
Randomized Numerical Linear Algebra:
Sampling for linear algebra, statistics, and

optimization

Michael W. Mahoney

ICSI and Dept of Statistics, UC Berkeley

http://www.stat.berkeley.edu/∼mmahoney/

August 2018

Mahoney (UC Berkeley) RandNLA Sampling August 2018 1 / 102



Outline
1 Background and Overview

2 Approximating Matrix Multiplication: The Key Primitive

3 Applying Basic RandNLA Principles to Least-squares

4 Applying Basic RandNLA Principles to Low-rank Approximation

5 Beyond Basic RandNLA

6 Statistics Approaches
A statistical perspective on “algorithmic leveraging”
Asymptotic analysis
Structural results
A connection with bootstrapping

7 Optimization Approaches
First-order Optimization
Second-order Optimization

8 Conclusions



RandNLA: Randomized Numerical Linear Algebra

Matrices provide a natural structure with which to model data.

A ∈ Rm×n can encode information about m objects, each of which is
described by n features; etc.

A positive definite A ∈ Rn×n can encode the correlations/similarities
between all pairs of n objects; etc.

Motivated by data problems, recent years have witnessed many exciting
developments in the theory and practice of matrix algorithms.

Particularly remarkable is the use of randomization.

Typically, it is assumed to be a property of the input data due (e.g., to noise
in the data generation mechanisms).

Here, it is used as an algorithmic or computational resource.
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RandNLA: Randomized Numerical Linear Algebra

An interdisciplinary research area that exploits randomization as a
computational resource to develop improved algorithms for large-scale
linear algebra problems.

Foundational perspective: roots in theoretical computer science (TCS); deep
connections with convex analysis, probability theory, and metric embedding
theory, etc.; and strong connections with scientific computing, signal
processing, and numerical linear algebra (NLA).

Implementational perspective: well-engineered RandNLA algorithms beat
highly-optimized software libraries for problems such as very over-determined
least-squares and scale well to parallel/distributed environments.

Data analysis perspective: strong connections with machine learning and
statistics and many “non-methodological” applications of data analysis.

Growing interest in providing an algorithmic and statistical foundation for
modern large-scale data analysis.
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An historical perspective

Linear algebra has had a long history in large-scale (by the standards of
the day) statistical data analysis.

Method of least-squares (LS): due to Gauss, Legendre, and others; and used
in early 1800s for fitting linear equations to determine planetary orbits.

Principal Component Analysis (PCA) and low-rank approximations: due to
Pearson, Hotelling, and others, and used in early 1900s for exploratory data
analysis and predictive analytics.

These and related methods are of interest since, e.g., if there is noise or
randomness in the data then the leading principle components tend to
capture the signal and remove the noise.
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An historical perspective

Advent of the digital computer in the 1950s:

Proto computer science and early applications of linear algebra focused on
scientific computing problems (where computation was an essential tool)

Even for “well-posed” problems, many algorithms perormed very poorly in
the presence of the finite precision.

Work by Turing, von Neumann, and others laid much of the foundations for
scientific computing and NLA: this led to problem-specific complexity
measures (e.g., the condition number) that characterize the behavior of an
input for a specific class of algorithms (e.g., iterative algorithms).

But . . . (for various technical and nontechnical reasons), there then
occured a split in the nascent field of computer science:

Continuous linear algebra became the domain of applied mathematics.

Computer science theory and practice became discrete and combinatorial.
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An historical perspective

Linear algebra became the domain of continuous applied mathematics; and it focused
on scientific applications.

Nearly all work in scientific computing and NLA has been deterministic; this led to
high-quality codes in the 1980s/1990s, e.g., LAPACK.

Most work focused on optimizing FLOPS—matrix-vector multiplies on dense matrices—in
shared memory environments on matrices that arise in structured scientific computing
applications.

This code is now widely-used in NLA and scientific computing as well as in machine
learning, statistics, data analysis, etc.

Computer science became discrete and combinatorial; and it focused on business and
commerce applications.

Turing, Church, and other studied computation per se—seemingly-different approaches
(recursion theory, the λ-calculus, and Turing machines) defined the same class of functions

Belief arose that the concept of computability is formally captured in a qualitative and
robust way by these three equivalent processes, independent of the input data.

Randomization (where the randomness is inside the algorithm, and the algorithm is
applied to arbitrary or worst-case data) was introduced and exploited as a powerful
computational resource.
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An historical perspective: now and going forward . . .

Recently, a convergence of these two very different perspectives.

Motivated by scientific, Internet, social media, financial, etc. applications.

Computation per se is necessary but very insufficient.

Most people want to obtain insight and/or make predictions from the data
they generate to make downstream claims about the world.

Central to these developments RandNLA, including:

Randomness in the data versus randomness in the algorithm.

Continuous (mathematics) versus discrete (computer science).

Worst-case algorithms versus problem-specific complexity measures.

Scientific versus business/commerce applications.

Good “hydrogen atom” to consider algorithmic and statistical foundations
of modern large-scale data analysis.
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Basic RandNLA Principles
Drineas and Mahoney, CACM, 2016

Basic RandNLA method: given an input matrix:

Construct a “sketch” (a smaller or sparser matrix matrix that represents the
essential information in the original matrix) by random sampling.

Use that sketch as a surrogate to compute quantities of interest.

Basic design principles∗ underlying RandNLA:

Randomly sample (in a careful data-dependent manner) a small number of
elements to create a much sparser sketch of the original matrix.

Randomly sample (in a careful data-dependent manner) a small number of
columns and/or rows to create a much smaller sketch of the original matrix.

Preprocess an input matrix with a random-projection-type matrix and then
do uniform sampling of rows/columns/elements in order to create a sketch.

∗
The first two principles deal with identifying nonuniformity structure. The third principle deals with preconditioning the

input (i.e., uniformizing nonuniformity structure) s.t. uniform random sampling performs well.
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Element-wise Sampling
Drineas and Mahoney, CACM, 2016

An m × n matrix A is an array of numbers, Aij , ∀i ∈ [m],∀j ∈ [n].

Randomly sample a small number of entries, each w.r.t. importance
sampling probability distribution pij .

Return a sparse matrix Ã that contains precisely the (rescaled) entries.

Uniform sampling easily leads to poor results; but non-uniform sampling
w.r.t. magnitudes or element-wise leverage scores gives nontrivial results.

Thm [AM01/AM07/DZ11]: If sample s elements with pij =
A2
ij∑

i,j A
2
ij

, then

‖A− Ã‖2 ≤ O

(√
(m + n) ln (m + n)

s

)
‖A‖F .

This gives “additive-error” bounds for low-rank matrix approximation.

Proof method: A− Ã is a random matrix; use random matrix theory,
combinatorial moment methods, matrix measure concentration bounds.
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Row/column Sampling
Drineas and Mahoney, CACM, 2016

An m × n matrix A is a linear operator, with column/row spaces.

Randomly sample a small number of rows, each w.r.t. importance sampling
probability distribution {pi}mi=1.

Return s × n matrix Ã, an approximation to A, containing s (rescaled) rows.

Uniform sampling easily leads to poor results; but non-uniform sampling
w.r.t. magnitudes or leverage scores gives nontrivial results.

Thm [FVK97/DKM05/RV06]: If sample s rows with pi =
‖A(i)‖2∑

i,j A
2
ij

, then

‖ATA− ÃT Ã‖F ≤
1√
s
‖A‖2

F .

This gives “additive-error” bounds for low-rank matrix approximation.

Proof method: expectations and variances for ‖ · ‖F ; Khintchine inequality
or matrix-Bernstein inequalities for ‖ · ‖2 extension.
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Row/column Sampling
Drineas and Mahoney, CACM, 2016

Norm-squared sampling does only comparable to element-wise sampling.

I (I.e., element-wise sampling does only comparable to very coarse
norm-squared sampling.)

Leverage score sampling does much better: say m� n, then let

pi =
1

n
(PA)ii =

1

n
‖U(i)‖2

2,

where U is any m × n orthogonal matrix spanning the column space of A.

These statistical leverage scores

I are useful in regression diagnostics to identify outliers
I approximatable without computing U in “random projection time”
I give “relative-error” bounds for least-squares & low-rank approximation
I provide data-aware subspace embedding: fix ε ∈ (0, 1), s & n log(n)

ε then

‖UTU − (SU)T SU‖2 = ‖I − (SU)T SU‖ ≤ ε.

(For NLA, this is an acute perturbation; for TCS this is a subspace JL.)
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Random Projections as Preconditioners†

Drineas and Mahoney, CACM, 2016

Main challenge for uniform sampling: relevant information could be
localized on a small number of rows/columns/elements.

Main challenge for non-uniform sampling: construct sampling probabilities.

One solution: spread out this information, so uniform sampling does well.

Bicriteria:

I Preprocessed matrix should be similar to the original matrix.
I Preprocessing should be computationally efficient to perform.

Do this preconditioning with random projections:

I Pre-/post-multiply by appropriately-scaled random matrix (i.i.d.
Gaussians, i.i.d. Rademacher, Hadamard-based constructions, etc.)

