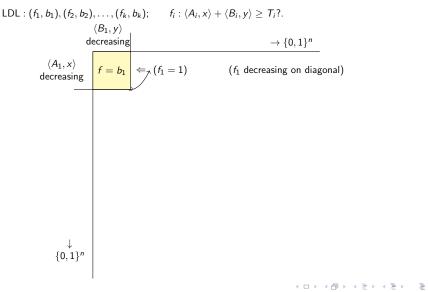
<ロ > < 団 > < 巨 > < 亘 > < 亘 > < 亘 の Q () Meena Mahajan

 $f: \{0,1\}^n imes \{0,1\}^n o \{0,1\}$, largest monochromatic square size t.



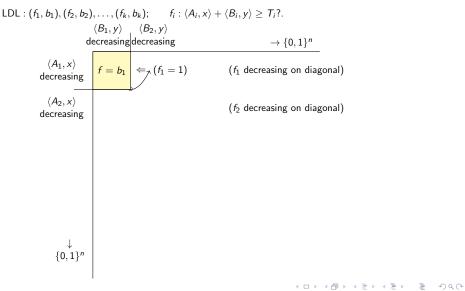
≣ ∽ < (~ Meena Mahajan

 $f: \{0,1\}^n imes \{0,1\}^n o \{0,1\}$, largest monochromatic square size t.



≣ ∽ < (~ Meena Mahajan

 $f: \{0,1\}^n imes \{0,1\}^n o \{0,1\}$, largest monochromatic square size t.



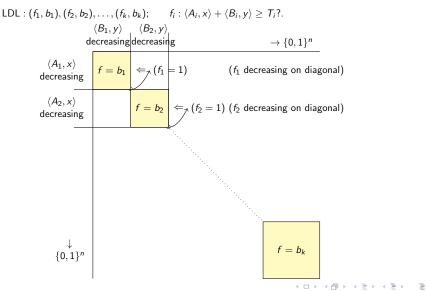
Meena Mahajan

 $f: \{0,1\}^n imes \{0,1\}^n o \{0,1\}$, largest monochromatic square size t.

 $\mathsf{LDL}: (f_1, b_1), (f_2, b_2), \dots, (f_k, b_k); \qquad f_i: \langle A_i, x \rangle + \langle B_i, y \rangle \geq T_i?.$ $\langle B_1, y \rangle = \langle B_2, y \rangle$ decreasing decreasing $\rightarrow \{0,1\}^n$ $\langle A_1, x \rangle$ $f = b_1 \models (f_1 \models 1)$ (f_1 decreasing on diagonal) decreasing $\langle A_2, x \rangle$ $f = b_2 \leftarrow (f_2 = 1) (f_2 \text{ decreasing on diagonal})$ decreasing $\{0,1\}^n$

Meena Mahajan

 $f: \{0,1\}^n imes \{0,1\}^n o \{0,1\}$, largest monochromatic square size t.

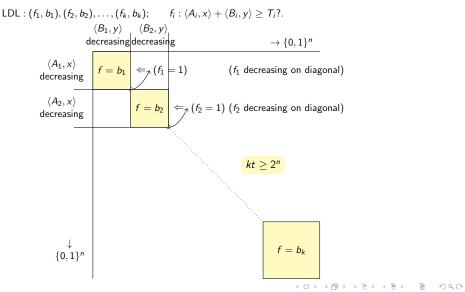


11 Sep 2018, Simons Institute

Meena Mahajan

596

 $f: \{0,1\}^n imes \{0,1\}^n o \{0,1\}$, largest monochromatic square size t.



11 Sep 2018, Simons Institute

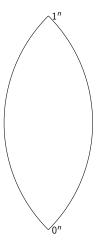
Meena Mahajan

$MAJ \circ XOR(x, y) = 1$ iff Hamming distance $d_H(x, y) \ge n/2$.

Theorem

The largest monochromatic square in MAJ \circ XOR has size $\sum_{i=0}^{\lfloor n/4 \rfloor} {n \choose i}$.

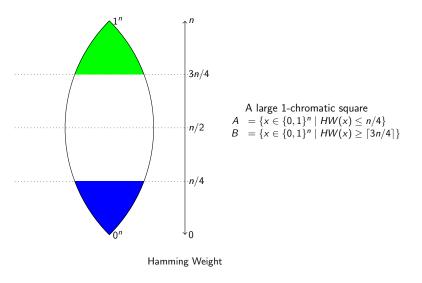
This size is at most $2^{0.2n}$, enough for an exp lower bound for LDL.



