Hardness Amplification and the Approximate Degree of Constant Depth Circuits

Mark Bun^1 and Justin Thaler²

¹Harvard University

²Simons Institute for the Theory of Computing, UC Berkeley

5 December 2013

Boolean function
$$f : \{-1, 1\}^n \to \{-1, 1\}$$

AND_n(x) =
$$\begin{cases} -1 & (\mathsf{TRUE}) & \text{if } x = (-1)^n \\ 1 & (\mathsf{FALSE}) & \text{otherwise} \end{cases}$$

A real polynomial $p \epsilon$ -approximates a Boolean function f if

$$|p(x) - f(x)| < \epsilon \quad \forall x \in \{-1, 1\}^n$$

• $\widetilde{\deg}_{\epsilon}(f) = \text{minimum degree needed to } \epsilon\text{-approximate } f$ • $\widetilde{\deg}(f) := \widetilde{\deg}_{1/3}(f)$ is the approximate degree of f Upper bounds on $\widetilde{\deg}_{\epsilon}(f)$ yield efficient learning algorithms

- $\epsilon \rightarrow 1$: PAC learning [KS01]
- ϵ "close to" 1: Attribute-Efficient Learning [KS04, STT12]
- $\epsilon < 1$ a constant: Agnostic Learning [KKMS05]

Lower bounds on $\widetilde{\deg}_{\epsilon}(f)$ yield lower bounds on:

- Quantum query complexity [BBCMW98] [AS01] [Amb03] [KSW04]
- Communication complexity [BVW07] [She07] [SZ07] [CA08] [LS08] [She12]
- Circuit complexity [MP69] [Bei93] [Bei94] [She08]

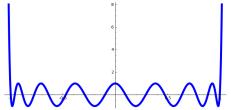
Example: What is the Approximate Degree of AND_n ?

 $\widetilde{\operatorname{deg}}(\operatorname{AND}_n) = \Theta(\sqrt{n}).$

- Upper bound: Use Chebyshev Polynomials.
- Markov's Inequality: Let G(t) be a univariate polynomial s.t. $\deg(G) \le d$ and $\sup_{t \in [-1,1]} |G(t)| \le 1$. Then

$$\sup_{t \in [-1,1]} |G'(t)| \le d^2.$$

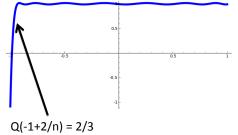
• Chebyshev polynomials are the extremal case.



Example: What is the Approximate Degree of AND_n ?

 $\widetilde{\operatorname{deg}}(\operatorname{AND}_n) = O(\sqrt{n}).$

After shifting a scaling, can turn degree $O(\sqrt{n})$ Chebyshev polynomial into a univariate polynomial Q(t) that looks like:

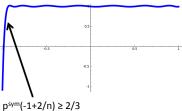


Define n-variate polynomial p via $p(x) = Q(\sum_{i=1}^{n} x_i/n)$.
Then $|p(x) - AND_n(x)| \le 1/3 \quad \forall x \in \{-1, 1\}^n$.

Example: What is the Approximate Degree of AND_n ?

[NS92] $\widetilde{\operatorname{deg}}(\operatorname{AND}_n) = \Omega(\sqrt{n}).$

- Lower bound: Use symmetrization.
- Suppose $|p(x) AND_n(x)| \le 1/3$ $\forall x \in \{-1, 1\}^n$.
- There is a way to turn p into a <u>univariate</u> polynomial p^{sym} that looks like this:

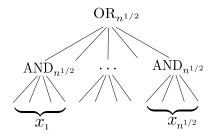


- Claim 1: $\deg(p^{\mathsf{sym}}) \le \deg(p)$.
- Claim 2: Markov's inequality $\Longrightarrow \deg(p^{sym}) = \Omega(n^{1/2}).$

Beyond Symmetrization: Analyzing the OR-AND Tree

Beyond Symmetrization

- Symmetrization is "lossy": in turning an *n*-variate poly *p* into a univariate poly *p*^{sym}, we throw away information about *p*.
- Challenge problem: What is $deg(OR-AND_n)$?