I Can get data-oblivious subspace embedding: fix ε ∈ (0, 1), then

‖UTU − (ΠU)T ΠU‖2 = ‖I − (ΠU)T ΠU‖ ≤ ε.

(For NLA, this is an acute perturbation; for TCS this is a subspace JL.)

†
Preconditioners: a transformation that converts a problem instance into another instance that is more-easily solved by a

given class of algorithms.
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Approximating Matrix Multiplication

Problem Statement: Given an m × n matrix A and an n × p matrix B,
approximate the product A · B.

OR, equivalently,

Problem Statement: Approximate the sum of n rank-one matrices.

A · B =
n∑

k=1

 A∗k

 · ( Bk∗
)

︸ ︷︷ ︸
∈Rm×p
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Approximating Matrix Multiplication

A sampling approach:

1 Fix a set of probabilities pi , i = 1, . . . , n, summing up to 1.

2 For t = 1, . . . , c ,
set jt = i , where P[jt = i ] = pi .

(Pick c terms of the sum, with replacement, with respect to the pi .)

3 Approximate the product AB by summing the c terms, after scaling.

A·B =
n∑

k=1

 A∗k

·( Bk∗
)
≈

c∑
t=1

1

cpjt

 A∗jt

·( Bjt∗
)
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Approximating Matrix Multiplication
The same algorithm, in matrix notation:

1 Pick c columns of A to form an m × c matrix C and the corresponding c
rows of B to form a c × p matrix R.

2 Rescale the columns/rows prior to including them in C/R.

3 Approximate A · B by C · R.


A


m×n


B


n×p

≈


C


m×c

 R


c×p

Can use a “sampling matrix” formalism:

Let S be n × c matrix whose tth column (t = 1, . . . , c) has one non-zero:

Sjt t =
1
√
cpjt

Clearly: A · B ≈ C · R = (AS) ·
(
STB

)
.
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Approximating Matrix Multiplication
Some simple lemmas:

For any sampling probabilities:

E[(CR)ij ] = (AB)ij

Var[(CR)ij ] =
1

c

n∑
k=1

A2
ikB

2
kj

pk
− 1

c
(AB)2

ij

From these, it’s easy to bound E [‖AB − CR‖F ].

Remove the expectation with Markov’s inequality or a martingale argument.

To minimize E [‖AB − CR‖F ], use these probabilities:

P[jt = i ] =
‖A∗i‖2‖Bi∗‖2∑n
j=1 ‖A∗j‖2‖Bj∗‖2

(1)

This gives:

E [‖AB − CR‖F ] = E
[
‖AB − ASSTB‖F

]
≤ 1√

c
‖A‖F‖B‖F (2)

Similar bounds to (2) if approximate probabilities (1) in one of many ways.
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Approximating Matrix Multiplication

This Frobenius norm bound is used in many places in RandNLA, but ...

a “better” spectral norm bound is possible via Chernoff/Bernstein inequalities.

Lemma (DMMS, Num Math 2011, Thm 4)

Assume:

‖A‖2 ≤ 1: (“not important,” just normalization)

‖A‖F ≥ 0.2: (“not important,” simplifies bounds)

Set:

c = Ω

(
‖A‖2

F

ε2
ln

(
‖A‖2

F

ε2
√
δ

))
.

Then, for any ε ∈ (0, 1), w.p. ≥ 1− δ, we have:

‖AAT − CCT‖2 = ‖AAT − ASSTAT‖2 ≤ ε.
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Approximating Matrix Multiplication

The spectral norm bound is “better,” but:

It only holds for B = AT , so it doesn’t hold for arbitrary AB.

The “not important” conditions mean it doesn’t hold for arbitrary A.

The “main use case” for the spectral norm bound:

Let AT be an n × d matrix U with orthonormal columns, where n� d .

Then UTU = Id , and we want to show that

‖UTSSTU − UTU‖2 = ‖UTSSTU − Id‖2 ≤ ε ∈ (0, 1).

Using the Frobenius norm bound, we get

‖UTSSTU − I‖2 ≤ ‖UTSSTU − I‖F ≤
1√
c
‖U‖2

F =
d√
c
.

Using the spectral norm bound, we get

‖UTSSTU − I‖2 .
ln c√
c
‖U‖F‖U‖2 =

√
d ln c√
c

.
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Approximating Matrix Multiplication

Similar results for many “dense sampling matrix” constructions:

Natural interpretation as a random projection or random sketch:

I Recall David Woodruff’s and Ken Clarkson’s presentations yesterday.

Natural interpretation in terms of preconditioning/preprocessing:

I We’ll discuss below for least-squares approximation.
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Subspace Embeddings
(Mahoney, FnTML, 2011; Woodruff, FnTML, 2014.)

Definition
Let U be an m × n orthogonal matrix, and let S be any n ×m matrix. Then, S is a
subspace embedding if

‖UTU − (SU)T SU‖2 = ‖I − (SU)T SU‖2 ≤ ε.

Things to note:

Many constructions (random sampling and projection methods, deterministic
constructions, hasing functions, etc.) satisfy this condition.

First used in data-aware context with leverage score sampling (DMM06, DMM08)

Used in data-oblivious context with Hadamard-based projections (S06, DMMS08)

For NLA, this is an acute perturbation.

For TCS, this is a subspace analogue of JL lemma.

This is a “must must have” for TCS; for everyone else, it’s optional.

Numerical implementations: loosing rank still gives a good preconditioner.

Statistics and machine learning: loosing rank introduces a bit of bias.
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Least-squares approximation

Least-squares (LS) : given m × n matrix A and m-dimensional vector b, solve

xopt = arg min
x∈Rn
‖Ax − b‖2.

If m� n, it is overdetermined/overconstrained.

Compute solution in O(mn2) time (in RAM model) with one of several
methods: normal equations; QR decompositions; or SVD.

RandNLA provides faster algorithms for this ubiquitous problem.

I TCS: faster in terms of low-precision asymptotic worst-case theory.
I NLA: faster in terms of high-precision wall-clock time.
I Implementations: can compute (in Spark/MPI/etc.) low, medium,

and high precision solutions on up to terabyte-sized data.
I Data Applications: faster algorithms and/or implicit regularization for

many machine learning and data science problems.

The basic RandNLA approach extends to many other matrix problems.

Mahoney (UC Berkeley) RandNLA Sampling August 2018 24 / 102



Two important notions: leverage and condition
(Mahoney, “Randomized Algorithms for Matrices and Data,” FnTML, 2011.)

Statistical leverage. (Think: eigenvectors. Important for low-precision.)
I The statistical leverage scores of A (assume m� n) are the diagonal

elements of the projection matrix onto the column span of A.
I They equal the `2-norm-squared of any orthogonal basis spanning A.
I They measure:

F how well-correlated the singular vectors are with the canonical basis
F which constraints have largest “influence” on the LS fit
F a notion of “coherence” or “outlierness”

I Computing them exactly is as hard as solving the LS problem.

Condition number. (Think: eigenvalues. Important for high-precision.)
I The `2-norm condition number of A is κ(A) = σmax(A)/σ+

min(A).
I κ(A) bounds the number of iterations; for ill-conditioned problems

(e.g., κ(A) ≈ 106 � 1), the convergence speed is very slow.
I Computing κ(A) is generally as hard as solving the LS problem.

These are for the `2-norm. Generalizations exist for the `1-norm, etc.
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Meta-algorithm for `2-norm regression (1 of 3)
(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, 2011.)

1: Using the `2 statistical leverage scores of A, construct an importance sampling
distribution {pi}mi=1.

2: Randomly sample a small number of constraints according to {pi}mi=1 to construct a
subproblem.

3: Solve the `2-regression problem on the subproblem.

A näıve version of this meta-algorithm:

gives a 1 + ε relative-error approximation, that fails with probability δ, in roughly
O(mn2/ε) time (DMM 2006, 2008). (Ugh—seems bad—why would one do this?)

A non-näıve version of this meta-algorithm:

gives the best worst-case algorithm in RAM.

beats LAPACK for high precision in wall-clock time.

super-terabyte-scale implementations in parallel/distributed environments.

provides the foundation for low-rank approximations and the rest of RandNLA.
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Meta-algorithm for `2-norm regression (2 of 3)
(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, 2011.)

Randomly sample high-leverage
constraints

Solve the subproblem

(In many moderately large-scale

applications, one uses “`2 objectives,”

not since they are “right,” but since

other things are even more expensive.)
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Meta-algorithm for `2-norm regression (3 of 3)
(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, 2011.¶)

We can make this meta-algorithm “fast” in RAM:‡

This meta-algorithm runs in O(mn log n/ε) time in RAM if:
I we perform a Hadamard-based random random projection and sample

uniformly sampling in the randomly rotated basis, or
I we quickly computing approximations to the statistical leverage scores

and using those as an importance sampling distribution.

We can make this meta-algorithm “high precision” in RAM:§

This meta-algorithm runs in O(mn log n log(1/ε)) time in RAM if:
I we use the random projection/sampling basis to construct a

preconditioner and couple with a traditional iterative algorithm.

See Blendenpik/LSRN for NLA-style wall-clock time comparisons.

Both can be improved (in theory) to run in almost O(nnz(A)) time.
‡

(Sarlós 2006; Drineas, Mahoney, Muthu, Sarlós 2010; Drineas, Magdon-Ismail, Mahoney, Woodruff 2011.)
§

(Rokhlin & Tygert 2008; Avron, Maymounkov, & Toledo 2010; Meng, Saunders, & Mahoney 2011.)
¶

(Mahoney, “Randomized Algorithms for Matrices and Data,” FnTML, 2011.)
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Least-squares approximation: the basic structural result

Consider the over-determined least-squares approximation problem:

Z2
2 = min

x∈Rn
‖b − Ax‖2

2 = ‖b − Axopt‖2
2

as well as the “preconditioned ” the least-squares approximation problem:

Z̃2
2 = min

x∈Rn
‖Ω(b − Ax)‖2

2 = ‖b − Ax̃opt‖2
2

where Ω is any matrix.

Theorem (Fundamental Structural Result for Least-Squares)

If Ω satisfies the two basic conditions (constants are somewhat arbitrary):

σ2
min(ΩUA) ≥ 1/

√
2∥∥∥UT

A ΩTΩb⊥
∥∥∥2

2
≤ εZ2

2/2, where b⊥ = b − UAU
T
A A,

then:

‖Ax̃opt − b‖2 ≤ (1 + ε)Z2

‖xopt − x̃opt‖2 ≤ 1

σmin(A)

√
εZ2.
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Least-squares approximation: satisfying the two conditions

Both conditions are an approximate matrix-matrix multiplication result:

First condition:

‖UT
A UA − UT

A ΩΩTUA‖2
2 = ‖I − UT

A ΩΩTUA‖2
2 ≤ ε,

w.p. ≥ 1− δ, if r = O
(

n
ε2 ln

(
n

ε2
√
δ

))
.

Second condition:

E
[
‖UT

A ΩΩTb⊥ − UT
A b⊥‖2

2

]
≤ 1

r
‖UA‖2

F‖b⊥‖2
2 =

n

r
Z2

2 ,

and remove expectation with Markov.

Things to note:

Many constructions (random sampling and projection methods, deterministic
constructions, hasing functions, etc.) satisfy these conditions.

Which construction you use depends on which you like.

εs don’t matter: TCS people don’t care; NLA people precondition; ML/DA poeple
have different pain points

Mahoney (UC Berkeley) RandNLA Sampling August 2018 32 / 102



Least-squares approximation: RAM implementations
Avron, Maymounkov, and Toledo, SISC, 32, 1217–1236, 2010.

Conclusions:

Randomized algorithms “beats Lapack’s direct dense least-squares
solver by a large margin on essentially any dense tall matrix.”

These results “suggest that random projection algorithms should be
incorporated into future versions of Lapack.”
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Extensions to Low-rank Approximation (Projections)
(Halko, Martinsson, and Tropp, 2011.)

In scientific computing, goal is to find a good basis for the span of A ...

Input: m × n matrix A, target rank k and over-sampling parameter p
Output: Rank-(k + p) factors U, Σ, and V s.t. A ≈ UΣV T .

1 Draw a n × (k + p) Gaussian random matrix Ω.

2 Form the n × (k + p) sample matrix Y = AΩ.

3 Compute an orthonormal matrix Q s.t. Y = QQTY .

4 Form the small matrix B = QTA.

5 Factor the small matrix B = ÛΣV T .

6 Form U = QÛ.

Can prove bounds of the form:

‖A− QQTA‖F ≤
(

1 +
k

p − 1

)1/2
min{m,n}∑

j=k+1

σ2
j

1/2

‖A− QQTA‖2 ≤
(

1 +

√
k

p − 1

)
σk+1 +

e
√
k + p

p

min{m,n}∑
j=k+1

σ2
j

1/2

Question: How does one prove bounds of this form?
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Extensions to Low-rank Approximation (Sampling)
(Boutsidis, Mahoney, Drineas, CSSP, 2009; Mahoney and Drineas, “Structural properties,” 2016.)

Answer: Basic structural result for RLA low-rank matrix approximation.

Lemma (Fundamental Structural Result for Low-Rank)

Given A ∈ Rm×n, let Vk ∈ Rn×k be the matrix of the top k right singular vectors of A.
Let Ω ∈ Rn×r (r ≥ k) be any matrix such that Y TΩ has full rank. Then, for any
unitarily invariant norm ξ,

‖A− PAΩA‖ξ ≤ ‖A− Ak‖ξ + ‖Σk,⊥

(
V T

k,⊥Ω
)(

V T
k Ω
)+

‖ξ.

Given this structural result, we obtain results for

the Column Subset Selection Problem (BMD09)

using random projections to approximate low-rank matrix approximations
(RT10,HMT11,etc.)

developing improved Nyström-based low-rank matrix approximations of SPSD
matrices (GM13)

developing improved feature selection methods (many)

other low-rank matrix approximation methods
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Extensions to Low-rank Approximation (SPSD Matrices)
Gittens and Mahoney, “Revisiting the Nystrom Method ...,” TR 2013; ICML 2014; JMLR 2015

SPSD Sketching Model. Let A be an n× n positive semi-definite matrix, and let S
be a matrix of size n × `, where `� n. Take

C = AS and W = STAS .

Then CW+CT is a low-rank approximation to A with rank at most `.

Lemma (Fundamental Structural Result for SPSD Low-Rank)

Let A be an n × n SPSD matrix s.t. A = UΣUT , where U1 is top k eigenvalues,
Ω1 = UT

1 S , etc., and let S be a sampling/sketching matrix of size n × `. Then

‖A− CW †CT‖2 ≤ ‖Σ2‖2 + ‖Σ1/2
2 Ω2Ω†1‖

2
2,

‖A− CW †CT‖F ≤ ‖Σ2‖F +
√

2‖Σ2Ω2Ω†1‖F + ‖Σ1/2
2 Ω2Ω†1‖

2
F

‖A− CW †CT‖Tr ≤ Tr(Σ2) + ‖Σ1/2
2 Ω2Ω†1‖

2
F

assuming Ω1 has full row rank.

From this, easy to derive additive-error approximations for spectral and Frobenius
norm (with scale set by Trace norm error) and relative-error approximation for
Trace norm in “random projection time.”

Mahoney (UC Berkeley) RandNLA Sampling August 2018 37 / 102



Outline
1 Background and Overview

2 Approximating Matrix Multiplication: The Key Primitive

3 Applying Basic RandNLA Principles to Least-squares

4 Applying Basic RandNLA Principles to Low-rank Approximation

5 Beyond Basic RandNLA

6 Statistics Approaches
A statistical perspective on “algorithmic leveraging”
Asymptotic analysis
Structural results
A connection with bootstrapping

7 Optimization Approaches
First-order Optimization
Second-order Optimization

8 Conclusions



Extensions and Applications of Basic RandNLA Principles
Drineas and Mahoney, CACM, 2016

High-precision numerical implementations:
I Use sketches to construct preconditioners for iterative algorithms.

Matrix completion:
I Reconstruct unobserved entries from hypothesized matrix under

incoherence assumptions with heavier-duty methods.

Solving systems of Laplacian-based linear equations:
I Approximate effective resistance with graph-theoretic techniques to get

near linear time solvers for Laplacian SPSD matrices.

Machine learning:
I Interested in uses for kernel learning (then) and neural networks (now).

Statistics:
I Connections with factor models, GLMs, experimental design, regression

diagnostics, asymptotic analysis, consistency issues, sparsity issues.

Optimization:
I Sample gradient and/or Hessian in first-order or second-order methods.
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Statistics versus machine learning

Operationally, let’s say the following.

Statistics is what statisticians do.

Machine learning is what machine learners do.

For us, the point is the following.

Differences are often (not always) more cultural that technical.

Cultural differences are significant.

Differences are also nonstationary, with some convergence.

The two groups so far interact with RandNLA in different ways.
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Lots of related work

Historically, a lot of work in traditional statistics:

Resampling methods such as the bootstrap and jackknife: Jaeckel (1972), Miller
(1974), Efron (1979), Wu (1986), Shao and Tu (1995), etc.

Goal is traditionally to perform statistical inference and not to improve the running
time of an algorithm.

Samples are of similar size to that of the full data, e.g., Ω(n), Ω(n1/2), etc.

More recently, in machine learning and data analysis:

Kleiner, Talwalkar, Sarkar, and Jordan, ICML12.

Qin and Rohe, NIPS13.

Dhillon, Lu, Foster, and Ungar, NIPS13.

Hsu, Kakade, and Zhang, FoCM14.

Ma, Mahoney, and Yu, TR13, ICML14, JMLR15.

Raskutti and Mahoney, TR14, ICML15, JMLR16.

...

Goal is improved inference and/or improved running time.

Mahoney (UC Berkeley) RandNLA Sampling August 2018 43 / 102



A statistical perspective on algorithmic leveraging
(Ma, Mahoney, and Yu 2013)

Consider the model
y = Xβ0 + ε,

where‖ y is an n × 1 response vector, X is an n × p fixed predictor/design
matrix, β0 is a p× 1 coefficient vector, and the noise vector ε ∼ N(0, σ2I ).
Then,

β̂ols = argminβ||y − Xβ||2 = (XTX )−1XT y

ŷ = Hy , where H = X (XTX )−1XT

hii =

p∑
j=1

U2
ij = ||U(i)||2 is the leverage of the i th point

‖The hardest part is remembering minx ‖Ax − b‖2 ⇔ minβ ‖Xβ − y‖2.
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Recall the main “algorithmic leveraging” result
(Refs in Mahoney FnTML, 2011.)

1: Randomly sample r > p constraints (rows of X and elements of y),
using {πi}ni=1 as an importance sampling distribution.

2: Rescale each sampled row/element by 1/rπi to form a weighted LS
subproblem argminβ∈Rp ||DST

X y − DST
X Xβ||2.

3: Solve the weighted LS subproblem and return the solution β̃ols .

Theorem (DMM06)

If πi ≥ γ hii
p , for a parameter γ ∈ (0, 1], and if r = O(p log(p)/γε), then, with

constant probability (with respect to the random choices made by the algorithm),
relative-error bounds of the form

||y − X β̃ols ||2 ≤ (1 + ε)||y − X β̂ols ||2 and

||β̂ols − β̃ols ||2 ≤
√
ε
(
κ(X )

√
ξ−2 − 1

)
||β̂ols ||2

hold, where ξ = ||UUT y ||2/||y ||2.

Mahoney (UC Berkeley) RandNLA Sampling August 2018 45 / 102



Constructing the subsample
(Mahoney FnTML, 2011; Ma, Mahoney, and Yu 2013.)

1: Randomly sample r > p constraints (rows of X and elements of y),
using {πi}ni=1 as an importance sampling distribution.

2: Rescale each sampled row/element by 1/rπi to form a weighted LS
subproblem argminβ∈Rp ||DST

X y − DST
X Xβ||2.

3: Solve the weighted LS subproblem and return the solution β̃ols .

We consider the empirical performance of several versions:

UNIF: sample uniformly (rescaling doesn’t matter)

BLEV: sample (and rescale) with “expensive” exact leverage scores

ALEV: sample (and rescale) with “fast” approximate leverage scores

SLEV: sample (and rescale) with 0.9lev + 0.1unif

UNWL: sample with leverage scores but don’t reweight subproblem
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Bias and variance of subsampling estimators (1 of 3)
(Ma, Mahoney, and Yu 2013)

The estimate obtained by solving the subproblem is:

β̃Ω = (XTSXD
2ST

X X )−1XTST
X D2SX y

= (XTWX )−1XTWy ,

where Ω refers to the sampling/resacling process. This depends on subsampling
through a nonlinear function, the inverse of random sampling matrix, so do a
Taylor series expansion.

Lemma (MMY13)

A Taylor expansion of β̃Ω around the point w0 = 1 = E {w} yields

β̃Ω = β̂ols + (XTX )−1XTDiag {ê} (w − 1) + RΩ,

where ê = y − X β̂ols is the LS residual vector, and where RΩ is the Taylor
expansion remainder.
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Bias and variance of subsampling estimators (2 of 3)
(Ma, Mahoney, and Yu 2013)

Lemma (MMY13)

The conditional expectation/variance for algorithmic leveraging procedure
is given by:

Ew

[
β̃Ω|y

]
= β̂ols + Ew [RΩ] ;

Varw

[
β̃Ω|y

]
= (XTX )−1XT

[
Diag {ê}Diag

{
1

rπ

}
Diag {ê}

]
X (XTX )−1 + Varw [RΩ] ,

where Ω specifies the sampling/rescaling probability distribution.
The unconditional expectation/variance for the is given by:

E
[
β̃Ω

]
=β0 + E [RΩ] ;

Var
[
β̃Ω

]
=σ2(XTX )−1 +

σ2

r
(XTX )−1XTDiag

{
(1− hii )

2

πi

}
X (XTX )−1 + Var [RΩ] .
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Bias and variance of subsampling estimators (3 of 3)
(Ma, Mahoney, and Yu 2013)

So, for any sampling/rescaling probability distribution:

Conditional/unconditional estimates unbiased around β̂ols/β0

Variance depends on the details of sampling/rescaling

This holds when higher-order terms in RΩ are small—informally, when
leverage-based sampling is used and rank is preserved.

We consider the empirical performance of several versions:

UNIF: variance scales as n
r

BLEV: variance scales as p
r , but have 1

hii
terms in denominator of sandwich

expression

ALEV: faster but similar to or slightly better than BLEV

SLEV: variance scales as p
r but 1

hii
terms in denominator are moderated since

no probabilities are too small

UNWL: 1
hii

terms are not in denominator, but estimates unbiased around

β̂wls/β0.
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BLEV and UNIF on data with different leverage scores
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Figure: Empirical variances and squared biases of the BLEV and UNIF estimators in three

data sets (left to right, Gaussian, multivariate-t with 3 d.o.f. (T3), and multivariate-t with 1

d.o.f. (T1)) for n = 1000 and p = 50. Black lines are BLEV; dash lines are UNIF.
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BLEV and UNIF when rank is lost (1 of 2)

0 100 300 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

subsample size

pr
op

 o
f s

in
gu

la
rit

ie
s

●

●

●
●●●●●●●●●● ● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●●
●

●

●

●

●
● ● ● ●

BLEV
UNIF

0 100 300 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

subsample size

pr
op

 o
f s

in
gu

la
rit

ie
s

●

●

●

●
●●●●●●●●● ● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●●
●

●

●

●

●
● ● ● ●

0 100 300 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

subsample size

pr
op

 o
f s

in
gu

la
rit

ie
s

●

●

●

●

●
●
●●●●●●● ● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●●
●

●

●

●

●
● ● ● ●

●●●●●

●

●●●●●

●

●●●●

●

●●●●●●

●

●

●

●●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●●●

●

●

●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●●●

●

●●●●●●●

●●●

●●

●

●●●●●●●

●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●

●

●● ●●●●●●●● ●● ●

11 15 19 50 300

0
2

4
6

8
10

subsample size

ra
nk

●●

●

●●●●●●●●●●●●●●●

●●

●●●●●●

●●

●●●●●●●●●●●

●

●●●●●

●

●

●

●●●●●

●

●●●●●●

●

●●●●●●●

●●●●

●

●●●●●

●

●●●●●●●●●

●

●●

●●

●●●●●●

●

●●●●

●

●●●●●

●

●

●●●●

●●

●

●●●●●●●

●

●●●●●●●

●

●

●

●●

●

●

●

●

●●●●●●●

●

●●●●

●●

●●

●

●●●

●

●●●

●

●●●●●●●●●

●●

●●●●

●

●●●

●●

●●●

●

●●●●●●●

●

●

●

●●●●●●

●

●●●●●●●● ●●●●●●

●

●●

●

●●●●●●●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●●●

●

●●●●●●●●●

●

●●●●●

●

●●● ●●

●

●●●●●●●●●●●●●

●●●

●

●

●●●●●●

●

●● ●●●●●●●●●

●

●●●

●

●

●

● ● ●

11 15 19 50 300

0
2

4
6

8
10

subsample size

ra
nk

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●● ●●●●●●●●●●

●●

●●●●●●●●●●●●●

●

●●

●

●●●

●

●●●●

●

●●

●

●●

●

●

●●●

●●●●

●

●

●

●

●

●●

●●●

●●●●●

●●

●●

●●

●●●●●●●

●

●●●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●●●●●

●●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●

●

●

●

●

●

●●●●●●●●

●

●

●

●●●

●●

●●●●

●

●●●●

●

●●

●

●●

●●●

●●●

●

●

●●●●

●

●●●●

●

●●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●●●●●●●●

●

●●●●●

●

●●●●●●●

●

●

●

●●●●●

●

●●●●

●●

●●●●●

●

●●●●●●

●●

●

●

●●●●●●●●●

●

●●●●●●●●●●

●●

●

●●●●

●

●

●

●

●

●●

●●●●

●

●

●●●●

●

●●●●●●●●●●●●

●

●

●●●

●

●

● ●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●

●

●●

●

●

●

●●●●●

●●

●●●

●

●●●●

●

●●

●●

●

●

●

●●●●●

●●

●

●

●●●●●

●

●●

●

●●●

●

●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●● ●●

●

●●●●● ●

●

●●

●

●

11 15 19 50 300

0
2

4
6

8
10

subsample size

ra
nk

●●●●●●●●●●●●●●

●

●●●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●●

●●●●●●●●

●

●●●●●●●● ●●●●●●●●●●●

●

●●●●●●

●

●

●

●●●●●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●● ●●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●●

●●

●●●●●●●

●●

●

●

●●●●●●●●●

●

●●●● ●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●

●

●●●●●●●

●

●●●●

●

●●●●●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●

●●

●

●

●●●●●

●●

●● ●●

●

●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●

●

●●

●

●●●●●

●

●

●

●●

●

●

●

●●

●

●

●

●●●●●

●

●●●

●

●

●

●●●

●

●

● ●●

●

●

●●

●

●

●

●●●●●●●

●

●

●

●●●●

●

●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●

●

●●

●

●

●

●●●●

●●●

●

●

●●

●

●●

●

●

●●

●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●●●●●

●

●●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●

●●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●●●●●●

●

●●●●●●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●●

●

●●

●●●●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●

●●

●

●●

●

●●

●●●●

●●

●

●

●●●●

●

●●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●●●

●

●●

●●●●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

11 15 19 50 300

0
2

4
6

8
10

subsample size

ra
nk

●●●●●●●●●●●●●●

●

●●●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●●

●●●●●●●●

●

●●●●●●●● ●●●●●●●●●●●

●

●●●●●●

●

●

●

●●●●●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●● ●●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●●

●●

●●●●●●●

●●

●

●

●●●●●●●●●

●

●●●● ●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●

●

●●●●●●●

●

●●●●

●

●●●●●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●

●●

●

●

●●●●●

●●

●● ●●

●

●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●

●

●●

●

●●●●●

●

●

●

●●

●

●

●

●●

●

●

●

●●●●●

●

●●●

●

●

●

●●●

●

●

● ●●

●

●

●●

●

●

●

●●●●●●●

●

●

●

●●●●

●

●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●

●

●●

●

●

●

●●●●

●●●

●

●

●●

●

●●

●

●

●●

●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●●●●●

●

●●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●

●●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●●●●●●

●

●●●●●●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●●

●

●●

●●●●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●

●●

●

●●

●

●●

●●●●

●●

●

●

●●●●

●

●●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●●●

●

●●

●●●●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

11 15 19 50 300

0
2

4
6

8
10

subsample size

ra
nk

●●●●●●●●●●●●●●

●

●●●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●●

●●●●●●●●

●

●●●●●●●● ●●●●●●●●●●●

●

●●●●●●

●

●

●

●●●●●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●● ●●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●●

●●

●●●●●●●

●●

●

●

●●●●●●●●●

●

●●●● ●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●

●

●●●●●●●

●

●●●●

●

●●●●●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●

●●

●

●

●●●●●

●●

●● ●●

●

●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●

●

●●

●

●●●●●

●

●

●

●●

●

●

●

●●

●

●

●

●●●●●

●

●●●

●

●

●

●●●

●

●

● ●●

●

●

●●

●

●

●

●●●●●●●

●

●

●

●●●●

●

●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●

●

●●

●

●

●

●●●●

●●●

●

●

●●

●

●●

●

●

●●

●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●●●●●

●

●●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●

●●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●●●●●●

●

●●●●●●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●●

●

●●

●●●●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●

●●

●

●●

●

●●

●●●●

●●

●

●

●●●●

●

●●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●●●

●

●●

●●●●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

11 15 19 50 300

0
2

4
6

8
10

subsample size

ra
nk

Figure: Comparison of BLEV and UNIF when rank is lost in the sampling process (n = 1000

and p = 10 here). Left panels: T3 data. Middle panels: T2 data. Right panels: T1 data. Upper

panels: Proportion of singular XTWX , out of 500 trials, for both BLEV (solid lines) and UNIF

(dashed lines). Middle panels: Boxplots of ranks of 500 BLEV subsamples. Lower panels:

Boxplots of ranks of 500 UNIF subsamples. Note the nonstandard scaling of the X axis.

Mahoney (UC Berkeley) RandNLA Sampling August 2018 51 / 102



BLEV and UNIF when rank is lost (2 of 2)
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Figure: Comparison of BLEV and UNIF when rank is lost in the sampling process (n = 1000

and p = 10 here). Left panel: T3 data. Middle panels: T2 data. Right panels: T1 data. Upper

panels: The logarithm of variances of the estimates. Middle panels: The logarithm of variances,

zoomed-in on the X-axis. Lower panels: The logarithm of squared bias of the estimates.
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Combining BLEV and UNIF into SLEV
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Figure: Empirical variances and squared biases (unconditional) of the SLEV estimator in data

generated from T1 with n = 1000 and variable p. Circles connected by black lines are p = 10;

squares connected by dash lines are p = 50; triangles connected by dotted lines are p = 100.

Left panel: subsample size r = 3p. Middle panel: subsample size r = 5p. Right panel:

subsample size r = 10p.
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Tackling statistical properties of subsampling estimators

Challenges: β̃ = (XTWX)−1XTWY

There are two parts of randomness involved: Y and W.

The random variable W enters the estimator in a nonlinear fashion.

When direct study of some quantity has technical difficulties, one
common practice in statistics is to use asymptotic analysis, e.g., we
consider how the estimator behaves as n→∞.

In asymptotic analysis, the intermediate we need to derive is the
asymptotic distribution of estimator.
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Asymptotic analysis in statistics

Example (Maximum likelihood estimator (MLE))

For generalized linear model,

β̂MLE = arg max
β

L(θ) =
n∑

i=1

{yiu(xT
i β)− b(u(xT

i β))},

where u(·) and b(·) are some distribution related functions.

There exists even no explicit form for the MLE.

In statistics, the optimality of MLE is justified using asymptotic analysis.
When n→∞, under mild regularity conditions,

The variance of MLE achieves Cramér-Rao lower bound, which is a
theoretical lower bound on the variance of unbiased estimators.

In addition, √
n
(
β̂mle − β0

) d−→ N (0, V−1).

This enables tasks such as hypothesis testing and confidence intervals.
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MSE: recap

Let T n be a p × 1 estimator of a p × 1 parameter ν, for every n.

In studying statistical properties, look directly at the random variable (T n − ν).

Characterize its bias (E(T n)− ν) and variance Var(T n).

MSE

MSE (T n;ν) = E[(T n − ν)T (T n − ν)]

= tr(Var(T n)) + (E(T n)− ν)T (E(T n)− ν).
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AMSE: Basics in asymptotic analysis
We have no direct information in (T n − ν). From asymptotic analysis,

Σ−1
n (T n − ν)

d→ Z ,

where Z is a p × 1 random vector s.t. its i-th element Zi satisfies
0 < E(Z 2

i ) <∞, i = 1, . . . , p, and Σn is a sequence of p × p positive definite
matrices.

Design AMSE using the variance and expectation of Z .

AMSE

The AMSE of T n, denoted as AMSE (T n;ν), is defined as T n − ν

AMSE (T n;ν) = E(ZTΣnZ ) = tr(Σ1/2
n Var(Z )Σ1/2

n ) + (E(Z )TΣnE(Z ))

= tr(AVar(T n)) + (AE(T n)− ν)T (AE(T n)− ν),

where AVar(T n) = Σ1/2
n Var(Z )Σ1/2

n and AE(T n) = ν + Σ1/2
n E(Z ) denote the

asymptotic variance-covariance matrix and the asymptotic expectation of T n in
estimating ν, respectively.

Mahoney (UC Berkeley) RandNLA Sampling August 2018 58 / 102



Subsampling Estimators for Estimating the Parameter
(Zhang, Ma, Mahoney, and Yu 201X)

Let r = O(n1−α), where 0 < α < 1; πmin = O(n−γ0 ), where γ0 ≥ 1.

Theorem (Asymptotic Normality of Subsampling Estimator)

Assume (A1). There exists positive constants b and B such that

b ≤ λmin(XTX/n) ≤ λmax(XTX/n) ≤ B.

(A2). γ0 + α < 2.
As n→∞, we have

(σ2Σ0)−
1
2 (β̃ − β0)

d→ N(0, Ip).

where Σ0 = (XTX)−1[XT (I + Ω)X](XTX)−1, and Ω = diag{1/rπi}ni=1, Ip
denotes a p × p identity matrix.

Taylor expansion for nonlinear complication.

Central Limit Theorem for multinomial sums.
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Subsampling Estimators for Estimating the Parameter
(Zhang, Ma, Mahoney, and Yu 201X)

Theorem (Asymptotic Normality of Subsampling Estimator-cont’d)

Thus, in unconditional inference, β̃ is an asymptotically unbiased
estimator of β0, i.e.

AE(β̃) = β0,

and the asymptotic variance-covariance matrix of β̃ is

AVar(β̃) = σ2Σ0.

Extensions to slowly diverging number of predictors, conditional inference,
etc.
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Minimum AMSE subsampling estimator
(Zhang, Ma, Mahoney, and Yu 201X)

Estimating β0

The subsampling estimator with the subsampling probabilities

πi =
‖(XT X)−1xi‖∑n
i=1 ‖(XT X)−1xi‖

, i = 1, . . . , n,

has the smallest AMSE(β̃;β0).

Estimating Y = Xβ0

The subsampling estimator with the subsampling probabilities

πi =
‖X(XT X)−1xi‖∑n
i=1 ‖X(XT X)−1xi‖

=

√
hii∑n

i=1

√
hii
, i = 1, . . . , n,

has the smallest AMSE(Xβ̃; Xβ0).

Estimating XTXβ0

The subsampling estimator with the subsampling probabilities

πi =
‖xi‖∑n
i=1 ‖xi‖

, i = 1, . . . , n,

has the smallest AMSE(XT Xβ̃; XT Xβ0).
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Towards structural results for statistical objectives

Recall the original LS/OLS problem:

βOLS = arg min
β∈Rp

‖Y − Xβ‖2
2,

where X ∈ Rn×p. Assume n� p and rank(X ) = p. The LS solution is:

βOLS = (XTX )−1XTY = X †Y .

Given the full data (X ,Y ), generate “sketched data” (SX ,SY ) where S ∈ Rr×n,
with r � n, is an arbitrary (sketching) matrix “sketching matrix,” and compute:

βS ∈ arg min
β∈Rp

‖SY − SXβ‖2
2.

The LS/OLS solution∗∗ on the sketch (SX ,SY ) is:

βS = (SX )†SY .

∗∗This does not in general equal ((SX )TSX )−1(SX )TSY—why?
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The statistical approach
(Raskutti and Mahoney, 2014)

Let β ∈ Rp is the “true” parameter , and assume a standard linear “model” on Y ,

Y = Xβ + ε,

where ε ∈ Rn is a standardized noise vector, with E[ε] = 0 and E[εεT ] = In×n,
where the expectation E[·] is taken over the random noise ε.

Relative statistical prediction efficiency (SPE), definedas follows:

CSPE (S) =
E[‖X (β − βS)‖2

2]

E[‖X (β − βOLS)‖2
2]
.

Relative statistical residual efficiency (SRE), defined as follows:

CSRE (S) =
E[‖Y − XβS‖2

2]

E[‖Y − XβOLS‖2
2]
.
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A statistical perspective on the algorithmic approach
(Raskutti and Mahoney, 2014)

Consider “defining” Y in terms of X by the following “linear model”:

Y = Xβ + ε,

where

β ∈ Rp is arbitrary “true parameter”

ε ∈ Rn is any vector that lies in the null-space of XT

Consider the worst-case (due to supremum) criterion (analyzed in TCS).

The worst-case error (WCE) is defined as follows:

CWCE (S) = sup
Y

‖Y − XβS‖2
2

‖Y − XβOLS‖2
2

= sup
Y=Xβ+ε, XT ε=0

‖Y − XβS‖2
2

‖Y − XβOLS‖2
2

.

(I.e., supremum over ε, s.t. XT ε = 0, and not expectation over ε, s.t. E[ε] = 0.)
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Comments on this approach
(Raskutti and Mahoney, 2014)

βOLS = β + (XTX )−1XT ε for both “linear models,” but

I Statistical setting: βOLS is a random variable (with E[εεT ] = In×n).
F E[βOLS ] = β and E[(β − βOLS)(β − βOLS)T ] = (XTX )−1

I Algorithmic setting: βOLS is a deterministic.
F βOLS = β (since XT ε = 0 ).

CWCE (S) is the worst-case algorithmic analogue of CSRE (S).

The worst-case algorithmic analogue of CSPE (S) would be:

sup
Y

‖X (β − βS)‖2
2

‖X (β − βOLS)‖2
2

,

except that the denominator equals zero.

Statistical subtleties: sketching matrices that are independent of both X and
Y (e.g., uniform sampling) or depend only on X (e.g., leverage scores of X )
or depend on X and Y (e.g., influence scores of (X ,Y )).
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Key structural lemma
(Raskutti and Mahoney, 2014)

Characterize how CWCE (S), CSPE (S), and CSRE (S) depend on different structural
properties of SU and the oblique projection matrix ΠU

S := U(SU)†S .

Lemma (RM14)

For the algorithmic setting,

CWCE (S) = 1 + supδ∈Rp,UT ε=0

[
‖(Ip×p−(SU)†(SU))δ‖2

2

‖ε‖2
2

+
‖ΠU

S ε‖
2
2

‖ε‖2
2

]
.

For the statistical setting,

CSPE (S) =
‖(Ip×p−(SU)†SU)ΣV Tβ‖2

2

p +
‖ΠU

S ‖
2
F

p

CSRE (S) = 1 +
‖(Ip×p−(SU)†SU)ΣV Tβ‖2

2

n−p +
‖ΠU

S ‖
2
F−p

n−p = 1 + CSPE (S)−1
n/p−1
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Corollary of key structural lemma
(Raskutti and Mahoney, 2014)

Let α(S) > 0, β(S) > 0, and γ(S) > 0 be such that

σ̃min(SU) ≥ α(S)

supε, UT ε=0
‖UTSTSε‖2

‖ε‖2
≤ β(S)

‖UTSTS‖F ≤ γ(S)

Lemma (RM14)

CWCE (S) ≤ 1 + supδ∈Rp,UT ε=0
‖(Ip×p−(SU)†(SU))δ‖2

2

‖ε‖2
2

+ β2(S)
α4(S)

CSPE (S) ≤ ‖(Ip×p−(SU)†SU)ΣV Tβ‖2
2

p + γ2(S)
α4(S)

CSRE (S) ≤ 1 + p
n

[
‖(Ip×p−(SU)†SU)ΣV Tβ‖2

2

p + γ2(S)
α4(S)

]
.
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A statistical perspective on randomized sketching (1 of 2)
(Raskutti and Mahoney, 2014)

Things to note.

Different properties of ΠU
S are needed.

I Algorithmic setting: supε∈Rn/{0},ΠUε=0
‖ΠU

S ε‖
2
2

‖ε‖2
2

F Largest eigenvalue of ΠU
S , i.e., Spectral norm, enters to control the

worst direction in the null-space of UT .

I Statistical setting: ‖ΠU
S ‖2

F
F `2 norm of the eigenvalues of ΠU

S , i.e., Frobenius norm, enters to
control an average over homoscedastic noise.

The (SU)†SU term is a “bias” term that is non-zero if rank(SU) < p.

I Often introducing a small bias is a very good thing.

Need many more samples r to obtain bounds on CSPE (S) than CSRE (S)

I since CSRE (S) = 1 + CSPE (S)−1
n/p−1 and so re-scales CSPE (S) by p/n� 1
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A statistical perspective on randomized sketching (2 of 2)
(Raskutti and Mahoney, 2014)

Main theoretical conclusions.

CSRE (S) can be well-bounded for p . r � n, for typical sampling/projection
matrices S (consistent with previous results on CWCE (S)).

CSPE (S) typically requires the sample size r & Ω(n) (consistent with the use
of sampling in bootstrap).

Main empirical conclusions.

Short answer: empirical results consistent with theory.

Medium answer:
I Getting good statistical results with RandNLA algorithms can be

“easier” or “harder” than getting good algorithmic results.
I Must control other structures: small leverage scores, non-spectral

norms, etc.
I Tradeoffs are very different than arise in TCS, NLA, ML, etc.

Long answer: more work needed ...
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Sketched ridge regression
(Wang, Gittens, and Mahoney (2017))
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Review of randomized LS
Lopes, Wang, and Mahoney, 2018

Consider a deterministic matrix A ∈ Rn×d and vector b ∈ Rn, with n� d .

The exact solution xopt := argmin
x∈Rd

‖Ax − b‖2 is too costly to compute.

We reduce problem with a random sketching matrix S ∈ Rt×n with d � t � n.
Define Ã := SA and b̃ := Sb.

We focus on two particular randomized LS algorithms:

1 Classic Sketch (CS). (Drineas et al, 2006)

x̃ := argmin
x∈Rd

∥∥Ãx − b̃
∥∥

2

2 Iterative Hessian Sketch (IHS). (Pilanci & Wainwright 2016)

x̂i+1 := argmin
x∈Rd

{
1
2‖Ã(x − x̂i )‖2

2 + 〈A>(Ax̂i − b) , x〉
}
, i = 1, . . . , k.
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Problem formulation (error estimation)
Lopes, Wang, and Mahoney, 2018

We will estimate the errors of the random solutions x̃ and x̂k in terms of
high-probability bounds.

Let ‖ · ‖ denote any norm on Rd , and let α ∈ (0, 1) be fixed.

Goal: Compute numerical estimates q̃(α) and q̂k(α), such that the bounds

‖x̃ − xopt‖ ≤ q̃(α)

‖x̂k − xopt‖ ≤ q̂k(α)

each hold with probability at least 1− α.
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Intuition for the bootstrap
Lopes, Wang, and Mahoney, 2018

Key idea: Artificially generate a bootstrapped solution x̃∗ such that the
fluctuations of x̃∗ − x̃ are statistically similar to the fluctuations of x̃ − xopt.

In the“bootstrap world”, x̃ plays the role of xopt, and x̃∗ plays the role of x̃ .

