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Bi-Lipschitz distortion 

           a metric space and                 a Banach space. 
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The discrete Heisenberg group 

• The group     generated by          subject to the 
relation stating that the commutator of         is 
in the center:   

 

where  
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a; b

ac= ca and bc= cb

c = [a; b] = aba¡1b¡1
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The left-invariant word metric on     
corresponding to the generating set                          
is denoted        .  
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Basic facts: 
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Uniform convexity 

The modulus of uniform convexity of                      :  
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• X is uniformly convex if 

• For                   ,  X is q-convex if it admits an 
equivalent norm with respect to which 

 

Theorem (Pisier, 1975). If X is uniformly convex 
then it is q-convex for some                   .  

 

 

        is                    -convex for            .  

8 ² 2 (0;1); ±X(²) > 0:
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Mostow (1973), Pansu (1989), 
Semmes (1996) 

Theorem. The metric space               does not admit 
a bi-Lipschitz embedding into       for any             .                    

(H; dW )

Rn n 2 N



Assouad’s embedding theorem (1983) 

• A metric space                is K-doubling if any 
ball can be covered by K-balls of half its radius.  
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Theorem (Assouad, 1983). Suppose that                
is K-doubling and                  . Then  

 

 

 

Theorem (N.-Neiman, 2010). In fact 

 

 

 

David-Snipes, 2013: Simpler deterministic proof.  
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Obvious question: Why do we need to raise the 
metric to the power           ?   
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Obvious question: Why do we need to raise the 
metric to the power           ?   

 

Since in                we have 

the metric space                is O(1)-doubling.   

          

By Mostow-Pansu-Semmes,                
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Proof of non-embeddability into  

By a limiting argument and a non-commutative 
variant of Rademacher’s theorem on the almost-
everywhere differentiability of Lipschitz functions 
(Pansu differentiation) we have the statement 

“If the Heisenberg group embeds bi-Lipschitzly     
into       then it also embeds into      via a bi-Lipschitz 
mapping that is a group homomorphism.” 

A non-Abelian group cannot be isomorphic to a 
subgroup of an Abelian group!  

Rn

Rn Rn



Heisenberg non-embeddability 

• Mostow-Pansu-Semmes (1996). 

• Cheeger (1999). 

• Pauls (2001). 

• Lee-N. (2006). 

• Cheeger-Kleiner (2006). 

• Cheeger-Kleiner (2007). 

• Cheeger-Kleiner (2008). 

• Cheeger-Kleiner-N. (2009). 

• Austin-N.-Tessera (2010). 

• Li (2013). 
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H does not embed into

any uniformly convex space:
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[ANT (2010)]: Hilbertian case 
 

 

 

c`2(Bn; dW) ³
p
logn:



[ANT (2010)]: Hilbertian case 
 

 

A limiting argument combined with [Aharoni-
Maurey-Mityagin (1985), Gromov (2007)] shows 
that it suffices to treat embeddings that are 1-
cocycles associated to an action by affine 
isometries. By [Guichardet (1972)] it further 
suffices to deal with coboundaries. This is 
treated by examining each irreducible 
representation separately.  

c`2(Bn; dW) ³
p
logn:



[ANT (2010)]: q-convex case 

If                 is q-convex then 
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[ANT (2010)]: q-convex case, continued 

Qualitative statement: There is no bi-Lipschitz 
embedding of the Heisenberg group into an 
ergodic Banach space X via a 1-cocycle 
associated to an action by affine isometries. 

 

X is ergodic if for every linear isometry                   
and every               the sequence   

 

converges in norm.   

T :X!X
x 2X

1

n

n¡1X

j=1

T jx



[ANT (2010)]: q-convex case, continued 

N.-Peres (2010): In the case of q-convex spaces, 
it suffices to treat 1-cocycle associated to an 
affine action by affine isometries. 

 

For combining this step with the use of 
ergodicity, uniform convexity is needed, because 
by [Brunel-Sucheston (1972)], ultrapowers of X 
are ergodic if and only if X admits an equivalent 
uniformly convex norm.   



[ANT (2010)]: q-convex case, continued 

Conclusion of proof uses algebraic properties of 
cocycles combined with rates of convergence for 
the mean ergodic theorem in q-convex spaces.  

 

 

 

Li (2013): A quantitative version of Pansu’s 
differentiation theorem. Suboptimal bounds.  

 



Almost matching embeddability 

Assouad (1983): If a metric space              is O(1)-
doubling then there exists            and 1-Lipschitz 
functions                              such that for                , 
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Almost matching embeddability 

Assouad (1983): If a metric space              is O(1)-
doubling then there exists            and 1-Lipschitz 
functions                              such that for                , 

 

 

So, define                                    by 

 

For                   the bi-Lipschitz distortion of f is of 
order  
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Lafforgue-N., 2012 

Theorem. For every q-convex space                
every                       and every             ,    

(X;k ¢ kX);
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.X
X
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¢
:



The proof of this inequality relies on real-
variable Fourier analytic methods. Specifically, a 
vector-valued Littlewood-Paley-Stein inequality 
due to Martinez, Torrea and Xu (2006), 
combined with a geometric argument.  