Upper bounds [HMW03] $\widetilde{\operatorname{deg}}(\operatorname{OR-AND}_n) = O(n^{1/2})$

Lower bounds

 $\begin{array}{ll} [{\sf NS92}] & \Omega(n^{1/4}) \\ [{\sf Shi01}] & \Omega(n^{1/4}\sqrt{\log n}) \\ [{\sf Amb03}] & \Omega(n^{1/3}) \\ [{\sf Aar08}] & {\sf Reposed \ Question} \\ [{\sf She09}] & \Omega(n^{3/8}) \\ [{\sf BT13a}] & \Omega(n^{1/2}) \\ [{\sf She13a}] & \Omega(n^{1/2}), \ {\sf independently} \end{array}$

What is best error achievable by **any** degree d approximation of f? Primal LP (Linear in ϵ and coefficients of p):

Dual LP:

$$\begin{split} \max_{\psi} & \sum_{x \in \{-1,1\}^n} \psi(x) f(x) \\ \text{s.t.} & \sum_{x \in \{-1,1\}^n} |\psi(x)| = 1 \\ & \sum_{x \in \{-1,1\}^n} \psi(x) q(x) = 0 \qquad \text{whenever } \deg q \leq d \end{split}$$

Theorem: deg_{ϵ}(f) > d iff there exists a "dual polynomial" $\psi: \{-1,1\}^n \to \mathbb{R}$ with

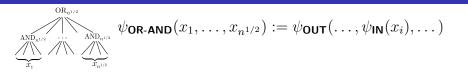
- $\begin{array}{ll} \textbf{(1)} & \sum_{x \in \{-1,1\}^n} \psi(x) f(x) > \epsilon & \text{``high correlation with } f'' \\ \textbf{(2)} & \sum_{x \in \{-1,1\}^n} |\psi(x)| = 1 & \text{``}L_1 \text{-norm } 1'' \\ \textbf{(3)} & \sum_{x \in \{-1,1\}^n} \psi(x) q(x) = 0, \deg q \leq d & \text{``pure high degree } d'' \end{array}$
 - (3) equivalent to: $\hat{\psi}(S) = 0$ for all $|S| \leq d$.

Key technique in, e.g., [She07] [Lee09] [She09]

Goal: Construct an explicit dual polynomial $\psi_{\mbox{OR-AND}}$ for $OR\mbox{-}AND$

- By [NS92], there are dual polynomials ψ_{OUT} for $\widetilde{\text{deg}}(\text{OR}_{n^{1/2}}) = \Omega(n^{1/4})$ and ψ_{IN} for $\widetilde{\text{deg}}(\text{AND}_{n^{1/2}}) = \Omega(n^{1/4})$
- Can we combine ψ_{OUT} and ψ_{IN} to obtain a dual polynomial ψ_{OR-AND} for OR-AND?

A First Attempt



A First Attempt

 $OR_{n^{1/2}}$

$\underbrace{\underset{x_1}{\overset{\text{AND}_{n^{1/2}}}{\longleftarrow}}}_{\text{AND}_{n^{1/2}}}\psi_{\text{OR-AND}}(x_1,\ldots,x_{n^{1/2}}) := \psi_{\text{OUT}}(\ldots,\psi_{\text{IN}}(x_i),\ldots)$

- Easy to check: $\psi_{\text{OR-AND}}$ has pure high degree at least $n^{1/4} \cdot n^{1/4} = n^{1/2}$.
- \blacksquare E.g. If $\psi_{\mbox{OUT}}(y_1,y_2)=y_1y_2$ and $\psi_{\mbox{IN}}(z_1,z_2)=z_1z_2,$ then

 $\psi_{\mathsf{OR-AND}}(x_{11}, x_{12}, x_{21}, x_{22}) = (x_{11}x_{12})(x_{21}x_{22}) = x_{11}x_{12}x_{21}x_{22}.$

A First Attempt

 $OR_{n^{1/2}}$

- Easy to check: $\psi_{\text{OR-AND}}$ has pure high degree at least $n^{1/4} \cdot n^{1/4} = n^{1/2}$.
- \blacksquare E.g. If $\psi_{\mbox{OUT}}(y_1,y_2)=y_1y_2$ and $\psi_{\mbox{IN}}(z_1,z_2)=z_1z_2,$ then

 $\psi_{\text{OR-AND}}(x_{11}, x_{12}, x_{21}, x_{22}) = (x_{11}x_{12})(x_{21}x_{22}) = x_{11}x_{12}x_{21}x_{22}.$

- Does ψ_{OR-AND} have high correlation with $OR-AND_n$?
- Problem: Proposed definition of \u03c6_{OR-AND} may feed non-Boolean values into \u03c6_{OUT}. But we only have control over \u03c6_{OUT} on **Boolean** inputs.