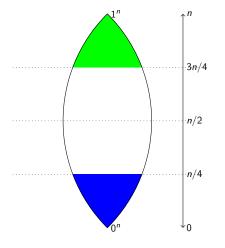
11 Sep 2018, Simons Institute

590

▲ロト ▲御 と ▲注 と ▲注 と … 注



<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



Hamming Weight

A large 1-chromatic square $A = \{x \in \{0,1\}^n \mid HW(x) \le n/4\}$ $B = \{x \in \{0,1\}^n \mid HW(x) \ge \lceil 3n/4 \rceil\}$

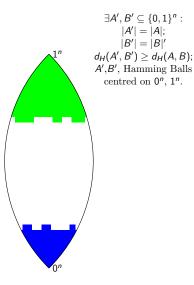
An isoperimetric inequality due to Harper guarantees no larger monochromatic square.

・ロト ・四ト ・モト ・モト

 $\forall A,B\subseteq \{0,1\}^n$

Harper's Theorem

 $\forall A, B \subseteq \{0, 1\}^n$



|A'| = |A|;|B'| = |B|'

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

3

 $\bullet~OR\circ EQ$ has no large monochromatic squares.

[Impaliazzo,Williams 2010] So no short I DL.

• $OR \circ EQ$ is in MAJ \circ LTF.

(A more general result: $MAJ \circ EQ \subseteq MAJ \circ LTF$. [Hansen,Podolskii 2010]) MAJ $\circ LTF = MAJ \circ MAJ$. [GHR 1992]

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Spectral classes

Fourier representation of f as $\sum_{S \subseteq [n]} \widehat{f}_S \chi_S$.

- f is in PL₁ if $\sum_{S \subseteq [n]} |\widehat{f}_S| \le \text{poly}(n)$.
- f is in PL_{∞} if $\max_{S \subseteq [n]} |\widehat{f}_{S}| \ge \frac{1}{\operatorname{poly}(n)}$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Fourier representation of f as $\sum_{S \subseteq [n]} \hat{f}_S \chi_S$.

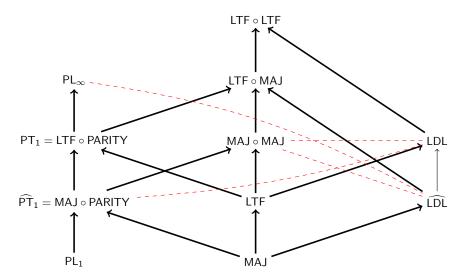
•
$$f$$
 is in PL₁ if $\sum_{S \subseteq [n]} |\widehat{f}_S| \le \text{poly}(n)$.

- f is in PL_{∞} if $\max_{S \subseteq [n]} |\widehat{f_S}| \ge \frac{1}{\operatorname{poly}(n)}$.
- The CompleteQuadratic function, a symmetric function, is not in $\mathsf{PL}_\infty.$ [Bruck 1990].
- Known: PL₁ ⊊ MAJ ∘ PARITY ⊊ LTF ∘ PARITY ⊊ PL_∞. Also, many known relationships with depth-2 threshold circuits. [Bruck 1990], [Bruck,Smolensky 1990].
 (MAJ ∘ PARITY = PT₁ and LTF ∘ PARITY = PT₁: threshold tests on sparse polynomial with (poly-bounded) integer coefficients.)

Fourier representation of f as $\sum_{S \subseteq [n]} \hat{f}_S \chi_S$.

- f is in PL₁ if $\sum_{S \subseteq [n]} |\hat{f}_S| \le \text{poly}(n)$.
- f is in PL_{∞} if $\max_{S \subseteq [n]} |\widehat{f_S}| \ge \frac{1}{\operatorname{poly}(n)}$.
- The CompleteQuadratic function, a symmetric function, is not in $\mathsf{PL}_\infty.$ [Bruck 1990].
- Known: PL₁ ⊊ MAJ ∘ PARITY ⊊ LTF ∘ PARITY ⊊ PL_∞. Also, many known relationships with depth-2 threshold circuits. [Bruck 1990], [Bruck,Smolensky 1990].
 (MAJ ∘ PARITY = PT₁ and LTF ∘ PARITY = PT₁: threshold tests on sparse polynomial with (poly-bounded) integer coefficients.)
- $\bullet~$ Easy: MAJ \circ XOR is in MAJ \circ PARITY.

