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Part 2: Hiding the data

* Three related notions i —C)

P

» Privacy
» Algorithmic stability
» Bounded information

Adaptive
setting

* All three relate adaptive setting
to execution on fresh data

» Common idea: With limited information about the data,
cannot overfit

* Larger goal: Prescriptive theory

» Understand how to design algorithms
to maximize data set’s long-term value
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Adaptive Linear Queries Pitassi, Reingold, Roth 2015]
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* Examples
» Contingency tables
» Classification error

» Optimization via gradient descent
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Adaptive Linear Queries
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* Each query is a function
q: X — [0,1]

* Empirical answer
1
X) == ql
q(X) =~ _ q(x;)
l

* “Population answer”
q(P) = Ez-p(q(2))
* Answers have error « if
la; —q;(P)| < a (Vi)
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Adaptive Linear Queries
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Outline

{' Privacy, Stability, Generalization: Pick Any Three }

» “Stable algorithms cannot overfit”

* Applications to statistical queries

» “Transfer theorems” for stable algorithms

* Information and generalization



Diﬁerential Privacz
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* Dataset x= (z1,...,&yn) € D"
» Domain D can be numbers, categories, tax forms

» Think of x as fixed (not random)

°* A = randomized procedure
» A(x) is a random variable
» Randomness might come from adding noise, resampling, etc.



Diﬂerential Privacz
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* A thought experiment
» Change one person’s data (or remove them)

»> Will the distribution on outputs change much?



Diﬂerential Privacz
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Dizzerential Pri A is p-stable with respect to divergence D

if for all neighbors x, x':
§—21 D(A(x),A(x’)) <p

£ Z2 A Here, D could be KL, x4, Renyi
: divergence, or other...
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Why distributional stability?

With the right divergence, distributional stability...

* |s closed under processing by arbitrary analyst

» Don’t need to understand how analyst works

A is stable
=

B is stable

* Degrades gracefully when
algorithms are composed
> If each A; is (¢;, 6;)-DP,
then B is = (E\/E 6k) — DP




Laplace Mechanism

function f

4 Alx) = f(x) + nozse
i local random
coins

* Say we want to release a summary f(x) € R¥

x—=

> e.g., proportion of diabetics: x; € {0,1} and f(x) =

* Simple approach: add noise to f(x)

» How much noise is needed?

1
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Laplace Mechanism
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Laplace Mechanism

function f
I
4 A(x) = f(x) + nozse
i local random
[ * Global Sensitivity: GSy=  max , | f(z) — f($’)|\1 )
neighbors z,x

» Example: Gsproportion — =

> Laplace distribution Lap(/l) has density

h(y) o e vI/* h(y + GS¢) AN (Y)
» Changing one point translates curve /\




A rich algorithmic field

Noise
addition

Exponential
sampling

Y ~p(ylx)
o exp(e - quality(y, x))

Local
Ty ! Untrusted .
$=ul 0, |— | perturbation

aggregator




Outline

* Privacy, Stability, Generalization: Pick Any Three

[> “Stable algorithms cannot overfit” J

* Applications to statistical queries

» “Transfer theorems” for stable algorithms

* Information and generalization



Why distributional stability?

* Implies that the analyst “cannot overfit”. Suppose:
* Analyst chooses P

 Algorithm produces output a = A(X)
* Analyst selects a statistical query gq,: — [0,1]

Score = [qq(X) — qq(P) |
~ |Qa(X) - Qa(X,)l

i —(- 4

Meta-Theorem [DFHPRR, ...]:

If A is p-stable w.r.t. D, then: VP, V analysts:
Score < f(p,D)

with high probability.




Generalization Lemmas

i —(- 4

Score = |q,(X) — q,(P) | where a = A(X)
~ |qa(X) — qa (X"

[DFHPRR ‘15,
e (¢,6)-DP = score = 0(€) BNSSSU *16]
with probability * 1 — e~ — § /¢
e ¢-TV stable = E(SCOT'@) — € [McSherry 7]
o ¢2.KLstable = ./E(score?) = 0(¢) {,'T,ngﬁ;:nirgm]
e ¢2.zCDP” — score = 0(€) with high prob.