A Second (and Final) Attempt [She09, Lee09]

$$\psi_{\mathsf{OR-AND}}(x_1,\ldots,x_{n^{1/2}}) := C \cdot \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)),\ldots) \prod_{i=1}^{n^{1/2}} |\psi_{\mathsf{IN}}(x_i)|$$

(C chosen to ensure $\psi_{\text{OR-AND}}$ has L_1 -norm 1).

A Second (and Final) Attempt [She09, Lee09]

$$\psi_{\mathsf{OR-AND}}(x_1,\ldots,x_{n^{1/2}}) := C \cdot \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)),\ldots) \prod_{i=1}^{n^{1/2}} |\psi_{\mathsf{IN}}(x_i)|$$

(C chosen to ensure $\psi_{\text{OR-AND}}$ has L_1 -norm 1).

Must verify:

- I $\psi_{\text{OR-AND}}$ has pure high degree $\geq n^{1/4} \cdot n^{1/4} = n^{1/2}$.
- **2** $\psi_{\text{OR-AND}}$ has high correlation with OR-AND.

A Second (and Final) Attempt [She09, Lee09]

$$\psi_{\mathsf{OR-AND}}(x_1,\ldots,x_{n^{1/2}}) := C \cdot \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)),\ldots) \prod_{i=1}^{n^{1/2}} |\psi_{\mathsf{IN}}(x_i)|$$

(C chosen to ensure $\psi_{\text{OR-AND}}$ has L_1 -norm 1).

Must verify:

- **1** $\psi_{\text{OR-AND}}$ has pure high degree $\geq n^{1/4} \cdot n^{1/4} = n^{1/2} \cdot \sqrt{[\text{She09}]}$
- **2** $\psi_{\text{OR-AND}}$ has high correlation with OR-AND. [BT13a]

(Sub)Goal: Show $\psi_{\text{OR-AND}}$ has pure high degree at least $n^{1/2}$ [She09]

Pure High Degree Analysis [She09]

$$\psi_{\mathsf{OR-AND}}(x_1,\ldots,x_{n^{1/2}}) := C \cdot \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)),\ldots) \prod_{i=1}^{n^{1/2}} |\psi_{\mathsf{IN}}(x_i)|$$

Intuition: Consider $\psi_{OUT}(y_1, y_2, y_3) = y_1y_2$. Then $\psi_{OR-AND}(x_1, x_2, x_3)$ equals:

$$C \cdot \operatorname{sgn}(\psi_{\mathsf{IN}}(x_1)) \cdot \operatorname{sgn}(\psi_{\mathsf{IN}}(x_2)) \cdot \prod_{i=1}^{3} |\psi_{\mathsf{IN}}(x_i)|$$
$$= \psi_{\mathsf{IN}}(x_1) \cdot \psi_{\mathsf{IN}}(x_2) \cdot |\psi_{\mathsf{IN}}(x_3)|$$

Pure High Degree Analysis [She09]

$$\psi_{\mathsf{OR-AND}}(x_1,\ldots,x_{n^{1/2}}) := C \cdot \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)),\ldots) \prod_{i=1}^{n^{1/2}} |\psi_{\mathsf{IN}}(x_i)|$$

Intuition: Consider $\psi_{OUT}(y_1, y_2, y_3) = y_1y_2$. Then $\psi_{OR-AND}(x_1, x_2, x_3)$ equals:

$$C \cdot \operatorname{sgn}(\psi_{\mathsf{IN}}(x_1)) \cdot \operatorname{sgn}(\psi_{\mathsf{IN}}(x_2)) \cdot \prod_{i=1}^{3} |\psi_{\mathsf{IN}}(x_i)|$$
$$= \psi_{\mathsf{IN}}(x_1) \cdot \psi_{\mathsf{IN}}(x_2) \cdot |\psi_{\mathsf{IN}}(x_3)|$$

- Each term of ψ_{OR-AND} is the product of PHD(ψ_{OUT}) polynomials over disjoint variable sets, each of pure high degree at least PHD(ψ_{IN}).
- So $PHD(\psi_{OR-AND}) \ge PHD(\psi_{OUT}) \cdot PHD(\psi_{IN})$.

