Hardness Amplification and the Approximate Degree of Constant Depth Circuits

Mark Bun^1 and Justin Thaler²

 $¹$ Harvard University</sup>

 2 Simons Institute for the Theory of Computing, UC Berkeley

5 December 2013

■ Boolean function
$$
f: \{-1, 1\}^n \to \{-1, 1\}
$$

$$
AND_n(x) = \begin{cases} -1 & (TRUE) \quad \text{if } x = (-1)^n \\ 1 & (FALSE) \quad \text{otherwise} \end{cases}
$$

A real polynomial $p \in \text{approximates a Boolean function } f$ if

$$
|p(x) - f(x)| < \epsilon \quad \forall x \in \{-1, 1\}^n
$$

 $\deg_{\epsilon}(f) =$ minimum degree needed to ϵ -approximate f \bullet $\widetilde{\deg}(f) := \widetilde{\deg}_{1/3}(f)$ is the approximate degree of f

Upper bounds on $deg_e(f)$ yield efficient learning algorithms

- $\bullet \epsilon \rightarrow 1$: PAC learning [KS01]
- \bullet "close to" 1: Attribute-Efficient Learning [KS04, STT12]
- \blacksquare ϵ < 1 a constant: Agnostic Learning [KKMS05]

Lower bounds on $\deg_{\epsilon}(f)$ yield lower bounds on:

- Quantum query complexity [BBCMW98] [AS01] [Amb03] [KSW04]
- Communication complexity [BVW07] [She07] [SZ07] [CA08] [LS08] [She12]
- Circuit complexity [MP69] [Bei93] [Bei94] [She08]

Example: What is the Approximate Degree of AND_n ?

 $\widetilde{\text{deg}}(\text{AND}_n) = \Theta(\sqrt{n}).$

- **Upper bound: Use Chebyshev Polynomials.**
- **Markov's Inequality:** Let $G(t)$ be a univariate polynomial s.t. $deg(G) \leq d$ and $sup_{t \in [-1,1]} |G(t)| \leq 1$. Then

$$
\sup_{t \in [-1,1]} |G'(t)| \le d^2.
$$

Chebyshev polynomials are the extremal case.

Example: What is the Approximate Degree of AND_n ?

 $\widetilde{\text{deg}}(\text{AND}_n) = O(\sqrt{n}).$

After shifting a scaling, can turn degree $O(\sqrt{n})$ Chebyshev polynomial into a univariate polynomial $Q(t)$ that looks like:

Define *n*-variate polynomial *p* via $p(x) = Q(\sum_{i=1}^{n} x_i/n)$. **Then** $|p(x) - AND_n(x)| \le 1/3 \quad \forall x \in \{-1, 1\}^n$.

Example: What is the Approximate Degree of AND_n ?

[NS92] $\widetilde{\text{deg}}(\text{AND}_n) = \Omega(\sqrt{n}).$

- **Lower bound: Use symmetrization.**
- Suppose $|p(x) AND_n(x)| \leq 1/3 \quad \forall x \in \{-1, 1\}^n$.
- **There is a way to turn** p into a univariate polynomial p^{sym} that looks like this:

■ Claim 1: $deg(p^{sym})$ < $deg(p)$. **■** Claim 2: Markov's inequality \implies deg(p^{sym}) = $\Omega(n^{1/2})$.

Beyond Symmetrization: Analyzing the OR-AND Tree

Beyond Symmetrization

- Symmetrization is "lossy": in turning an *n*-variate poly p into a univariate poly p^{sym} , we throw away information about p.
- Ghallenge problem: What is $deg(OR-AND_n)$?

Upper bounds
[HMW03]
$$
\widehat{\text{deg}}(\text{OR-AND}_n) = O(n^{1/2})
$$

Lower bounds

[NS92] $\Omega(n^{1/4})$ [Shi01] $\Omega(n^{1/4}\sqrt{\log n})$ [Amb03] $\Omega(n^{1/3})$ [Aar08] Reposed Question [She09] $\Omega(n^{3/8})$ [BT13a] $\Omega(n^{1/2})$ [She13a] $\Omega(n^{1/2})$, independently What is best error achievable by any degree d approximation of f ? Primal LP (Linear in ϵ and coefficients of p):

$$
\begin{aligned}\n\min_{p,\epsilon} \quad & \epsilon \\
\text{s.t.} \quad & |p(x) - f(x)| \le \epsilon \\
& \deg p \le d\n\end{aligned}\n\quad \text{for all } x \in \{-1, 1\}^n
$$

Dual LP:

$$
\begin{aligned}\n\max_{\psi} \sum_{x \in \{-1,1\}^n} \psi(x) f(x) \\
\text{s.t.} \sum_{x \in \{-1,1\}^n} |\psi(x)| = 1 \\
\sum_{x \in \{-1,1\}^n} \psi(x) q(x) = 0 \qquad \text{whenever } \deg q \le d \\
\end{aligned}
$$

Theorem: $deg_e(f) > d$ iff there exists a "dual polynomial" $\psi: \{-1,1\}^n \to \mathbb{R}$ with

(1)
$$
\sum_{x \in \{-1,1\}^n} \psi(x)f(x) > \epsilon
$$
 "high correlation with f "
\n(2)
$$
\sum_{x \in \{-1,1\}^n} |\psi(x)| = 1
$$
 "L₁-norm 1"
\n(3)
$$
\sum_{x \in \{-1,1\}^n} \psi(x)q(x) = 0, \deg q \le d
$$
 "pure high degree d "

(3) equivalent to: $\hat{\psi}(S)=0$ for all $|S| \leq d$.

