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Disclaimer

Disclaimer:

To preserve brevity and flow, many cited results are simplified,
slightly-modified, or generalized...please see the cited work for
the details.

Unfortunately, due to time constraints, many relevant and
interesting works are not mentioned in this presentation.
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Problem Statement

Problem

min
x∈X⊆Rd

F (x) = Ewf (x;w) =

Risk︷ ︸︸ ︷∫
Ω

f (x;w(ω))︸ ︷︷ ︸
e.g., Loss/Penalty

+
prediction function

dP(w(ω))

F : (non-)convex/(non-)smooth

High-dimensional: d � 1

With empirical (counting) measure over {wi}ni=1 ⊂ Rp, i.e.,∫
A
dP(w) =

1

n

n∑
i=1

1{wi∈A}, ∀A ⊆ Ω =⇒ F (x) =
1

n

n∑
i=1

f (x; wi )︸ ︷︷ ︸
finite-sum/empirical risk

“Big data”: n� 1
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Humongous Data / High Dimension

Classical algorithms =⇒ High per-iteration costs
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Humongous Data / High Dimension

Modern variants:

1 Low per-iteration costs

2 Maintain original convergence rate
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First Order Methods

Use only gradient information

E.g. : Gradient Descent

x(k+1) = x(k) − α(k)∇F (x(k))

Smooth Convex F ⇒ Sublinear, O(1/k)

Smooth Strongly Convex F ⇒ Linear, O(ρk), ρ < 1

However, iteration cost is high!
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First Order Methods

Stochastic variants e.g., (mini-batch) SGD

For some s small, chosen at random {wi}si=1 and

x(k+1) = x(k) − α(k)

s

s∑
i=1

∇f (x(k),wi )

Cheap per-iteration costs!

However slower to converge:

Smooth Convex F ⇒ O(1/
√
k)

Smooth Strongly Convex F ⇒ O(1/k)
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Modifications...

Achieve the convergence rate of the full GD

Preserve the per-iteration cost of SGD

E.g.: SAG, SDCA, SVRG, Prox-SVRG, Acc-Prox-SVRG,
Acc-Prox-SDCA, S2GD, mS2GD, MISO, SAGA, AMSVRG, ...
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Second Order Methods

Use both gradient and Hessian information

E.g. : Classical Newton’s method

x(k+1) = x(k) − α(k) [∇2F (x(k))]−1∇F (x(k))︸ ︷︷ ︸
Non-uniformly Scaled Gradient

Smooth Convex F ⇒ Locally Superlinear

Smooth Strongly Convex F ⇒ Locally Quadratic and Globally
Linear

However, per-iteration cost is much higher!
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Outline

Part I: Convex
Smooth

Newton-CG

Non-Smooth

Proximal Newton
Semi-smooth Newton

Part II: Non-Convex
Line-Search Based Methods

L-BFGS
Gauss-Newton
Natural Gradient

Trust-Region Based Methods

Trust-Region
Cubic Regularization

Part III: Discussion and Examples



Intro Smooth NonSmooth

Outline

Part I: Convex
Smooth

Newton-CG

Non-Smooth

Proximal Newton
Semi-smooth Newton

Part II: Non-Convex
Line-Search Based Methods

L-BFGS
Gauss-Newton
Natural Gradient

Trust-Region Based Methods

Trust-Region
Cubic Regularization

Part III: Discussion and Examples



Intro Smooth NonSmooth

Finite Sum / Empirical Risk Minimization

FSM/ERM

min
x∈X⊆Rd

F (x) =
1

n

n∑
i=1

f (x; wi ) =
1

n

n∑
i=1

fi (x)

fi : Convex and Smooth

F : Strongly Convex =⇒ Unique minimizer x?

n� 1 and/or d � 1
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Iterative Scheme

y(k) = argmin
x∈X

{
(x− x(k))Tg(k) +

1

2
(x− x(k))TH(k)(x− x(k))

}
x(k+1) = x(k) + αk

(
y(k) − x(k)

)
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Iterative Scheme

y(k) = argmin
x∈X

{
(x− x(k))T g(k) +

1

2
(x− x(k))T H(k)(x− x(k))

}
, x(k+1) = x(k) + αk

(
y(k) − x(k)

)

Newton: g(k) = ∇F (x(k)) & H(k) = ∇2F (x(k))