(Sub)Goal: Show $\psi_{\text{OR-AND}}$ has high correlation with OR-AND

$$\psi_{\mathsf{OR-AND}}(x_1,\ldots,x_{n^{1/2}}) := C \cdot \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)),\ldots) \prod_{i=1}^{n^{1/2}} |\psi_{\mathsf{IN}}(x_i)|$$

Idea: Show

$$\sum_{x \in \{-1,1\}^n} \psi_{\mathsf{OR-AND}}(x) \cdot \operatorname{OR-AND}_n(x) \approx \sum_{y \in \{-1,1\}^{n^{1/2}}} \psi_{\mathsf{OUT}}(y) \cdot \operatorname{OR}_{n^{1/2}}(y).$$

- Intuition: We are feeding $sgn(\psi_{IN}(x_i))$ into ψ_{OUT} .
- ψ_{IN} is correlated with $AND_{n^{1/2}}$, so $sgn(\psi_{IN}(x_i))$ is a "decent predictor" of $AND_{n^{1/2}}$.
- But there are errors. Need to show errors don't "build up".

Correlation Analysis

$$\psi_{\mathsf{OR-AND}}(x_1,\ldots,x_{n^{1/2}}) := C \cdot \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)),\ldots) \prod_{i=1}^{n^{1/2}} |\psi_{\mathsf{IN}}(x_i)|$$

1 10

Goal: Show

$$\sum_{x \in \{-1,1\}^n} \psi_{\mathsf{OR-AND}}(x) \cdot \operatorname{OR-AND}_n(x) \approx \sum_{y \in \{-1,1\}^{n^{1/2}}} \psi_{\mathsf{OUT}}(y) \cdot \operatorname{OR}_{n^{1/2}}(y).$$

- Case 1: Consider any $y = (\operatorname{sgn} \psi_{IN}(x_1), \dots, \operatorname{sgn} \psi_{IN}(x_{n^{1/2}})) \neq$ All-False.
- There is some coordinate of y that equals TRUE. Only need to "trust" this coordinate to force OR-AND_n to evaluate to True on (x₁,..., x_{n^{1/2}}). So errors do not build up!

Correlation Analysis

- Case 2: Consider y =**All-False**.
- $OR_{n^{1/2}}(y) = OR-AND_n(x_1, \dots, x_{n^{1/2}})$ only if <u>all</u> coordinates of y are "error-free".
- Fortunately, ψ_{IN} has a special one-sided error property: If sgn(ψ_{IN}(x_i)) = 1, then AND_{n^{1/2}}(x_i) is guaranteed to equal 1.

- Two Cases.
- In first case (feeding at least one TRUE into \u03c6_{OUT}), errors did not build up, because we only needed to "trust" the TRUE value.
- In second case (all values fed into \u03c6_{OUT} are FALSE), we needed to trust <u>all</u> values. But we could do this because \u03c6_{IN} had one-sided error.

• A real polynomial p is a <u>one-sided</u> ϵ -approximation for f if

$$|p(x) - 1| < \epsilon \quad \forall x \in f^{-1}(1)$$

$$p(x) \le -1 \quad \forall x \in f^{-1}(-1)$$

odeg_ϵ(f) = min degree of a one-sided ϵ-approximation for f.
 odeg(f):=odeg_{1/3}(f) is the one-sided approximate degree of f.