[Bun, Dwork, Rothblum, Steinke]
20



Proof'idea: Stability

* Lemma: If A is e-TV stable, then for all distributions P:
E x.pn (qa(X) — Qa(P)) <€
a~A(X)
* Proof:
» Fix distribution P

» Compare distributions on two triples
. ()_(: i,A()_())) and ()_(), i,A()_()_i,?c’ )) where x4, ..., X, X ~ P are i.i.d.

» Observation: These have total variation distance < €.
* Expectations of bounded functions are about the same

> Consider the bounded function f (X, i,y) = q, (x;)
where g, is the query selected by analyst on output

» Now we have
E(f(X, i,A(}?))) = E(q.(®)
E(f (X 14(X1%))) = E(qa(P)

» S0 E(qa(X) —qa(P)) < e
* Need a bit more work to get E(score) < €

21



High-Probability Bounds

* To get subgaussian concentration, need stronger
guarantees than TV or KL stability

> (€, 0)-differential privacy currently the best

* ldea [Nissim-Stemmer]:

» Runt = 1/ copies of the game with independent data sets

* If analyst succeeds with probability §, then with constant probability
one of the copies produced a query that overfit

» Use a differentially private algorithm to choose copy with
“worst” error

» Argue that composed algorithm...
* Is differentially private [easy]
* Should not be able to overfit to any of the t data sets [subtle]

22



Outline

* Privacy, Stability, Generalization: Pick Any Three

» “Stable algorithms cannot overfit”

{' Applications to statistical queries

» “Transfer theorems” for stable algorithms

* Information and generalization
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“Transfer” Theorem ik —Cor
P P oiid
The generalization lemmas connect r--;-:--1 oo !
accuracy on the population with  dembudon 1T

sample accuracy.

We say A is («, ) sample-accurate if,
for all data sets x,
max |a; — q;(x) | = @
l

with probability > 1 — 6.

«— {1

aq
qu

t

«— Ak
— (]

Theorem [BNSSSUJ:
If Ais (¢,0)-DP and («, f)-sample accurate, then
max|a; — q;(P)| < 0(a + ¢€)
l

with probability =1 — f — 6 /€.

Similar theorems possible for weaker stability notions

Proof relies on “right” way to handle many rounds

25



From 2 to k stages: Induction [DFHPRR’15]

* Apply overfitting lemma at each round

» Probability of overfitting adds up over rounds

26



“Monitor Argument” [BNSSSU’16]

.° .° :"_:4";:61_1_\_ ____________________
2 | ) Find i

J — argmaXilai — CIL(P)l:
d> :

2. Return g;

i T %2
i -% \ qi*

Observation:
€ = Score(A) = max |a; — q;ip)| —
l

* Stronger bounds

* Generalizes beyond linear queries

27



Application 1: Worst-case queries

° One can answer an arbitrary sequence of k adaptively
chosen statistical queries such that (w.h.p.)

P)|=0 vk
max|a; — q;(P)| = (ﬁ)

» Alternatively, for error a, a sufficient sample size is

_ (x/F)
n=0 —
a
* Algorithm: On each query, add Laplace (or Gaussian)

Vi

noise with standard deviation —

Vn

28



Adding noise to many queries

* Suppose we have k statistical queries g4, ..., qi

°* Lemma: There is an (€, 0)-differentially private
algorithm that answers each query with sample error

k
max |a; - q;(x)| = 0 (g /In(k) 1n<1/6>)

* Run Laplace mechanism k times,

> with parameter €’ ~ €/Vk
» then apply composition theorems

* Corollary (via Transfer Theorem): If X ~ P", then

max la; — q;(P)| =0 (§+ E) =0 (\/?f)

29



Application 2: Reusable Holdout [DFHPRR]

* Recall from part |: we can answer k queries with error
nearly independent of k

» Use “dirty” set S to generate guesses, and
“clean” set C to verify.

» Algorithm: answer only those queries
where |q;(Xs) — q;(X.)| > T for some T

» Erroris T + 5(“Wlogk)
JVn

* New version: add noise each time you compare to
threshold

~

1/4
» Obtain error T + O ((W 105;) )

30



Sparse vector mechanism

° Suppose we have k statistical queries g, ..., g
» Each asks for the average of a [0,1] function over the data
» Posed adaptively
°* We want to know which queries exceed a threshold T

» E.g. which queries are way above a guessed value
» Can we pay only for the number of queries above threshold?

* Sparse Vector Mechanism™ (x, q4,q>, ...)

» Flags =0 N , €
> While(Flags < w): Theorem™: For €' = T In(i/o)
« Receive next quer)ll q; Sparse Vector is
o If (qi(x) + Lap (E) > T): 5
— Answer “above threshold” | © (E' )-DP
- Flags « Flags + 1 * Correct w.h.p. forall i s.t.
* Else
— Answer “below threshold” |ql (,X,') — Tl > () (\/W In(1/4) In k)
ne

* Actual algorithm also randomizes T 31



Similar applications

* Median mechanism

1/4
. .~ (log|X|-log k
» Compression analysis O( 8l 7|1 2 )

- 1/2 1/6
» Stability-based: O ((log a2 \/(%ogIXI) )

* lLadder algorithm [Hardtl7]

log k

» Compression analysis n = —
a

(log k)1.5
a2-5

» Stability-based: n =

32



Outline

* Privacy, Stability, Generalization: Pick Any Three

» “Stable algorithms cannot overfit”

* Applications to statistical queries

» “Transfer theorems” for stable algorithms

[' Information and generalization
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. . [DFHPRR, Russo-Zou,
Information and Overfitting RRsT, Xu-Raginsky,...]

“’R‘ : A > Analyst

* Look at information in Y = A(X) about X

* Several measures based on odds ratio
(PF(A(X) =y|X = x))
I, = log
Pr(A(X) = y)

» Mutual information: expectation of Iy,

Strongest
guarantees

» Max information: high-probability bound on [,
» Min-entropy leakage: E, .y (Supx Ix’y)

34



. . [DFHPRR, Russo-Zou,
Information and Overfitting RRsT, Xu-Raginsky,...]

M'a‘ : A > Analyst

* Look at information in Y = A(X) about X

* Several measures based on odds ratio
_Pr(A(0) =y| X =x)

Iy

Y PrAi) =y)
:Meta-Lemma: score S ./information / n
:Theorem: If A is (€, 6)-DP*, then max — info < e“n. :
/Theor'em: If A is £-compressible, then max — info < . \

\. s

35



From information to hypothesis testing

* Consider adaptive hypothesis selection: analyst makes a
conjecture Hy about P, and chooses a test T such that
Pr(T(X) = 1|P € Hy, X ~ P™) < pg

h—(x =1 =
. Analyst
P ii.d. dq >

* The max information is

Io (X; A(X)) = max log
X,y

Pr(A(x) = y|X = x)
Pr(A(x) =y)
°* Observation: If IOO(X;A(X)) < k, then
Pr(T(X)=1|P € Hy,X ~ P™",T = A(X)) < 2*p,.
* Other measures of information yield more complex
relationships
» Not yet well explored [Russo-Zou’l5, RogersRST 16, S’17]

36



Outline

* Privacy, Stability, Generalization: Pick Any Three

» “Stable algorithms cannot overfit”

* Applications to statistical queries

» “Transfer theorems” for stable algorithms

* Information and generalization
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Conclusions

Adaptive analysis is everywhere
»> “All inference” is selective

We can get nontrivial results for arbitrary analyst behavior
» Accuracy/power guarantees
» Results are (essentially) tight
» Information and stability play key roles

Current theory most useful for
» Many queries
» Statistical queries

Not covered
» Lower bounds on accuracy (and open problems)
» Concrete bounds (see talks by Feldman and Thakkar)
» Accuracy as a good: allocating costs (fairly?)
» Models of “benign” analyst (see my second talk)
» Adaptive hypothesis testing

Lecture notes for Penn-BU course at
http://adaptivedataanalysis.com
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