Gradient Descent: g(k) = ∇F (x(k)) & H(k) = I

Frank-Wolfe: g(k) = ∇F (x(k)) & H(k) = 0

(mini-batch) SGD: Sg ⊂ {1, 2, . . . , n} =⇒ g(k) = 1
|Sg|

∑
j∈Sg

∇fj (x(k)) & H(k) = I

Sub-Sampled Newton:

g(k) = ∇F (x(k))

Sg ⊂ {1, 2, . . . , n} =⇒ H(k) =
1

|SH |

∑
j∈SH

∇2fj (x(k))

Hessian Sub-Sampling

Sg ⊂ {1, 2, . . . , n} =⇒ g(k) =
1

|Sg|

∑
j∈Sg

∇fj (x(k))

SH ⊂ {1, 2, . . . , n} =⇒ H(k) =
1

|SH |

∑
j∈SH

∇2fj (x(k))

Gradient and Hessian Sub-Sampling
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Sub-sampled Newton’s Method

Let X = Rd , i.e., unconstrained optimization

Iterative Scheme

p(k) ≈ argmin
p∈Rd

{
pTg(k) +

1

2
pTH(k)p

}
,

x(k+1) = x(k) + α(k)p(k)

g(k) = ∇F (x(k))

H(k) =
1

|SH |
∑
j∈SH

∇2fj(x(k))

Hessian Sub-Sampling
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Sub-sampled Newton’s Method

Global convergence, i.e., starting from any initial point
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Sub-sampled Newton’s Method

Iterative Scheme

Descent Direction: H(k)p(k) ≈ −g(k),

Step Size:

{
αk = argmax

α≤1
α

s.t. F (x(k) + αpk) ≤ F (x(k)) + αβpT
k ∇F (x(k))

Update: x(k+1) = x(k) + α(k)p(k)
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Sub-sampled Newton’s Method

Algorithm Newton’s Method with Hessian Sub-Sampling

1: Input: x(0)

2: for k = 0, 1, 2, · · · until termination do
3: - g(k) = ∇F (x(k))

4: - S(k)
H ⊆ {1, 2, . . . , n}

5: - H(k) =
1

|S(k)
H |

∑
j∈S(k)

H

∇2fj(x(k))

6: - H(k)p(k) ≈ −g(k)

7: - Find α(k) that passes Armijo linesearch
8: - Update x(k+1) = x(k) + α(k)p(k)

9: end for
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Sub-sampled Newton’s Method

Theorem ( [Byrd et al., 2011])

If each fi is strongly convex, twice continuously differentiable with
Lipschitz continuous gradient, then

lim
k→∞

∇F (x(k)) = 0.
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Sub-sampled Newton’s Method

Theorem ( [Bollapragada et al., 2016])

If each fi is strongly convex, twice continuously differentiable with
Lipschitz continuous gradient, then

E
(
F (x(k))− F (x?)

)
≤ ρk

(
F (x(0))− F (x?)

)
,

where ρ ≤
(
1− 1/κ2

)
with κ being the “condition number” of the

problem.
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Sub-sampled Newton’s Method

What if F is strongly convex, but each fi is only weakly convex?,
e.g.,

F (x) = 1
n

∑n
i=1 `i (aT

i x)

ai ∈ Rd and Range({ai}ni=1) = Rd

`i : R → R and `′′i ≥ γ > 0

Each ∇2fi (x) = `′′i (aT
i x)aia

T
i is rank one!

But ∇2F (x) � γ · λmin

(
n∑

i=1

aia
T
i

)
︸ ︷︷ ︸

>0
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Sub-Sampling Hessian

H =
1

|S|
∑
j∈S
∇2fj(x)

Lemma ( [Roosta and Mahoney, 2016a])

Suppose ∇2F (x) � γI and 0 � ∇2fi (x) � LI. Given any
0 < ε < 1, 0 < δ < 1, if Hessian is uniformly sub-sampled with

|S| ≥ 2κ log(d/δ)

ε2
,

then

Pr
(

H � (1− ε)γI
)
≥ 1− δ.

where κ = L/γ.
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Sub-Sampling Hessian

Inexact Update

Hp ≈ −g =⇒ ‖Hp + g‖ ≤ θ ‖g‖, θ < 1, using CG.

Why CG and not other solvers (at least theoretically)?