 

For embeddings into     one can use the classical 
Littlewood-Paley inequality instead.    

`p



Sharp non-embeddability 

If 

 

 

 

and 
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Sharp distortion computation 

p 2 (1;2] =) c`p (Bn; dW ) ³p
p
logn:

p 2 [2;1) =) c`p (Bn; dW) ³p (logn)1=p:



The Sparsest Cut Problem 

Input: Two symmetric functions 

 

 

Goal: Compute (or estimate) in polynomial time 
the quantity  

C;D : f1; : : : ; ng£f1; : : : ; ng ! [0;1):

©¤(C;D) = min
;6=S(f1;:::;ng

Pn

i;j=1C(i; j)j1S(i)¡ 1S(j)jPn

i;j=1D(i; j)j1S(i)¡ 1S(j)j
:



The Goemans-Linial Semidefinite 
Program  

The best known algorithm for the Sparsest Cut 
Problem is a continuous relaxation called the 
Goemans-Linial SDP (~1997).  

 

Theorem (Arora, Lee, N., 2005). The Goemans-
Linial SDP outputs a number that is guaranteed 
to be within a factor of 

 

of   

(logn)
1
2
+o(1)

©¤(C;D):



The link to the Heisenberg group 

Theorem (Lee-N., 2006): The Goemans-Linial 
SDP makes an error of at least a constant 
multiple of                        on some inputs.   c`1(Bn; dW)



Cheeger-Kleiner-N., 2009: There exists a 
universal constant c>0 such that 

 

 

Cheeger-Kleiner, 2007, 2008: Non-quantitative 
versions that also reduce matters to ruling out a 
certain more structured embedding.  

Quantitative estimate controls phenomena that 
do not have qualitative counterparts.   

c`1(Bn; dW) > (logn)c:



How well does the G-L SDP perform? 

Conjecture: 

 

Remark: In a special case called Uniform Sparsest 
Cut (approximating graph expansion) the G-L SDP 
might perform better. The best known performance 
guarantee is                   [Arora-Rao-Vazirani, 2004] 
and the best known impossibility result is 

 

[Kane-Meka, 2013].  

c`1(Bn; dW) &
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Vertical perimeter versus horizontal 
perimeter 

Conjecture: For every smooth and compactly 
supported 

 

 

 

 

 

Implies   
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Theorem (Lafforgue-N., 2012): For every p>1, 

ÃZ 1

0

µZ

R3
jf(x; y; z + t)¡ f(x; y; z)jpdxdydz

¶2=p
dt

t2

!1=2

.p

µZ

R3

µ¯̄
¯̄@f
@x

(x; y; z)

¯̄
¯̄
p

+

¯̄
¯̄@f
@y

(x; y; z) + x
@f

@z
(x; y; z)

¯̄
¯̄
p¶

dxdydz

¶1=p

:



Equivalent form of the conjecture 

Let A be a measurable subset of        For t>0 define 
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Proof of the vertical versus horizontal 
Poincare inequality  

Equivalent statement: Suppose that                    is 
q-convex and                      is smooth and 
compactly supported. Then                  

(X;k ¢ kX)
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Proof of the equivalence: partition of unity 
argument + classical Poincare inequality for the 
Heisenberg group. 
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The Poisson semigroup 

Pt(x) =
1

¼(t2 + x2)
:

Qt(x) =
@

@t
Pt(x) =

x2 ¡ t2

¼(t2 + x2)2
:



Vertical convolution 

For  Ã 2 L1(R);

Ã ¤ f(x; y; z) =
Z
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Ã(u)f(x; y; z ¡ u)du 2 X:



Heisenberg gradient 

 

 

Proposition: 
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Littlewood-Paley 

By Martinez-Torrea-Xu (2006),  the fact that X is 
q-convex implies  

 

 

 

 

 

So, it remains to prove the proposition.   
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By a variant of a classical argument (using 
Hardy’s inequality and semi-group properties), 
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So, we need to show that 
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Key lemma: For every t>0, 
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The desired estimate 

 

 

 

 

 

Follows from key lemma by the telescoping sum   
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Proof of key lemma 

Since                            we have                           .  

 

So, by identifying       with     , for every               , 
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For every s>0 consider the commutator path 
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So,                               and 
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By design,                                             is one of 
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We used here the fact that since       is 
convolution along the center, it commutes with  
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We saw that 

 

 

 

 

 

 

Now the key lemma follows from the triangle 
inequality and the fact that 

 

Qt ¤ f(h)¡Q2t ¤ f(h))

=

Z

R
Pt(u)

¡
Qt ¤ f(h)¡Qt ¤ f(hc¡u)

¢
du

=

Z

R
Pt(u)

Z 4
p
u

0

d

dµ
Qt ¤ f

¡
hc¡u°u(µ)

¢
dµdu:

Z 1

0

p
uPt(u)du ³

p
t:


