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Single tests: Linear Threshold Functions LTF, L̂TF

f : {0, 1}n → {0, 1} is an LTF if
∃ a0, a1, . . . , an ∈ R, ∀x ∈ {0, 1}n, f (x) = 1⇐⇒ a0 +

∑
i aixi ≥ 0.

∀LTF f , ∃a0, a1, . . . , an ∈ Z describing f , with |ai | ≤ 2O(n log n).
[Muroga 1971]

L̂TF: those LTFs described by vectors ã with each |ai | ≤ nO(1).
(i.e. Closure of MAJ under polynomial projection-reductions.)

GreaterThan GT is an LTF. ( GT(x , y) = 1⇐⇒
∑

i 2i (xi − yi ) ≥ 1.)

GT is not an L̂TF. (All rows of communication matrix of GT are
distinct. So all 〈a, x〉 values must be distinct.)
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Sequential Tests: Linear Decision Lists LDL

A decision list DL of length ` computing f : {0, 1}n → {0, 1}:
a sequence (f1, b1), (f2, b2), . . . , (f`−1, b`−1), (1, bl) such that

f (x) = if f1(x) then b1
elseif f2(x) then b2

...
...

...
elseif f`−1(x) then b`−1
else b`.

LDL: All fi are LTFs.

L̂DL: All fi are L̂TFs.

Perhaps better notation: DL(LTF) and DL(L̂TF)?
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What LDLs and L̂DLs can do

GT not in L̂TF, but GT has short (poly-size) L̂DL.
(x1 > y1?, 1), (x1 < y1?, 0), . . . , (xn > yn?, 1), (1, 0)

PARITY is not an LTF.
(An LTF is either monotone or anti-monotone in each of its variables.)

But PARITY has short L̂DL.

In fact, all symmetric functions have short L̂DLs.
f (x) = 1⇐⇒ (SUM =

∑
i xi ) ∈ ∪kj=1[Aj ,Bj ].

L̂DL : (SUM < A1?, 0), (SUM ≤ B1?, 1), . . . , (SUM ≤ Bk?, 1), (1, 0).
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Parallel tests: Depth-2 threshold circuits

Perform tests in parallel, combine results.

All symmetric functions in MAJ ◦MAJ.
f (x) = 1⇐⇒ SUM =

∑
i xi ∈ ∪kj=1[Aj ,Bj ].

Parallel tests: SUM ≥ Ai?, SUM ≤ Bi?.

Combination: Number of successful tests ≥ k + 1?

[Goldmann,Håstad,Razborov 1992]

LTF ⊆ MAJ ◦MAJ. (( because of PARITY.)

MAJ ◦ LTF = MAJ ◦MAJ.
(If top-weight small, bottom weights don’t matter.)

MAJ ◦MAJ ( LTF ◦MAJ.
(If bottom-weights small, top weights matter.)
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Sequential Lists versus Parallel Tests

LDL ⊆ LTF ◦ LTF. [Turán,Vatan 1997]
(To implement LDL (f1, b1), . . . , (f`−1, b`−1), (1, b`);

Bottom layer: all fi s. Top gate:
∑

i (−1)bi+12`−i [fi ] > 0? )

LTF ◦ LTF with top gate weights ±2i on ith edge equals LDL.

L̂DL ⊆ LTF ◦MAJ.
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Some known lower bounds for parallel tests

OddMaxBit OMB(z) = 1 if last 1 is in an odd-numbered position.

OMB ◦ AND2 not in MAJ ◦MAJ.
( MAJ ◦MAJ circuits have inverse-polynomial discriminators.
[Hajnal,Maas,Pudlák,Szegedy,Turán 1993].
OMB ◦ AND2 has inverse exponential discrepancy.

[Buhrman,Vereschagin,deWolf 2007].)

LTF ◦MAJ ( LTF ◦ LTF: [Chattopadhyay,Mande 2018].
(If top-weight large, bottom weights do matter.)
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Known lower bounds for sequential tests

OMB ◦ AND2 is in L̂DL.
So discrepancy does not give lower bounds for lists.

InnerProduct
IPn(x , y) = (x1 ∧ y1)⊕ . . .⊕ (xn ∧ yn) = PARITY ◦ AND2.

IPn requires LDL length at least 2n/2. [Turán,Vatan 1997]

IPn requires exponential size in MAJ ◦MAJ as well.
[Hajnal,Maas,Pudlák,Szegedy,Turán 1993]
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Polynomial size: Picture so far

MAJ

LTF

MAJ ◦MAJ

LTF ◦MAJ

LTF ◦ LTF

LDL

L̂DL
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A new result

Questions posed in [Turán,Vatan 1997] (restricted to poly-size):

Are LDLs strictly weaker than LTF ◦ LTF?

Are LDLs incomparable with MAJ ◦MAJ?

We answer both affirmatively, with the function MAJ ◦ XOR.

Easy to see MAJ ◦ XOR is in MAJ ◦MAJ.
(Parallel tests: xi + yi ≤ 1?, xi + yi ≥ 1?, Combination: Number of

successful tests ≥ 3n/2?)

We show MAJ ◦ XOR has no short LDL.
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Polynomial size: Updated Picture

MAJ

LTF

MAJ ◦MAJ

LTF ◦MAJ

LTF ◦ LTF

LDL

L̂DL

incomparable
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MAJ ◦ XOR hard for LDL: Proof Idea

Short decision list implies large monochromatic squares.

Upper bound on size of monochromatic squares of MAJ ◦ XOR.
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Proof Step 1

f : {0, 1}n × {0, 1}n → {0, 1}.
Monochromatic square: A,B ⊆ {0, 1}n, |A| = |B|, A× B ⊆ f −1(b).
(Square size = |A| = |B|)

Theorem (extracted from [Turán,Vatan 1997])

If f : {0, 1}n × {0, 1}n → {0, 1} has no monochromatic square of size
t + 1, then any LDL for f must have size at least 2n/t.
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Proof Step 1 (cont’d)

f : {0, 1}n × {0, 1}n → {0, 1}, largest monochromatic square size t.

LDL : (f1, b1), (f2, b2), . . . , (fk , bk); fi : 〈Ai , x〉+ 〈Bi , y〉 ≥ Ti?.

→ {0, 1}n

↓
{0, 1}n

〈A1, x〉
decreasing

〈B1, y〉
decreasing

(f1 decreasing on diagonal)(f1 = 1)

◦

⇐f = b1

〈A2, x〉
decreasing

〈B2, y〉
decreasing

(f2 decreasing on diagonal)(f2 = 1)

◦

⇐f = b2

f = bk

kt ≥ 2n

11 Sep 2018, Simons Institute Meena Mahajan



Proof Step 1 (cont’d)

f : {0, 1}n × {0, 1}n → {0, 1}, largest monochromatic square size t.

LDL : (f1, b1), (f2, b2), . . . , (fk , bk); fi : 〈Ai , x〉+ 〈Bi , y〉 ≥ Ti?.

→ {0, 1}n

↓
{0, 1}n

〈A1, x〉
decreasing

〈B1, y〉
decreasing

(f1 decreasing on diagonal)

(f1 = 1)

◦

⇐f = b1

〈A2, x〉
decreasing

〈B2, y〉
decreasing

(f2 decreasing on diagonal)(f2 = 1)

◦

⇐f = b2

f = bk

kt ≥ 2n

11 Sep 2018, Simons Institute Meena Mahajan



Proof Step 1 (cont’d)

f : {0, 1}n × {0, 1}n → {0, 1}, largest monochromatic square size t.

LDL : (f1, b1), (f2, b2), . . . , (fk , bk); fi : 〈Ai , x〉+ 〈Bi , y〉 ≥ Ti?.

→ {0, 1}n

↓
{0, 1}n

〈A1, x〉
decreasing

〈B1, y〉
decreasing

(f1 decreasing on diagonal)(f1 = 1)

◦

⇐f = b1

〈A2, x〉
decreasing

〈B2, y〉
decreasing

(f2 decreasing on diagonal)(f2 = 1)

◦

⇐f = b2

f = bk

kt ≥ 2n

11 Sep 2018, Simons Institute Meena Mahajan



Proof Step 1 (cont’d)

f : {0, 1}n × {0, 1}n → {0, 1}, largest monochromatic square size t.

LDL : (f1, b1), (f2, b2), . . . , (fk , bk); fi : 〈Ai , x〉+ 〈Bi , y〉 ≥ Ti?.

→ {0, 1}n

↓
{0, 1}n

〈A1, x〉
decreasing

〈B1, y〉
decreasing

(f1 decreasing on diagonal)(f1 = 1)

◦

⇐f = b1

〈A2, x〉
decreasing

〈B2, y〉
decreasing

(f2 decreasing on diagonal)

(f2 = 1)

◦

⇐f = b2

f = bk

kt ≥ 2n

11 Sep 2018, Simons Institute Meena Mahajan



Proof Step 1 (cont’d)

f : {0, 1}n × {0, 1}n → {0, 1}, largest monochromatic square size t.

LDL : (f1, b1), (f2, b2), . . . , (fk , bk); fi : 〈Ai , x〉+ 〈Bi , y〉 ≥ Ti?.

→ {0, 1}n

↓
{0, 1}n

〈A1, x〉
decreasing

〈B1, y〉
decreasing

(f1 decreasing on diagonal)(f1 = 1)

◦

⇐f = b1

〈A2, x〉
decreasing

〈B2, y〉
decreasing

(f2 decreasing on diagonal)(f2 = 1)

◦

⇐f = b2

f = bk

kt ≥ 2n

11 Sep 2018, Simons Institute Meena Mahajan



Proof Step 1 (cont’d)

f : {0, 1}n × {0, 1}n → {0, 1}, largest monochromatic square size t.

LDL : (f1, b1), (f2, b2), . . . , (fk , bk); fi : 〈Ai , x〉+ 〈Bi , y〉 ≥ Ti?.

→ {0, 1}n

↓
{0, 1}n

〈A1, x〉
decreasing

〈B1, y〉
decreasing

(f1 decreasing on diagonal)(f1 = 1)

◦

⇐f = b1

〈A2, x〉
decreasing

〈B2, y〉
decreasing

(f2 decreasing on diagonal)(f2 = 1)

◦

⇐f = b2

f = bk

kt ≥ 2n

11 Sep 2018, Simons Institute Meena Mahajan



Proof Step 1 (cont’d)

f : {0, 1}n × {0, 1}n → {0, 1}, largest monochromatic square size t.

LDL : (f1, b1), (f2, b2), . . . , (fk , bk); fi : 〈Ai , x〉+ 〈Bi , y〉 ≥ Ti?.

→ {0, 1}n

↓
{0, 1}n

〈A1, x〉
decreasing

〈B1, y〉
decreasing

(f1 decreasing on diagonal)(f1 = 1)

◦

⇐f = b1

〈A2, x〉
decreasing

〈B2, y〉
decreasing

(f2 decreasing on diagonal)(f2 = 1)

◦

⇐f = b2

f = bk

kt ≥ 2n

11 Sep 2018, Simons Institute Meena Mahajan



Proof Step 2

MAJ ◦ XOR(x , y) = 1 iff Hamming distance dH(x , y) ≥ n/2.

Theorem

The largest monochromatic square in MAJ ◦ XOR has size
∑bn/4c

i=0

(n
i

)
.

This size is at most 20.2n, enough for an exp lower bound for LDL.
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Proof Step 2 (cont’d)

0n

1n

Hamming Weight

0

n

n/2

3n/4

n/4

A large 1-chromatic square
A = {x ∈ {0, 1}n | HW (x) ≤ n/4}
B = {x ∈ {0, 1}n | HW (x) ≥ d3n/4e}

An isoperimetric inequality
due to Harper guarantees no
larger monochromatic square.
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Harper’s Theorem

0n

1n

∀A,B ⊆ {0, 1}n

0n

1n

∃A′,B ′ ⊆ {0, 1}n :
|A′| = |A|;
|B ′| = |B|′

dH(A′,B ′) ≥ dH(A,B);
A′,B ′, Hamming Balls
centred on 0n, 1n.
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Another separating example

OR ◦ EQ has no large monochromatic squares.
[Impaliazzo,Williams 2010]

So no short LDL.