H is SPD

p(t) = argmin
p∈Kt

pTg+
1

2
pTHp→

〈
p(t), g

〉
≤ −1

2

〈
p(t),Hp(t)

〉
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Sub-Sampling Hessian

Theorem ( [Roosta and Mahoney, 2016a])

If θ ≤
√

(1− ε)
κ

, then, w.h.p,

F (x(k+1))− F (x?) ≤ ρ
(
F (x(k))− F (x?)

)
,

where ρ = 1− (1− ε)/κ2.
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Sub-sampled Newton’s Method

Local convergence, i.e., in a neighborhood of x?, and with α(k) = 1

∥∥∥x(k+1) − x?
∥∥∥ ≤ ξ1

∥∥∥x(k) − x?
∥∥∥+ ξ2

∥∥∥x(k) − x?
∥∥∥2

Linear-Quadratic Error Recursion
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Sub-sampled Newton’s Method

[Erdogdu and Montanari, 2015]

[Ur+1,Λr+1] = TSVD (H, r + 1)

Ĥ−1 = λ−1
r+1I + Ur

(
Λ−1
r −

1

λr+1
I

)
UT

r

x(k+1) = argmin
x∈X

{
x−

(
x(k) − α(k)Ĥ−1∇F (x(k))

)}
Theorem ( [Erdogdu and Montanari, 2015])∥∥∥x(k+1) − x?

∥∥∥ ≤ ξ(k)
1

∥∥∥x(k) − x?
∥∥∥+ ξ

(k)
2

∥∥∥x(k) − x?
∥∥∥2

,

ξ
(k)
1 = 1− λmin(H(k))

λr+1(H(k))
+

Lg

λr+1(H(k))

√
log d

|S(k)
H |

, and ξ
(k)
2 =

LH

2λr+1(H(k))
.

Note: For constrained optimization, the method is based on two metric
gradient projection =⇒ starting from an arbitrary point, the algorithm
might not recognize, i.e., fail to stop at, an stationary point.
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Sub-sampling Hessian

H =
1

|S|
∑
j∈S
∇2fj(x)

Lemma ( [Roosta and Mahoney, 2016b])

Given any 0 < ε < 1, 0 < δ < 1, if Hessian is uniformly
sub-sampled with

|S| ≥ 2κ2 log(d/δ)

ε2
,

then

Pr
(

(1− ε)∇2F (x) � H(x) � (1 + ε)∇2F (x)
)
≥ 1− δ.
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Sub-sampled Newton’s Method [Roosta and Mahoney,
2016b]

Theorem ( [Roosta and Mahoney, 2016b])

With high-probability, we get∥∥∥x(k+1) − x?
∥∥∥ ≤ ξ1

∥∥∥x(k) − x?
∥∥∥+ ξ2

∥∥∥x(k) − x?
∥∥∥2
,

where

ξ1 =
ε

(1− ε)
+

(√
κ

1− ε

)
θ, and ξ2 =

LH

2(1− ε)γ
.

If θ = ε/
√
κ, then ξ1 is problem-independent! ⇒ Can be made

arbitrarily small!



Intro Smooth NonSmooth

Sub-sampled Newton’s Method

Theorem ( [Roosta and Mahoney, 2016b])

Consider any 0 < ρ0 < ρ < 1 and ε ≤ ρ0/(1 + ρ0). If
‖x(0) − x∗‖ ≤ (ρ− ρ0)/ξ2, and

θ ≤ ρ0

√
(1− ε)
κ

,

we get locally Q-linear convergence

‖x(k) − x∗‖ ≤ ρ‖x(k−1) − x∗‖, k = 1, . . . , k0

with probability (1− δ)k0 .

Problem-independent local convergence rate

By increasing Hessian accuracy, super-linear rate is possible
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Putting it all together

Theorem ( [Roosta and Mahoney, 2016b])

Under certain assumptions, starting at any x(0), we have

linear convergence

after certain number of iterations, we get
“problem-independent” linear convergence

after certain number of iterations, the step size of α(k) = 1
passes Armijo rule for all subsequent iterations
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“Any optimization algorithm for which the unit step length works
has some wisdom. It is too much of a fluke if the unite step length

[accidentally] works.”

Prof. Jorge Nocedal
IPAM Summer School, 2012
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Sub-sampled Newton’s Method

Theorem ( [Bollapragada et al., 2016])

Suppose ∥∥∥∥Ei

(
∇2fi (x)−∇2F (x)

)2
∥∥∥∥ ≤ σ2.