The bootstrap sample x̃∗ is the LS solution obtained by “perturbing” Ã and b̃.

(The same intuition also applies to the IHS solution x̂k .)
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Algorithm (Error estimate for Classic Sketch)
Lopes, Wang, and Mahoney, 2018

Input: A positive integer B, and the sketches Ã, b̃, and x̃ .

For: l = 1, . . . ,B do

Draw a random vector i := (i1, . . . , it) by sampling m numbers with
replacement from {1, . . . , t}.

Form the matrix Ã∗ := Ã(i, :), and vector b̃∗ := b̃(i).

Compute the vector
x̃∗ := argmin

x∈Rd

‖Ã∗x − b̃∗‖2,

and the scalar ε∗l := ‖x̃∗ − x̃‖.

Return: q̃(α) := quantile(ε∗1 , . . . , ε
∗
B ; 1− α).

Note: A similar algorithm works for IHS.
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Computational cost
Lopes, Wang, and Mahoney, 2018

1 Cost of error estimation is independent of large dimension n, whereas
most randomized LS algorithms scale linearly in n.

2 In practice, as few as B = 20 bootstrap samples are sufficient.

3 Implementation is embarrassingly parallel.
(Per-processor cost is O(td2), with modest communication.)

4 Bootstrap computations have free warm starts.

5 Error estimates can be extrapolated (similar to MM context).

Mahoney (UC Berkeley) RandNLA Sampling August 2018 77 / 102



Theoretical and empirical performance
Lopes, Wang, and Mahoney, 2018

Theory: Guarantees are available for both CS and IHS (cf. arXiv paper).

Experiment: ‘YearPredictionMSD’ data from LIBSVM: n ∼ 4.6× 105 and d = 90

CS: fix initial sketch size t0 = 5d and extrapolate on t � t0

IHS: fix sketch size t = 10d and extrapolate on number of iterations

bootstrap samples B = 20

CSCS IHS
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Summary of connection with Bootstrapping
Lopes, Wang, and Mahoney, 2018

Bootstrapping is a flexible approach to error estimation that can be
adapted to a variety of RandNLA algorithms.

This provides a practical alternative to worst-case error bounds, and
adapts to the input at hand.

The cost of bootstrapping does not outweigh the benefits of
sketching.

The bootstrap computations are highly scalable – since they do not
depend on large dimension n, are easily parallelized, and can be
extrapolated.

Numerical performance is encouraging, and is supported by
theoretical guarantees.
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Optimization Overview

Consider optimizing F : Rd → R:

x (k+1) = arg min
x∈D∩X

{
F (x(k)) + (x− x(k))Tg(x(k)) +

1

2αk
(x− x(k))TH(x(k))(x− x(k))

}

Iterative optimization:

First-order methods: x(k+1) = x(k) − αk∇F (x(k))

Second-order methods: x(k+1) = x(k) − [∇2F (x(k))]−1∇F (x(k))
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RLA and SGD

SGD (Stochastic Gradient Descent) methods††

I Widely used in practice because of their scalability, efficiency, and ease
of implementation.

I Work for problems with general convex (or not) objective function.
I Only provide an asymptotic bounds on convergence rate.
I Typically formulated in terms of differentiability assumptions,

smoothness assumptions, etc.

RLA (Randomized Linear Algebra) methods‡‡

I Better worst-case theoretical guarantees and better control over
solution precision.

I Less flexible (thus far), e.g., in the presence of constraints.
I E.g., may use interior point method for solving constrained subproblem,

and this may be less efficient than SGD.
I Typically formulated (either TCS-style or NLA-style) for worst-case

inputs.

††
SGD: iteratively solve the problem by approximating the true gradient by the gradient at a single example.

‡‡
RLA: construct (with sampling/projections) a random sketch, and use that sketch to solve the subproblem or construct

preconditioners for the original problem.
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Can we get the “best of both worlds”?

Consider problems where both methods have something nontrivial to say.

Definition

Given a matrix A ∈ Rn×d , where n� d , a vector b ∈ Rn, and a number
p ∈ [1,∞], the overdetermined `p regression problem is

min
x∈Z

f (x) = ‖Ax − b‖p.

Important special cases:

Least Squares: Z = Rd and p = 2.

I Solved by eigenvector methods with O(nd2) worst-case running time;
or by iterative methods with running time depending on κ(A).

Least Absolute Deviations: Z = Rd and p = 1.

I Unconstrained `1 regression problem can be formulated as a linear
program and solved by an interior-point method.
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Deterministic `p regression as stochastic optimization

Let U ∈ Rn×(d+1) be a basis of the range space of
(
A b

)
in the form of

U =
(
A b

)
F ,

where F ∈ R(d+1)×(d+1).

The constrained overdetermined (deterministic) `p regression problem is
equivalent to the (stochastic) optimization problem

min
x∈Z
‖Ax − b‖pp = min

y∈Y
‖Uy‖pp

= min
y∈Y

Eξ∼P [H(y , ξ)] ,

where H(y , ξ) =
|Uξy |p
pξ

is the randomized integrand and ξ is a random

variable over {1, . . . , n} with distribution P = {pi}ni=1.

The constraint set of y is given by

Y = {y ∈ Rk |y = F−1v , v ∈ C},

where C = {v ∈ Rd+1|v1:d ∈ Z, vd+1 = −1}.
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Brief overview of stochastic optimization

The standard stochastic optimization problem is of the form

min
x∈X

f (x) = Eξ∼P [F (x , ξ)] , (3)

where ξ is a random data point with underlying distribution P.

Two computational approaches for solving stochastic optimization problems of the
form (3) based on Monte Carlo sampling techniques:

SA (Stochastic Approximation):

I start with an initial x0, and solve (3) iteratively. In each iteration, a
new sample point ξt is drawn from distribution P and the current
weight is updated by its information (e.g., (sub)gradient of F (x , ξt)).

SAA (Sampling Average Approximation):

I sample n points from distribution P independently, ξ1, . . . , ξn, and
solve the following “Empirical Risk Minimization” problem,

min
x∈X

f̂ (x) =
1

n

n∑
i=1

F (x , ξi ).
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Solving `p regression via stochastic optimization

To solve this stochastic optimization problem, typically one needs to answer the
following three questions.

(C1): How to sample: SAA (i.e., draw samples in a batch mode and deal
with the subproblem) or SA (i.e., draw a mini-batch of samples in an online
fashion and update the weight after extracting useful information)?

(C2): Which probability distribution P (uniform distribution or not) and
which basis U (preconditioning or not) to use?

(C3): Which solver to use (e.g., how to solve the subproblem in SAA or how
to update the weight in SA)?
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A unified framework for RLA and SGD
(“Weighted SGD for Lp Regression with Randomized Preconditioning,” Yang, Chow, Re, and Mahoney, 2015.)

`p regression
minx ‖Ax − b‖pp

stochastic optimization
miny Eξ∼P [|Uξy |p/pξ]

SA

SA

SAA

onlin
e

online

batch

(C1): How to sample?

uniform P
U = Ā

non-uniform P
well-conditioned U

non-uniform P
well-conditioned U

naive

using RLA

using RLA

(C2): Which U and P to use?

gradient descent

gradient descent

exact solution
of subproblem

fast

fast

slow

(C3): How to solve?

vanilla SGD

pwSGD
(this presentation)

vanilla RLA with
algorithmic leveraging

resulting solver

Main relationships:

SA + “naive” P and U: vanilla SGD whose convergence rate depends (without
additional niceness assumptions) on n

SA + “smart” P and U: pwSGD

SAA + “naive” P: uniform sampling RLA algorithm which may fail if some rows
are extremely important (not shown)

SAA + “smart” P: RLA (with algorithmic leveraging or random projections)
which has strong worst-case theoretical guarantee and high-quality numerical
implementations
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A combined algorithm: pwSGD
(“Weighted SGD for Lp Regression with Randomized Preconditioning,” Yang, Chow, Re, and Mahoney, 2015.)

pwSGD: Preconditioned weighted SGD consists of two main steps:

1 Apply RLA techniques for preconditioning and construct an importance
sampling distribution.

2 Apply an SGD-like iterative phase with weighted sampling on the
preconditioned system.

pwSGD has the following properties:

After “batch” preconditioning (on arbitrary input), unlike vanilla SGD, the
convergence rate of the SGD phase only depends on the low dimension d ,
i.e., it is independent of the high dimension n.

With proper preconditioner, pwSGD runs in O(log n · nnz(A) + poly(d)/ε2)
time (for arbitrary input) to return an approximate solution with ε relative
error in terms of the objective.

Empirically, pwSGD performs favorably compared to other competing
methods, as it converges to a medium-precision solution, e.g., with ε roughly
10−2 or 10−3, much more quickly.
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Question: Connecting SAA with TCS coresets and RLA?

Can we use stochastic optimization ideas to combine RLA and SGD for other
optimization/regression problems?

To do so, we need to define “leverage scores” or “outlier scores” for them,
since these scores play a crucial role in this stochastic framework.

