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Bi-Lipschitz distortion

(M, dys) @ metric space and (X, || - | x)a Banach space.

cx (M) =the infimum over those D e (1, oo| for
which there exists f : M — X satistying

Vao,ye M, dyu(z,y) <|f(z)— fy)lx < Ddu(z,y).

M X



The discrete Heisenberg group

* The group H generated by q, b subject to the
relation stating that the commutator of g, b is
in the center:

ac = ca and bc = cb

where . — [a,b] = aba= b1
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Concretely, H



The left-invariant word metric on H
corresponding to the generating set {a,a™1,b,671}
is denoted dyy -






Denote
Vn eN, B, ={x e H: dw(x,eqg) <n}

Basic facts:

VkeN,  dw(c en) =< VEk

VmeN, |B,|=xm



Uniform convexity

The modulus of uniform convexity of (X, || - || x):

Tr+vy

alx = lylx =1, Iz —ylx = }

5x(€) = inf {1 _

.




* Xis uniformly convexif Ve c (0,1), dx(e) > 0.
* For q€[2,0), Xis g-convex if it admits an
equivalent norm with respect to which §x (¢) > €4.

Theorem (Pisier, 1975). If X is uniformly convex
then it is g-convex for some ¢ € |2, 00) .

¢, is max{2,p}-convex for p > 1



Mostow (1973), Pansu (1989),
Semmes (1996)

Theorem. The metric space (H, dy) does not admit
a bi-Lipschitz embedding into R for any n € N.




Assouad’s embedding theorem (1983)

* A metric space (M, d,,) is K-doubling if any
ball can be covered by K-balls of half its radius.
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Theorem (Assouad, 1983). Suppose that (M, d,,)
is K-doubling and e € (0,1). Then

D(Ke)
\
7

RN(K’G).

(M, dy©) -

Theorem (N.-Neiman, 2010). In fact

DI, pN(K),

(M, dy©) -

David-Snipes, 2013: Simpler deterministic proof.




D(K,e
(M, d3;©) - O, RN(K ),

Obvious question: Why do we need to raise the
metric to the power1 — ¢?




D(K,e
(M, d3;©) - O, RN(K ),

Obvious question: Why do we need to raise the
metric to the power1 — ¢?

Since in (H, dyy) we have Vm €N, |B,,| < m?,

the metric space (H, dyy) is O(1)-doubling.

By Mostow-Pansu-Semmes, (H, dy) RY.



Proof of non-embeddability into R™

By a limiting argument and a non-commutative
variant of Rademacher’s theorem on the almost-
everywhere differentiability of Lipschitz functions
(Pansu differentiation) we have the statement

“If the Heisenberg group embeds bi-Lipschitzly
into R~ then it also embeds into R™via a bi-Lipschitz
mapping that is a group homomorphism.”

A non-Abelian group cannot be isomorphic to a
subgroup of an Abelian group!



Heisenberg non-embeddability
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[ANT (2010)]: Hilbertian case

co, (B, dy) =< \/ log n.




[ANT (2010)]: Hilbertian case

Cy, (Bn7 dW) ~ \/IOg Uz

A limiting argument combined with [Aharoni-
Maurey-Mityagin (1985), Gromov (2007)] shows
that it suffices to treat embeddings that are 1-
cocycles associated to an action by affine
isometries. By [Guichardet (1972)] it further
suffices to deal with coboundaries. This is
treated by examining each irreducible
representation separately.




[ANT (2010)]: g-convex case

If (X, |- ||x)is g-convex then

logn t/q
log log n '

cx(Bn,dw) Zx (



[ANT (2010)]: g-convex case, continued

Qualitative statement: There is no bi-Lipschitz
embedding of the Heisenberg group into an
ergodic Banach space X via a 1-cocycle
associated to an action by affine isometries.

X is ergodic if for every linearisometry T - X — X
and every € X the sequence | n-l
ST
n -
71=1

converges in norm.



[ANT (2010)]: g-convex case, continued

N.-Peres (2010): In the case of g-convex spaces,
it suffices to treat 1-cocycle associated to an
affine action by affine isometries.

For combining this step with the use of
ergodicity, uniform convexity is needed, because
by [Brunel-Sucheston (1972)], ultrapowers of X
are ergodic if and only if X admits an equivalent
uniformly convex norm.