Then,

E
∥∥∥x(k+1) − x?

∥∥∥ ≤ ξ1

∥∥∥x(k) − x?
∥∥∥+ ξ2

∥∥∥x(k) − x?
∥∥∥2
,

where

ξ1 =
σ

γ

√
|S(k)

H |
+ κθ, and ξ2 =

LH

2γ
.
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Exploiting the structure....

Example:

F (x) =
1

n

n∑
i=1

`i (aT
i x) =⇒ ∇2F (x) = ATDA,

where

A ,

aT
1
...

aT
n

 ∈ Rn×d , Dx ,
1

n

`
′′(aT

1 x)
. . .

`′′(aT
n x)

 ∈ Rn×n.
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Sketching [Pilanci and Wainwright, 2017]

x(k+1) = argmin
x∈X

{
(x− x(k))T∇F (x(k)) +

1

2
(x− x(k))T∇2F (x(k))(x− x(k))

}
∇2F (x(k)) = B(k)TB(k), B(k) ∈ Rn×d

x(k+1) = argmin
x∈X

(x− x(k))T∇F (x(k)) +
1

2
‖B(k)︸︷︷︸

n×d

(x− x(k))‖2


∇2F (x(k)) ≈ B(k)TS(k)TS(k)B(k), S(k) ∈ Rs×n, d ≤ s � n

x(k+1) = argmin
x∈X

(x− x(k))T∇F (x(k)) +
1

2
‖S(k)B(k)︸ ︷︷ ︸

s×d

(x− x(k))‖2


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Sketching [Pilanci and Wainwright, 2017]

Sub-Gaussian sketches

well-known concentration properties

involve dense/unstructured matrix operations

Randomized orthonormal systems, e.g., Hadamard or Fourier

sub-optimal sample sizes

fast matrix multiplication

Random row sampling

Uniform

Non-uniform (more on this later)

Sparse JL sketches
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Non-uniform Sampling [Xu et al., 2016]

Non-uniformity among ∇2fi =⇒ O(n) uniform samples!!!

Find |SH| independent of n

Immune non-uniformity

Non-Uniform sampling schemes base on

1 Row norms

2 Leverage scores
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LiSSA [Agarwal et al., 2017]

Key idea: use Taylor expansion (Neumann series) to construct
an estimator of the Hessian inverse

‖A‖ ≤ 1,A � 0 =⇒ A−1 =
∑∞

i=0 (I− A)i

A−1
j =

∑j
i=0 (I− A)i = I + (I− A) A−1

j−1

limj→∞A−1
j = A−1

Uniformly sub-sampled Hessian + Turncated Neumann series

Three-nested loop involving HVP, i.e., ∇2fi ,j(x(k))v
(k)
i ,j

Leverage fast multiplication by Hessian of GLMs
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name complexity per iteration reference

Newton-CG O(nnz(A)
√
κ) Folklore

SSN-LS Õ(nnz(A) log n + p2κ3/2) [Xu et al., 2016]

SSN-RNS Õ(nnz(A) + sr(A)pκ5/2) [Xu et al., 2016]

SRHT Õ(np(log n)4 + p2(log n)4κ3/2) [Pilanci et al., 2016]

SSN-Uniform Õ(nnz(A) + pκ̂κ3/2) [Roosta et al., 2016]

LiSSA Õ(nnz(A) + pκ̂κ̄2) [Agarwal et al., 2017]

κ = max
x

λmax∇2F (x)

λmin∇2F (x)

κ̂ = max
x

maxi λmax∇2fi (x)

λmin∇2F (x)

κ̄ = max
x

maxi λmax∇2fi (x)

mini λmin∇2fi (x)


⇒ κ ≤ κ̂ ≤ κ̄
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Sub-sampled Newton’s Method

Iterative Scheme

p(k) ≈ argmin
p∈Rd

{
pTg(k) +

1

2
pTH(k)p

}
,

x(k+1) = x(k) + α(k)p(k)

g(k) =
1

|Sg|
∑
j∈Sg

∇fj(x(k))

H(k) =
1

|SH |
∑
j∈SH

∇2fj(x(k))

Gradient and Hessian Sub-Sampling
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Sub-sampled Newton’s Method

Algorithm Newton’s Method with Hessian and Gradient Sub-
Sampling

1: Input: x(0)