Dual Formulation of $\widetilde{\mathrm{odeg}}$

Primal LP (Linear in ϵ and coefficients of p):

$$\begin{array}{ll} \min_{p,\epsilon} & \epsilon \\ \text{s.t.} & |p(x) - 1| \leq \epsilon \\ & p(x) \leq -1 \\ & \deg p \leq d \end{array}$$

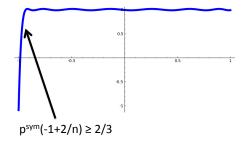
for all
$$x \in f^{-1}(1)$$

for all $x \in f^{-1}(-1)$

Dual LP:

$$\begin{split} \max_{\psi} & \sum_{x \in \{-1,1\}^n} \psi(x) f(x) \\ \text{s.t.} & \sum_{x \in \{-1,1\}^n} |\psi(x)| = 1 \\ & \sum_{x \in \{-1,1\}^n} \psi(x) q(x) = 0 \qquad \text{whenever } \deg q \leq d \\ & \psi(x) \leq 0 \quad \forall x \in f^{-1}(-1) \end{split}$$

We argued that the symmetrization of any $1/3\-$ approximation to AND_n had to look like this:



Hardness Amplification for Constant-Depth Circuits [BT13b]

Main Theorem

- Given: A "simple" Boolean function *f* that is "hard to approximate to low error" by degree *d* polynomials.
- Can we turn f into a "still-simple" F that is hard to approximate even to very high error?

Main Theorem

- Given: A "simple" Boolean function *f* that is "hard to approximate to low error" by degree *d* polynomials.
- Can we turn f into a "still-simple" F that is hard to approximate even to very high error?
- A: Yes.

Theorem

Let f be a Boolean function with $\widetilde{\operatorname{odeg}}_{1/2}(f) \ge d$. Let $F = \operatorname{OR}_t(f, \ldots, f)$. Then $\widetilde{\operatorname{odeg}}_{1-2^{-t}}(F) \ge d$.

Proof of Main Theorem

- Define ψ_{IN} to be any dual witness to the fact that $\widetilde{\text{odeg}}(f) \ge d$.
- Define $\psi_{\mathbf{OUT}}: \{-1,1\}^t \to \mathbb{R}$ via:

$$\psi_{\text{OUT}}(y) = \begin{cases} 1/2 & \text{if } y = \text{ ALL-FALSE} \\ -1/2 & \text{if } y = \text{ ALL-TRUE} \\ 0 & \text{otherwise} \end{cases}$$

Combine ψ_{OUT} and ψ_{IN} exactly as before to obtain a dual witness ψ_F for F.

Must verify:

- **1** ψ_F has pure high degree d.
- **2** ψ_F has correlation at least $1 2^{-t}$ with F.

Proof of Main Theorem: Pure High Degree

- Notice ψ_{OUT} is balanced (i.e., it has pure high degree 1).
- So previous analysis shows ψ_F has pure high degree at least $1 \cdot d = d$.

Proof of Main Theorem: Correlation Analysis

$$\psi_F(x_1, \dots, x_t) := C \cdot \psi_{\mathbf{OUT}}(\dots, \operatorname{sgn}(\psi_{\mathbf{IN}}(x_i)), \dots) \prod_{i=1}^t |\psi_{\mathbf{IN}}(x_i)|$$

$$Idea: Show$$

1

$$\sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) \ge \sum_{y \in \{-1,1\}^t} \psi_{\mathsf{OUT}}(y) \cdot \operatorname{OR}_t(y) - 2^{-t} = 1 - 2^{-t}.$$

- Case 1: Consider $y = (\operatorname{sgn} \psi_{IN}(x_1), \dots, \operatorname{sgn} \psi_{IN}(x_t)) =$ All-True.
- If even a single coordinate y_i of y is "error-free", then $F(x) = OR_t(f(x_1), \dots, f(x_t)) = -1$. :-D
- Any individual coordinate of y is in error with probability at most 1/2, since ψ_{IN} is well-correlated with f.
- So all coordinates of y are in error with probability only 2^{-t} .

Proof of Main Theorem: Correlation Analysis

$$\psi_F(x_1, \dots, x_t) := C \cdot \psi_{\mathbf{OUT}}(\dots, \operatorname{sgn}(\psi_{\mathbf{IN}}(x_i)), \dots) \prod_{i=1}^t |\psi_{\mathbf{IN}}(x_i)|$$

$$\blacksquare \text{ Idea: Show}$$

+

$$\sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) \ge \sum_{y \in \{-1,1\}^t} \psi_{\mathsf{OUT}}(y) \cdot \operatorname{OR}_t(y) - 2^{-t} = 1 - 2^{-t}.$$

- Case 2: Consider $y = (\operatorname{sgn} \psi_{\mathsf{IN}}(x_1), \dots, \operatorname{sgn} \psi_{\mathsf{IN}}(x_t)) =$ All-False. Then $\operatorname{sgn}(\psi_F(x)) = \operatorname{sgn}(\psi_{\mathsf{OUT}}(y)) = 1$.
- Then $F(y) = OR_t(f(x_1), ..., f(x_t) = 1$ only if <u>all</u> coordinates of y are "error-free".
- Fortunately, ψ_{IN} has one-sided error: If $sgn(\psi_{IN}(x_i)) = 1$, then $f(x_i)$ is guaranteed to equal 1.

- We want to apply amplification to functions in AC⁰, getting out very "hard" functions that are still in AC⁰.
- Let ED: $\{-1,1\}^n \rightarrow \{-1,1\}$ denote the ELEMENT DISTINCTNESS function.
- [AS04] showed $\widetilde{\operatorname{deg}}(\operatorname{ED}) = \Omega((n/\log n)^{2/3}).$
- This is the best known lower bound on the approximate degree of an AC⁰ function.
- We show that in fact $\widetilde{\operatorname{odeg}}(\operatorname{ED}) = \Omega((n/\log n)^{2/3}).$

New Lower Bounds for AC⁰

Theorem

Let $F = OR_{n^{2/5}}(ED_{n^{3/5}}, \dots, ED_{n^{3/5}})$ and $\epsilon = 1 - 2^{-n^{2/5}}$. Then $\widetilde{odeg}_{\epsilon}(F) = \widetilde{\Omega}(n^{2/5})$.

Proof: Combine lower bound on $\widetilde{\mathrm{odeg}}(\mathrm{ED})$ with Main Theorem.

Definition

Let $f: X \times Y \to \{-1, 1\}$ be a function, and μ a probability distribution on $X \times Y$. The discrepancy of f under μ is

$$\operatorname{disc}_{\mu}(f) := \max_{S \subseteq X, T \subseteq Y} \left| \sum_{x \in S} \sum_{y \in T} \mu(x, y) f(x, y) \right|.$$

The <u>discrepancy</u> of f is: $\operatorname{disc}(f) := \min_{\mu} \operatorname{disc}_{\mu}(f)$.

- Low discrepancy implies high communication complexity in nearly every communication model.
- Also a central quantity in learning theory and circuit complexity.

Theorem (She08, "Pattern Matrix Method")

Let $F:\{-1,1\}^n$ be any function satisfying $\deg_{1-1/W}(F)\geq d.$ Let $F':\{-1,1\}^{4n}\times\{-1,1\}^{4n}\to\{-1,1\}$ by

$$F'(x,y) = F(\ldots, \vee_{j=1}^4 (x_{i,j} \wedge y_{i,j}), \ldots).$$

Then disc $(F') \lesssim \max\{1/W, 2^{-d}\}.$

Corollary

There is an AC^0 function f (computed by a depth four circuit) with discrepancy $\exp\left(-\Omega(n^{2/5})\right)$.

Proof: Apply Pattern Mat. Meth. to $OR_{n^{2/5}}(ED_{n^{3/5}}, \dots, ED_{n^{3/5}})$. Previous best bound: exp $(-\Omega(n^{1/3}))$ [She08, BVW07].

Corollary

There is an AC^0 function f that cannot be computed by $MAJ \circ THR$ circuits of size $\exp(\Omega(n^{2/5}))$.

Corollary

There is an AC⁰ function f with threshold weight $\exp(\Omega(n^{2/5}))$.

Previous bests were both $\exp(\Omega(n^{1/3}))$ [Sher08, BVW07, KP97].

- Let OR-AND_{d,n} denote the balanced OR-AND tree of depth *d* (with an OR gate at the top).
- Earlier, we proved $\widetilde{\operatorname{deg}}(\operatorname{OR-AND}_{2,n}) = \Theta(n^{1/2}).$
- But proving equivalent lower bound for depth 3 or greater remained open.