[ANT (2010)]: g-convex case, continued

Conclusion of proof uses algebraic properties of
cocycles combined with rates of convergence for
the mean ergodic theorem in g-convex spaces.

Li (2013): A quantitative version of Pansu’s
differentiation theorem. Suboptimal bounds.




Almost matching embeddability

Assouad (1983): If a metric space (M, dys)is O(1)-
doubling then there exists k € Nand 1-Lipschitz
functions {¢; : M —R"}__, such that for  y € M,

du(@,y) € [277,2] = ||¢(2) — 8;(W)]l2 2 du(z,y).




Almost matching embeddability

Assouad (1983): If a metric space (M, dy;) is O(1)-
doubling then there exists k € N and 1-Lipschitz
functions {¢; : M = R*}__, such that for =,y € M,

du(@,y) € [277,2] = ||¢(2) — 8;(W)]l2 2 du(z,y).

O(logn) O(logn)
So, definef: B, - € R* by f(z)= P ¢;(=).
j=1 j=1

For P € |2,00)the bi-Lipschitz distortion of fis of
order (logn)'/?.



Lafforgue-N., 2012

Theorem. For every g-convex space (X - |1x),
every f:H — X andevery n € N,

2

[ feh) — f@))%
>3 Wﬂ( )|

k=1x€eB,

<x ¥ (If(za) = f(@)|% + I f(xb) — f(@)]|%)-

rEBain




The proof of this inequality relies on real-
variable Fourier analytic methods. Specifically, a
vector-valued Littlewood-Paley-Stein inequality
due to Martinez, Torrea and Xu (2006),
combined with a geometric argument.

For embeddings into ¢/, one can use the classical
Littlewood-Paley inequality instead.



Sharp non-embeddability

S (IIf(za) — f@)]% + | f(@b) — F@)]1%)

wEBQIn
< DBy, | < DIn?
and - 2
Y I1f (zc®) — f(2)]I% dewxc ,x)1
) ) k1—|—q/2 ) ) kl-l—q/Z
k=1xz€B,, k=1zcB,,

2

i fa/2

o !
2;: S: T 1B, |logn < n”logn.
k=1zxz€eB,




Sxo ) (If(@a) = f(@)% + [1f (@b) — f(2)]

ntlogn <x DIn* = D >x (logn)Y/?.

cx(Bn,dw) Zx (log n)l/q

q
X

),



Sharp distortion computation

c (1,2] = cp, (By,dw) <p v/logn.

p € |2,00) = ¢, (Bp,dw) < (logn)l/p



The Sparsest Cut Problem

Input: Two symmetric functions
C,D:{1,...,n} x{1,...,n} —[0,00).

Goal: Compute (or estimate) in polynomial time
the quantity

®*(C, D)= min b

0#£SC{1,...,n} Zi,j:1 D(Zaj) 15(7’) o 15(]) |




The Goemans-Linial Semidefinite
Program

The best known algorithm for the Sparsest Cut
Problem is a continuous relaxation called the
Goemans-Linial SDP (~1997).

Theorem (Arora, Lee, N., 2005). The Goemans-
Linial SDP outputs a number that is guaranteed
to be within a factor of

(logn)

z+o(1)

of &*(C, D).



The link to the Heisenberg group

Theorem (Lee-N., 2006): The Goemans-Linial
SDP makes an error of at least a constant
multiple of ¢y, (B, dy ) on some inputs.




Cheeger-Kleiner-N., 2009: There exists a
universal constant c>0 such that

Cyq (Bn7 dW) (1Og n)

Cheeger-Kleiner, 2007, 2008: Non-quantitative
versions that also reduce matters to ruling out a
certain more structured embedding.

Quantitative estimate controls phenomena that
do not have qualitative counterparts.



How well does the G-L SDP perform?
Conjecture: ¢y, (B, dw) 2 v/logn.

Remark: In a special case called Uniform Sparsest
Cut (approximating graph expansion) the G-L SDP
might perform better. The best known performance
guarantee is < ,/logn [Arora-Rao-Vazirani, 2004]
and the best known impossibility result is

6c\/’log logn

[Kane-Meka, 2013].




Vertical perimeter versus horizontal
perimeter

Conjecture: For every smooth and compactly
supported f : R® - R,

) 2 gt\ ?
0 R3 "

0 0 0

+ '@(waya Z) +x8_z(may7 Z)
Implies ¢¢, (B, dw) 2 +/logn.