2: for k = 0, 1, 2, · · · until termination do

3: - S(k)
g ⊆ {1, 2, . . . , n} =⇒ g(k) = 1

|S(k)
g |

∑
j∈S(k)

g
∇fj(x(k))

4: if
∥∥g(k)

∥∥ ≤ σεg then
5: - STOP
6: end if
7: - S(k)

H ⊆ {1, 2, . . . , n} =⇒ H(k) = 1

|S(k)
H |

∑
j∈S(k)

H

∇2fj(x(k))

8: - H(k)p(k) ≈ −g(k)

9: - Find α(k) that passes Armijo linesearch
10: - Update x(k+1) = x(k) + α(k)p(k)

11: end for
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Sub-sampled Newton’s Method

Global convergence, i.e., starting from any initial point

[Byrd et al., 2012,Roosta and Mahoney, 2016a,Bollapragada et al., 2016]
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Sub-sampled Newton’s Method

We can write ∇F (x) = AB where

A :=

 | | |
∇f1(x) ∇f2(x) · · · ∇fn(x)
| | |

 and B :=


1/n
1/n

...
1/n


Lemma ( [Roosta and Mahoney, 2016a])

Let ‖∇fi (x)‖ ≤ G (x) <∞. For any 0 < ε, δ < 1, if

|S| ≥ G (x)2
(
1 +

√
8 ln(1/δ)

)2
/ε2,

then

Pr
(
‖∇F (x)− g(x)‖ ≤ ε

)
≥ 1− δ.
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Sub-sampled Newton’s Method

Theorem ( [Roosta and Mahoney, 2016a])

If

θ ≤
√

(1− εH)

κ
,

then, w.h.p,

F (x(k+1))− F (x?) ≤ ρ
(
F (x(k))− F (x?)

)
,

where ρ = 1− (1− εH)/κ2, and upon “STOP”, we have
‖∇F (x(k))‖ < (1 + σ) εg.
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Sub-sampled Newton’s Method

Local convergence, i.e., in a neighborhood of x?, and with α(k) = 1

∥∥∥x(k+1) − x?
∥∥∥ ≤ ξ0 + ξ1

∥∥∥x(k) − x?
∥∥∥+ ξ2

∥∥∥x(k) − x?
∥∥∥2

Error Recursion

[Roosta and Mahoney, 2016b, Bollapragada et al., 2016]
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Sub-sampled Newton’s Method

Theorem ( [Roosta and Mahoney, 2016b])

With high-probability, we get∥∥∥x(k+1) − x?
∥∥∥ ≤ ξ0 + ξ1

∥∥∥x(k) − x?
∥∥∥+ ξ2

∥∥∥x(k) − x?
∥∥∥2
,

where
ξ0 =

εg

(1− εH)γ

ξ1 =
εH

(1− εH)
+

(√
κ

1− εH

)
θ,

ξ2 =
LH

2(1− εH)γ
.
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Sub-sampled Newton’s Method

Theorem ( [Roosta and Mahoney, 2016b])

Consider any 0 < ρ0 + ρ1 < ρ < 1. If ‖x(0) − x∗‖ ≤ c(ρ0, ρ1, ρ),

ε
(k)
g = ρkεg and

θ ≤ ρ0

√
(1− εH)

κ
,

we get locally R-linear convergence

‖x(k) − x∗‖ ≤ cρk

with probability (1− δ)2k .

Problem-independent local convergence rate



Intro Smooth NonSmooth

Putting it all together

Theorem ( [Roosta and Mahoney, 2016b])

Under certain assumptions, starting at any x(0), we have

linear convergence,

after certain number of iterations, we get
“problem-independent” linear convergence,

after certain number of iterations, the step size of α(k) = 1
passes Armijo rule for all subsequent iterations,

upon “STOP” at iteration k, we have
‖∇F (x(k))‖ < (1 + σ)

√
ρkεg.
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Outline

Part I: Convex
Smooth

Newton-CG

Non-Smooth

Proximal Newton
Semi-smooth Newton

Part II: Non-Convex
Line-Search Based Methods

L-BFGS
Gauss-Newton
Natural Gradient

Trust-Region Based Methods

Trust-Region
Cubic Regularization

Part III: Discussion and Examples
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Newton-type Methods for Non-Smooth Problems

Convex Composite Problem

min
x∈X⊆Rd

F (x) + R(x)

F : convex and smooth

R: convex and non-smooth
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Non-Smooth Newton-type [Yu et al., 2010]