In [Feldman and Langberg, 2011] (in TCS), a framework for computing a
“coreset” of F to a given optimization problem of the form:

cost(F , x) = min
x∈X

∑
f∈F

f (x),

where F is a set of function from a set X to [0,∞).

The `p regression problem can be written as

min
x∈C

n∑
i=1

fi (x),

where fi (x) = |Āix |p, in which case F = {fi}ni=1.
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Algorithm for computing a coreset

Sensitivities

Given a set of function F = {f },

the sensitivity m(f ) of f is m(f ) = bsupx∈X n · f (x)
cost(F,x)c+ 1, and

and the total sensitivity M(F) of F is M(F) =
∑

f∈F m(f ).

1 Initialize D as an empty set.

2 Compute the sensitivity m(f ) for each function f ∈ F .

3 M(F)←
∑

f∈F m(f ).

4 For f ∈ F
Compute probabilities

p(f ) =
m(f )

M(F)
.

5 For i = 1, . . . , s
Pick f from F with probability p(f ).
Add f /(s · p(f )) to D.

6 Return D.
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Theoretical guarantee

Dimension of subspaces

The dimension of F is defined as the smallest integer d , such that for any G ⊂ F ,

|{Range(G , x , r)|x ∈ X , r ≥ 0}| ≤ |G |d ,

where Range(G , x , r) = {g ∈ G |g(x) ≤ r}.

Theorem

Given a set of functions F : X → [0,∞], if s ≥ cM(F)
ε2 (dim(F ′) + log

(
1
δ

)
), then

with probability at least 1− δ,

(1− ε)
∑
f∈F

f (x) ≤
∑
f∈D

f (x) ≤ (1 + ε)
∑
f∈F

f (x).

That is, the coreset method returns ε-coreset for F .
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Connection with RLA methods
(“Weighted SGD for Lp Regression with Randomized Preconditioning,” Yang, Chow, Re, and Mahoney, 2015.)

Fact. Coreset methods coincides the RLA algorithmic leveraging approach on LA
problems; sampling complexities are the same up to constants!
Apply this to `p regression, with matrix Ā ∈ Rn×(d+1).

Let fi (x) = |Āix |p, for i ∈ [n]. If λi be the i-th leverage score of Ā, then

m(fi ) ≤ nβpλi + 1,

for i ∈ [n], and
M(F) ≤ n((αβ)p + 1).

Let A = {|aT x |p|a ∈ Rd}. We have

dim(A) ≤ d + 1.

Fact. More generally, coreset methods work for any convex loss function.

But they are not necessarily small (they depend on the total sensitivity)

For other function classes, e.g., hinge loss, the size of the coreset ∼ 2d .
I Define fi (x) = f (x , ai ) = (xTai )

+ ,where x , ai ∈ Rd for i ∈ [n].
Then ∃ a set of vectors {ai}di=1 such that M(F) of F = {fi}ni=1 is ∼ 2d .
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Sub-sampled second-order optimization
Roosta-Khorasani and Mahoney “SSN I & II” 2016; Xu et al. “Inexact” 2017; and Yao et al. “Inexact” 2018 (nonconvex)

Consider optimizing F : Rd → R:
min
x∈Rd

F (x),

F (x) , f (x) + h(x), where f (x) is convex and smooth, and h(x) is non-smooth.

F (x) , 1
n

∑n
i=1 fi (x), with each fi (x) smooth and possibly non-convex.

F (x) , 1
n

∑n
i=1 fi (aT

i x), where ai ∈ Rd , i = 1, . . . , n, are given.

Definition ((εg , εH)-Optimality)

Given 0 < εg , εH < 1, x is an (εg , εH)-optimal solution if

‖∇F (x)‖ ≤ εg , and λmin(∇2F (x)) ≥ −εH .
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Approximate everything one can approximate

To increase efficiency, incorporate approximations of:

gradient information, and

Hessian information, and

inexact solutions of the underlying sub-problems.

Sub-sample gradient and/or Hessian as:

g ,
1

|Sg |
∑
i∈Sg

∇fi (x) and H ,
1

|SH |
∑
i∈SH

∇2fi (x),

where Sg ,SH ⊂ {1, · · · , n} are the sub-sample batches for gradient and Hessian.

Also consider, at step t, approximate solution of underlying sub-problem:

x (k+1) = arg min
x∈D∩X

{
F (x(k)) + (x− x(k))Tg(x(k)) +

1

2αk
(x− x(k))TH(x(k))(x− x(k))

}
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Key result qua RandNLA
Xu, Roosta-Khorasani, and Mahoney “Inexact” 2017; and Yao, Xu, Roosta-Khorasani, and Mahoney “Inexact” 2018

Approximate gradient, gt , and inexact Hessian, Ht , at each step t, must satisfy:

Condition (C1: Gradient and Hessian Approximation Error)

For some 0 < δg , δH < 1, the approximate gradient/Hessian at step t must satisfy,

‖gt −∇F (xt)‖ ≤ δg ,

‖Ht −∇2F (xt)‖ ≤ δH .

With uniform sampling (improvements possible with sketching & nonuniform sampling):

Lemma
For any 0 < δg , δH , δ < 1, let g and H be as in (96) with

|Sg | ≥
16K 2

g

δ2
g

log
1

δ
and |SH | ≥

16K 2
H

δ2
H

log
2d

δ
,

where 0 < Kg ,KH <∞ are such that ‖∇fi (x)‖ ≤ Kg and
∥∥∇2fi (x)

∥∥ ≤ KH . Then, with
probability at least 1− δ, Condition C1 holds with the corresponding δg and δH .
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Non-convex methods
Xu, Roosta-Khorasani, and Mahoney “Inexact” 2017; and Yao, Xu, Roosta-Khorasani, and Mahoney “Inexact” 2018

Trust Region: Classical Method for Non-Convex Problem [Sorensen,
1982, Conn et al., 2000]

s(k) = arg min
‖s‖≤∆k

〈s,∇F (x(k))〉+
1

2
〈s,∇2F (x(k))s〉

Cubic Regularization: More Recent Method for Non-Convex Problem
[Griewank, 1981, Nesterov et al., 2006, Cartis et al., 2011a, Cartis et
al., 2011b]

s(k) = arg min
s∈Rd
〈s,∇F (x(k))〉+

1

2
〈s,∇2F (x(k))s〉+

σk
3
‖s‖3
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A structural result for optimization
Xu, Roosta-Khorasani, and Mahoney “Inexact” 2017; and Yao, Xu, Roosta-Khorasani, and Mahoney “Inexact” 2018

To get iteration complexity, all previous work required:∥∥∥(H(x(k))−∇2F (x(k))
)

s(k)
∥∥∥ ≤ C‖s(k)‖2 (4)

Stronger than “Dennis-Moré”

lim
k→∞

‖
(
H(x(k))−∇2F (x(k))

)
s(k)‖

‖s(k)‖
= 0

Can relax (4) to∥∥∥(H(x(k))−∇2F (x(k))
)

s(k)
∥∥∥ ≤ ε‖s(k)‖ (5)

permitting us to apply a large body of RandNLA sketching results.

Quasi-Newton, Sketching, Sub-Sampling satisfy Dennis-Moré and (5)
but not necessarily (4).

Mahoney (UC Berkeley) RandNLA Sampling August 2018 99 / 102



A structural result for optimization
Xu, Roosta-Khorasani, and Mahoney “Inexact” 2017; and Yao, Xu, Roosta-Khorasani, and Mahoney “Inexact” 2018

To get iteration complexity, all previous work required:∥∥∥(H(x(k))−∇2F (x(k))
)

s(k)
∥∥∥ ≤ C‖s(k)‖2 (4)

Stronger than “Dennis-Moré”
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)
s(k)‖

‖s(k)‖
= 0

Can relax (4) to∥∥∥(H(x(k))−∇2F (x(k))
)

s(k)
∥∥∥ ≤ ε‖s(k)‖ (5)

permitting us to apply a large body of RandNLA sketching results.

Quasi-Newton, Sketching, Sub-Sampling satisfy Dennis-Moré and (5)
but not necessarily (4).
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For more details ...

... see Fred Roosta-Khorasani’s talk tomorrow.
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Conclusions

RandNLA—combining linear algebra and probability—is at the center
of the foundations of data.

Sampling—in the given basis or in a randomly-rotated basis—is a
core primitive in RandNLA.

Randomness can be in the data and/or in the algorithm, and there
can be interesting/fruitful interactions between the two:

I Best works-case algorithms (TCS-style) for very overdetermined
least-squares problems.

I Implementations (NLA-style) are competitive with and can beat the
best high-quality NLA libraries.

I Implementations (in Spark/MPI) can compute low, medium, and high
precision solutions on up to terabyte-sized data.

I Inferential guarantees in statistics, machine learning, and data science
applications ⇒ require going beyond core RandNLA.

I Improvements in first-order/second-order convex/non-convex
optimization theory/practice ⇒ require going beyond core RandNLA.
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