Theorem (Lafforgue-N., 2012): For every p>1,

2/ 1/2
o0 P dt
</ ( f(z,y,z+1) — f(z,v, Z)|pdfvdde> t—2>

0 R3

p p 1/p
Sp ( / < ) dxdydz) .
R3

of

8_213 Ly Y, <

+ ‘@(xay7 Z) T CBa—Z(CE,y, Z)




Equivalent form of the conjecture

Let A be a measurable subset of R3. For t>0 define

v (A) :V()l({(a:,y, z) €A (x,y,2+1) & A})

Then

o0 2
/ Ul A)” 4 < PER(A)2.
0

t2






Proof of the vertical versus horizontal
Poincare inequality

Equivalent statement: Suppose that (X, || - ||x) is
g-convex and f : R® — X is smooth and
compactly supported. Then

([ ] Vewztd_fow HXda:dydz)
0 R3

t1+aq/2

oo ([ (3

q

of
dy

q 7
> dxdydz) :
X

2 @ 9,2) + 25w,

7
X



Proof of the equivalence: partition of unity
argument + classical Poincare inequality for the
Heisenberg group.









The Poisson semigroup

1
m(® + 22)

Pi(x) =

O 2 —t2
Qul) = g hilr) = 77(?;2 T a2)2

ot



Vertical convolution

For ¢ € L1 (R),

Y * f(x,y, 2) /zp flx,y,z —u)du € X.



Heisenberg gradient

of of | of
92 0y o2

va:< ) R®> - X & X.

Proposition:

If(z,y, 2 +t) — f(z,9,2)]|% g
(/ /RS Tra/? dxdydz

< ([ 190 = Vit e oy )
0




Littlewood-Paley

By Martinez-Torrea-Xu (2006), the fact that Xis
g-convex implies

</o t1|Q, V]I-]IfH%q(R3,X@X) dt)

N HVHfHLq(R3,X@X) '

q

So, it remains to prove the proposition.



By a variant of a classical argument (using
Hardy’s inequality and semi-group properties),

\f(z,y, 2+ ) — f(z,y,2)||% g
(/ /R3 Tra/? dxdydz

N </0 t2 71 |Qy + flIz, @ x) dt) '




So, we need to show that

(/o t77 1 |Qy T, @®ex) dt)

< ([T 100 Vsl e )

qa



Key lemma: For every t>0,

Q¢ * [ — Qa2 % f”Lq(R?’,X)
SVEHQ:* Vi fllL ms xax)



The desired estimate

(/ t2 1 |Qy fH%q(RS,X) dt)
0

S ARy

q

Follows from key lemma by the telescoping sum

Qe+ f=> (Qam-1,— Qamy* f).
m=1



Proof of key lemma

Since Py; = P, x P, we have 0y, = P, x Q) .

So, by identifying R3 with[H[, for every h € R3,

Qt*f(h)—Q2t*f(h)
:Qt*f(h)—Pt*Qt*f(h)

_ /R Py(u) (Qu * F(B) — Qu % f(he™)) du.



For every s>0 consider the commutator path

Vs 1 [0,44/s] — R?,

7s(0) =
a? if 0 <0 <4/s,
aVspd—vs if /s <0 <24/s,
aVopVsgq—0+2vs if 24/5 <0 < 34/s,

aVibVia—Vsp—0t3Vs if 3,/5 < 6 < 44/s.



So, vs(0) =0 = ey and

7(45) = [aV5 07| = [a, b = ¢
Hence,

Qi * f(h) — Q¢ * f(he™)
NG .
— /O @Qt « f (he ", (0)) db.



By design, C%Qt % f (he™%y,(0)) is one of

0aQy * F(he™ "7 (6)) = Qp * B f(he "7, ()
or

Op Qs * f(he "y (0)) = Qr * Op f(he™ “vu(0)),
where 9 — 9 and g, = 0, + x0, .

We used here the fact that since ); is
convolution along the center, it commutes with

Ou, Ob.



We saw that
Q¢ * f(h) — Qa2 * f(h))
. /R Py(u) (Q1 % f(h) = Q% f(he™)) du

W g »
:/RPt(u)/O C@Qt*f(hc vu(0)) dfdu.

Now the key lemma follows from the triangle

inequality and the fact that oo
/ VuP;(u)du =< V.
0