Let X = Rd , i.e., unconstrained optimization

Iterative Scheme (Non-Quadratic Sub-Problem)

p(k) ≈ argmin
p∈Rd

 sup
g(k)∈∂(F+R)(x(k))

{
pTg(k)

}
+

1

2
pT H(k)︸︷︷︸

e.g.,
QN

p

 ,

x(k+1) = x(k) + α(k)p(k)
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Proximal Newton-type [Lee et al., 2014,Byrd et al., 2016]

Iterative Scheme

p(k) ≈ argmin
p∈Rd

pT∇F (x(k)) +
1

2
pT H(k)︸︷︷︸

≈
∇2F (x(k))

p + R(x(k) + p)


x(k+1) = x(k) + α(k)p(k)

Notable examples of proximal Newton methods:

glmnet ( [Friedman et al., 2010]): `1-regularized GLMs,
sub-problems are solved using coordinate descent

QUIC ( [Hsieh et al., 2014]): Graphical Lasso problem with
factorization tricks, sub-problems are solved using coordinate
descent
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Proximal Newton-type [Lee et al., 2014,Byrd et al., 2016]

Inexactness of sub-problem solver

p(k) ≈ argmin
p∈Rd

{
pT∇F (x(k)) +

1

2
pTH(k)p + R(x(k) + p)

}

p? is the minimizer of the above sub-problem iff p? = Proxλ(p?), where

Prox
(k)
λ (p) , argmin

q∈Rd

{〈
∇F (x(k)) + H(k)p,q

〉
+ R(x(k) + q) +

λ

2
‖q− p‖2

}
.

∥∥∥p− Prox
(k)
λ (p)

∥∥∥ ≤ θ ∥∥∥Prox
(k)
λ (0)

∥∥∥ ,
and some sufficient decrease condition on the subproblem

Inexactness
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Proximal Newton-type [Lee et al., 2014,Byrd et al., 2016]

Step-size

x(k+1) = x(k) + α(k)p(k)

(F + R)(x(k) + αp(k))− (F + R)(x(k)) ≤ β
(
`k

(
x(k) + αp

)
− `k

(
x(k)

))
`k (x) = F (x(k)) + (x− x(k))T∇F (x(k)) + R(x)

Line-Search
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Proximal Newton-type [Lee et al., 2014,Byrd et al., 2016]

Global convergence: x(k) converges to an optimal solution
starting at any x(0)

Local convergence: for x(0) close enough to x?

H(k) = ∇2F (x(k))

Exact solve: quadratic convergence

Approximate solve with decaying forcing term: superlinear
convergence

Approximate solve with fixed forcing term: linear convergence

H(k) : Dennis-Moré =⇒ supelinear convergence
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Sub-Sampled Proximal Newton-type [Liu et al., 2017]

FSM/ERM

min
x∈X⊆Rd

F (x) + R(x) =
1

n

n∑
i=1

fi (aT
i x) + R(x)

fi : Strongly-Convex, Smooth, and Self-Concordant

R: Convex and Non-Smooth

n� 1 and/or d � 1

Dennis-Moré condition:

|p(k)T
(

H(k) −∇2F (x(k))
)

p(k)| ≤ ηkp(k)T∇2F (x(k))p(k)

Leverage score sampling to ensure Dennis-Moré

Inexact sub-problem solver
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Finite Sum / Empirical Risk Minimization

Self-Concordant

∣∣vT
(
∇3f (x)[v]

)
v
∣∣ ≤ M

(
vT∇2f (x)v

)3/2
, ∀x, v ∈ Rd

M = 2 is called standard self-concordant.

Theorem ( [Zhang and Lin, 2015])

Suppose there exists γ > 0 and η ∈ [0, 1) such that

|f ′′′

i (t)| ≤ γ
(
f

′′

i (t)
)1−η

. Then

F (x) =
1

n

n∑
i=1

fi (aT
i x) +

λ

2
‖x‖2

is self-concordant with

M =
maxi ‖ai‖1+2η

γ

λη+1/2
.
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Proximal Newton-type Methods

General treatment: [Fukushima and Mine, 1981, Lee et al.,
2014, Byrd et al., 2016, Becker and Fadili, 2012, Schmidt
et al., 2012, Schmidt et al., 2009, Shi and Liu, 2015]

Tailored to specific problems: [Friedman et al., 2010, Hsieh
et al., 2014, Yuan et al., 2012, Oztoprak et al., 2012]