OR ◦ EQ is in MAJ ◦ LTF.
(A more general result: MAJ ◦ EQ ⊆ MAJ ◦ LTF. [Hansen,Podolskii 2010])

MAJ ◦ LTF = MAJ ◦MAJ. [GHR 1992]
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Spectral classes

Fourier representation of f as
∑

S⊆[n] f̂S χS .

f is in PL1 if
∑

S⊆[n] |f̂S | ≤ poly(n).

f is in PL∞ if maxS⊆[n] |f̂S | ≥ 1
poly(n) .

The CompleteQuadratic function, a symmetric function, is not in
PL∞. [Bruck 1990].

Known: PL1 ( MAJ ◦ PARITY ( LTF ◦ PARITY ( PL∞. Also, many
known relationships with depth-2 threshold circuits. [Bruck 1990],
[Bruck,Smolensky 1990].
(MAJ ◦ PARITY = P̂T1 and LTF ◦ PARITY = PT1: threshold tests on

sparse polynomial with (poly-bounded) integer coefficients.)

Easy: MAJ ◦ XOR is in MAJ ◦ PARITY.
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Polynomial size: Updated Picture

PL1

P̂T1 = MAJ ◦ PARITY

PT1 = LTF ◦ PARITY

PL∞

MAJ

LTF

MAJ ◦MAJ

LTF ◦MAJ

LTF ◦ LTF

LDL

L̂DL
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Why we got interested in Decision Lists ...

Cutting Planes CP: a proof system for certifying unsatisfiability.
QCP: an augmented proof system for certifying falsity of a Quantified
Boolean Formula QBF. [Beyersdorff,Chew,M,Shukla 2016]

QBF false ⇐⇒ universal player has a winning strategy in the
evaluation game.

Short QCP proof implies short LDL computing winning strategy.
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Transferring LDL lower bounds to QCP

Find a function f hard for LDL.

Design a false QBF where any winning strategy of the universal player
involves computing f .

This is easy if f has a small circuit C . Define QBF Qf ,C :

∃x1x2 . . . xn∀w∃z1z2 . . . zm
[

(w 6= zm)
(zi = value of ith gate of C (x)) : i ∈ [m]

]
(zi clauses enforce zm = f (x).)

Only winning strategy: w = f (x).
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involves computing f .

This is easy if f has a small circuit C . Define QBF Qf ,C :

∃x1x2 . . . xn∀w∃z1z2 . . . zm
[

(w 6= zm)
(zi = value of ith gate of C (x)) : i ∈ [m]

]
(zi clauses enforce zm = f (x).)

Only winning strategy: w = f (x).
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Another question about QCP

CP∗, QCP∗: restricting CP and QCP to poly-bounded coefficients.

CP∗ weaker than CP???

Is QCP∗ weaker than QCP, not purely propositionally?
(ie even given a SAT oracle? as formalised in
[Beyersdorff,Hinde,Pich 2017] [Chen 2016])

L̂DL lower bounds can be transferred to QCP∗.
This isn’t enough, but it’s a start.

Why not enough?
Short QCP proof implies short LDL computing winning strategy.
Short QCP∗ proof implies short L̂DL computing winning strategy.

But converse not true; An encoding of clique-coclique has a trivial
winning strategy, no short QCP proof.
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Summary

New Incomparabilities

The classes L̂DL and LDL (poly-size) are incomparable with each of
MAJ ◦MAJ, MAJ ◦ PARITY, LTF ◦ PARITY, PL∞.

Questions

Are L̂DLs weaker than LDLs?

Are L̂DLs incomparable with LTFs?

Are LDLs incomparable with
LTF ◦MAJ?

Is PL1 in LDL? in L̂DL?
PL1

MAJ ◦ PARITY

LTF ◦ PARITY

PL∞

MAJ

LTF

MAJ ◦MAJ

LTF ◦MAJ

LTF ◦ LTF

LDL

L̂DL
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