- Let $OR-AND_{d,n}$ denote the balanced OR-AND tree of depth d (with an OR gate at the top).
- Earlier, we proved $\widetilde{\operatorname{deg}}(\operatorname{OR-AND}_{2,n}) = \Theta(n^{1/2}).$
- But proving equivalent lower bound for depth 3 or greater remained open.

Theorem

For any constant d > 1, $\operatorname{deg}(\operatorname{OR-AND}_{d,n}) = \Omega(n^{1/2}/\log^{d-2}(n))$.

(Upper bound of $O(n^{1/2})$ for any constant d follows from [She12]).

First Proof Attempt (for the case d = 3)

- Goal: construct a dual polynomial for $OR-AND_{3,n}$.
- \blacksquare Let $\psi_{\rm IN}$ denote the dual polynomial for ${\rm AND\text{-}OR}_{2,n^{2/3}}$ constructed earlier.
- Let ψ_{OUT} denote a dual polynomial witnessing $\widetilde{\deg}(OR_{n^{1/3}}) = \Omega(n^{1/6})$
- Combine ψ_{IN} and ψ_{OUT} exactly as before:

$$\psi_{\mathsf{COMB}}(x_1,\ldots,x_{n^{1/3}}) := C \cdot \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)),\ldots) \prod_{i=1}^{n^{1/3}} |\psi_{\mathsf{IN}}(x_i)|$$

1 / 0

First Proof Attempt (for the case d = 3)

- Goal: construct a dual polynomial for $OR-AND_{3,n}$.
- Let ψ_{IN} denote the dual polynomial for AND-OR_{2,n^{2/3}} constructed earlier.
- Let ψ_{OUT} denote a dual polynomial witnessing $\widetilde{\deg}(OR_{n^{1/3}}) = \Omega(n^{1/6})$
- Combine ψ_{IN} and ψ_{OUT} exactly as before:

 $\psi_{\mathsf{COMB}}(x_1,\ldots,x_{n^{1/3}}) := C \cdot \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)),\ldots) \prod_{i=1}^{n^{1/3}} |\psi_{\mathsf{IN}}(x_i)|$

- ψ_{COMB} has p.h.d. $\Omega(n^{1/6} \cdot n^{1/3}) = \Omega(n^{1/2})$. \checkmark
- But ψ_{COMB} may have poor correlation with OR-AND_{3,n}.
 Problem: ψ_{IN} does not have one-sided error.

- Instead, use a different dual polynomial ψ_{IN} for OR-AND_{2.n^{2/3}}.
- Construction of $\psi_{\rm IN}$ uses hardness amplification to achieve the following:
- ψ_{IN} has error "on both sides", but the error from the "wrong side" will be very small.
- Hardness amplification step causes $\psi_{\rm IN}$ to have p.h.d. $\Omega(n^{1/3}/\sqrt{\log n})$, rather than $\Omega(n^{1/3})$.

Subsequent Work by Sherstov [She13b]

Definition

Let $f : \{-1,1\}^n \to \{-1,1\}$ be a Boolean function. A polynomial p sign-represents f if sgn(p(x)) = f(x) for all $x \in \{-1,1\}^n$.

Definition

The <u>threshold degree</u> of f is min deg(p), where the minimum is over all sign-representations of f. (Equivalent to $\lim_{\epsilon \to 1} \widetilde{\text{deg}}_{\epsilon}(f)$).

- Minsky and Papert [MP68] proved an $\Omega(n^{1/3})$ lower bound on the threshold degree of a specific DNF.
- It has been open ever since to prove a lower bound of $\Omega(n^{1/3+\delta})$ for any function in AC⁰.
- Only progress: $\Omega(n^{1/3} \log^k n)$ for any constant k [OS03].
- We conjectured in [BT13b] that $OR_{n^{2/5}}(ED_{n^{3/5}}, \dots, ED_{n^{3/5}})$ has threshold degree $\Omega(n^{2/5})$.

- Sherstov [She13b] has recently proved our conjecture.
- More generally, he exhibits a depth k circuit of polynomial size with threshold degree $\Omega(n^{(k-1)/(2k-1)}).$