Self-Concordant: [Li et al., 2017, Kyrillidis et al.,
2014, Tran-Dinh et al., 2013]



Intro Smooth NonSmooth

Outline

Part I: Convex
Smooth

Newton-CG

Non-Smooth

Proximal Newton
Semi-smooth Newton

Part II: Non-Convex
Line-Search Based Methods

L-BFGS
Gauss-Newton
Natural Gradient

Trust-Region Based Methods

Trust-Region
Cubic Regularization

Part III: Discussion and Examples
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Semi-Smooth Newton-type Methods

Convex Composite Problem

min
x∈X⊆Rd

F (x) + R(x)

F : (non-)convex and (non-)smooth

R: convex and non-smooth
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Semi-Smooth Newton-type Methods

Recall:

Proximal Newton-type Methods

p(k) ≈ argmin
p∈Rd

{
pT∇F (x(k)) +

1

2
pTH(k)p + R(x(k) + p)

}
≡ proxH(k)

R

(
x(k) −H(k)−1∇F (x(k))

)
− x(k)

proxH(k)

R (x) , argmin
y∈Rd

R(y) +
1

2
‖y − x‖2

H(k)

‖y − x‖2
H = 〈y − x,H (y − x)〉
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Semi-Smooth Newton-type Methods

Recall Newton for smooth root-finding problems:

r(x) = 0 =⇒ J(x(k))p(k) = −r(x(k)) =⇒ x(k+1) = x(k) + p(k)

Key Idea

For solving non-linear non-smooth systems of equations, replace
the Jacobian in the Newtonian iteration system by an element of
Clarke’s generalized Jacobian, which may be nonempty (e.g.,
locally Lipschitz continuous) even if the true Jacobian does not
exist.

Example:

r(x) = proxB
R

(
x− B−1∇F (x)

)
− x
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Semi-Smooth Newton-type Methods

Clarke’s generalized Jacobian

Let r : Rd → Rp be locally Lipschitz continuous at xa. Let Dr be
the set of differentiable points. The Bouligand-subdifferential of r
at x is defined as

∂B ,

{
lim
k→∞

r′(xk) | xk ∈ Dr, xk → x

}
.

Clarke’s generalized Jacobian is ∂r(x) = Conv-hull (∂Br(x)).

aBy Rademacher’s Theorem, r is almost everywhere differentiable
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Semi-Smooth Newton-type Methods

Semi-Smooth Map

r : Rd → Rp is semi-smooth at x if

r a locally Lipschitz continuous function,

r is directionally differentiable at x, and

‖r(x + v)− r(x)− Jv‖ = o(‖v‖), v ∈ Rd , J ∈ ∂r(x + v)

Example: Piecewise continuously differentiable functions.

A vector-valued function is (strongly) semi-smooth if and only if
each of its component functions is (strongly) semi-smooth.
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Semi-Smooth Newton-type Methods

First-order stationarity is written as a fixed point-type
non-linear system of equations, e.g.,

rB(x) , x− proxB
R

(
x− B−1∇F (x)

)
= 0, B � 0

(Stochastic) semi-smooth Newton’s method used to
(approximately) solve these system of nonlinear equations ,
e.g., as in [Milzarek et al., 2018]

r̂B(x) , x− proxB
R

(
x− B−1g(x)

)
J(k)p(k) = −rB(x(k)), J(k) ∈ J B(x(k))

J B
k ,

{
J ∈ Rd×d | J = (I− A) + AB−1H(k),A ∈ ∂proxB

R (u(x))
}

u(x) , x− B−1g(x)
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Semi-Smooth Newton-type Methods

Semi-smoothness of proximal mapping does not hold in general.

In certain settings, these vector-valued functions are monotone and
can be semi-smooth due to the properties of the proximal mappings.

In such cases, their generalized Jacobian matrix is positive
semi-definite due to monotonicity.

Lemma

For a monotone and Lipschitz continuous mapping r : Rd → Rd , and
any x ∈ Rd , each element of ∂Br(x) is positive semi-definite.
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Semi-Smooth Newton-type Methods

General treatment: [Patrinos et al., 2014, Milzarek and
Ulbrich, 2014, Xiao et al., 2016, Patrinos and Bemporad, 2013]

Tailored to a specific problem: [Yuan et al., 2018]

Stochastic: [Milzarek et al., 2018]
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THANK YOU!
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