Polynomial size: Updated Picture



nac

< ∃ >

-

Image: Image:

• Cutting Planes CP: a proof system for certifying unsatisfiability. QCP: an augmented proof system for certifying falsity of a Quantified Boolean Formula QBF. [Beyersdorff,Chew,M,Shukla 2016]

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- QBF false ↔ universal player has a winning strategy in the evaluation game.
- Short QCP proof implies short LDL computing winning strategy.

• Find a function *f* hard for LDL.

11 Sep 2018, Simons Institute

- Find a function *f* hard for LDL.
- Design a false QBF where any winning strategy of the universal player involves computing *f*.

<ロト < 四ト < 臣ト < 臣ト 三 臣 > 二 臣 > 二 臣 > 二 臣 > 二 臣 > 二 臣 > 二 臣 > 二 臣 > 二 臣 > - □ = ○ □ > - □ > □ > - □ =

Meena Mahajan

- Find a function *f* hard for LDL.
- Design a false QBF where any winning strategy of the universal player involves computing *f*.
- This is easy if f has a small circuit C. Define QBF $Q_{f,C}$:

$$\exists x_1 x_2 \dots x_n \forall w \exists z_1 z_2 \dots z_m \begin{bmatrix} (w \neq z_m) \\ (z_i = \text{value of } i\text{ th gate of } C(x)) : i \in [m] \end{bmatrix}$$

(z_i clauses enforce $z_m = f(x)$.) Only winning strategy: w = f(x).

11 Sep 2018, Simons Institute

• CP*, QCP*: restricting CP and QCP to poly-bounded coefficients.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Meena Mahajan

- CP* weaker than CP???
- Is QCP* weaker than QCP, not purely propositionally? (ie even given a SAT oracle? as formalised in [Beyersdorff,Hinde,Pich 2017] [Chen 2016])

• CP*, QCP*: restricting CP and QCP to poly-bounded coefficients.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Meena Mahajan

- CP* weaker than CP???
- Is QCP* weaker than QCP, not purely propositionally? (ie even given a SAT oracle? as formalised in [Beyersdorff,Hinde,Pich 2017] [Chen 2016])
- LDL lower bounds can be transferred to QCP*. This isn't enough, but it's a start.

- CP*, QCP*: restricting CP and QCP to poly-bounded coefficients.
- CP* weaker than CP???
- Is QCP* weaker than QCP, not purely propositionally? (ie even given a SAT oracle? as formalised in [Beyersdorff,Hinde,Pich 2017] [Chen 2016])
- $\widehat{\text{LDL}}$ lower bounds can be transferred to QCP*. This isn't enough, but it's a start.
- Why not enough?

Short QCP proof implies short LDL computing winning strategy. Short QCP* proof implies short \widehat{LDL} computing winning strategy.

But converse not true; An encoding of clique-coclique has a trivial winning strategy, no short QCP proof.

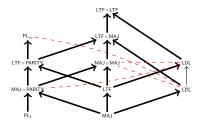
(日) (四) (モ) (モ) (モ) (モ)

New Incomparabilities

The classes \widehat{LDL} and LDL (poly-size) are incomparable with each of MAJ \circ MAJ, MAJ \circ PARITY, LTF \circ PARITY, PL_{∞}.

Questions

- Are \widehat{LDLs} weaker than LDLs?
- Are LDLs incomparable with LTFs?
- Are LDLs incomparable with LTF MAJ?
- Is PL_1 in LDL? in \widehat{LDL} ?



- Joint work with Arkadev Chattopadhyay TIFR, Mumbai Nikhil Mande TIFR, Mumbai Nitin Saurabh MPII, Saarbrücken
- Thanks to Rahul Santhanam, for inciting us to look for LDL lower bounds (to get unconditional QCP lower bounds).
- Thanks to Jaikumar Radhakrishnan for referring us to Harper's theorem.

<ロト <回ト < 注ト < 注ト = 注

Meena Mahajan

• Thank you for your attention!

11 Sep 2018, Simons Institute