Key technique in, e.g., [She07] [Lee09] [She09]

Goal: Construct an explicit dual polynomial ψ or-and for $\rm OR\text{-}AND$

- By [NS92], there are dual polynomials ψ_{OUT} for deg $(OR_{n^{1/2}}) = \Omega(n^{1/4})$ and ψ_{IN} for deg (AND_{n1/2}) = $\Omega(n^{1/4})$
- **Can we combine** ψ_{OUT} **and** ψ_{IN} **to obtain a dual polynomial** ψ OR-AND?

A First Attempt

A First Attempt

 $OR_{n^{1/2}}$

$\text{sup.}_{\text{AND}_{n^{1/2}}} \left(\sum_{\mathbf{AND}_{n^{1/2}}} \psi_{\text{OR-AND}}(x_1,\ldots,x_{n^{1/2}}) := \psi_{\text{OUT}}(\ldots,\psi_{\text{IN}}(x_i),\ldots) \right)$

- **E** Easy to check: $\psi_{\text{OR-AND}}$ has pure high degree at least $n^{1/4} \cdot n^{1/4} = n^{1/2}$
- **E.g.** If $\psi_{\text{OUT}}(y_1, y_2) = y_1 y_2$ and $\psi_{\text{IN}}(z_1, z_2) = z_1 z_2$, then

 $\psi_{\text{OR-AND}}(x_{11}, x_{12}, x_{21}, x_{22})=(x_{11}x_{12})(x_{21}x_{22})=x_{11}x_{12}x_{21}x_{22}.$

A First Attempt

 $OR_{m1/2}$

$\bigvee_{\lambda_{\text{MD},n}^{\text{ND}}} \psi$ OR-AND $(x_1,\ldots,x_{n^{1/2}}) := \psi$ OUT $(\ldots,\psi_{\text{IN}}(x_i),\ldots)$

- Easy to check: $\psi_{\text{OR-AND}}$ has pure high degree at least $n^{1/4} \cdot n^{1/4} = n^{1/2}$
- **E.g.** If $\psi_{\text{OUT}}(y_1, y_2) = y_1 y_2$ and $\psi_{\text{IN}}(z_1, z_2) = z_1 z_2$, then

 $\psi_{\text{OR-AND}}(x_{11}, x_{12}, x_{21}, x_{22})=(x_{11}x_{12})(x_{21}x_{22})=x_{11}x_{12}x_{21}x_{22}.$

- **Does** $\psi_{\text{OR-AND}}$ have high correlation with OR-AND_n ?
- **Problem:** Proposed definition of $\psi_{\text{OR-AND}}$ may feed non-Boolean values into ψ_{OUT} . But we only have control over $ψ$ _{OUT} on **Boolean** inputs.

A Second (and Final) Attempt [She09, Lee09]

$$
\psi_{\text{OR-AND}}(x_1,\ldots,x_{n^{1/2}}) := C \cdot \psi_{\text{OUT}}(\ldots,\text{sgn}(\psi_{\text{IN}}(x_i)),\ldots) \prod_{i=1}^{n^{1/2}} |\psi_{\text{IN}}(x_i)|
$$

(C chosen to ensure ψ OR-AND has L_1 -norm 1).

A Second (and Final) Attempt [She09, Lee09]

$$
\psi_{\text{OR-AND}}(x_1,\ldots,x_{n^{1/2}}) := C \cdot \psi_{\text{OUT}}(\ldots,\text{sgn}(\psi_{\text{IN}}(x_i)),\ldots) \prod_{i=1}^{n^{1/2}} |\psi_{\text{IN}}(x_i)|
$$

(C chosen to ensure $\psi_{\text{OR-AND}}$ has L_1 -norm 1).

Must verify:

- 1 ψ OR-AND has pure high degree $\geq n^{1/4} \cdot n^{1/4} = n^{1/2}$.
- 2 $\psi_{\text{OR-AND}}$ has high correlation with OR-AND.

A Second (and Final) Attempt [She09, Lee09]

$$
\psi_{\text{OR-AND}}(x_1,\ldots,x_{n^{1/2}}) := C \cdot \psi_{\text{OUT}}(\ldots,\text{sgn}(\psi_{\text{IN}}(x_i)),\ldots) \prod_{i=1}^{n^{1/2}} |\psi_{\text{IN}}(x_i)|
$$

(C chosen to ensure $\psi_{\text{OR-AND}}$ has L_1 -norm 1).

Must verify:

- 1 ψ OR-AND has pure high degree $\geq n^{1/4} \cdot n^{1/4} = n^{1/2} \cdot \sqrt{5}$ he09]
- 2 $\psi_{\text{OR-AND}}$ has high correlation with OR-AND. [BT13a]

(Sub)Goal: Show ψ_{OR-AND} has pure high degree at least $n^{1/2}$ [She09]

Pure High Degree Analysis [She09]

$$
\psi_{\text{OR-AND}}(x_1,\ldots,x_{n^{1/2}}):=C\cdot\psi_{\text{OUT}}(\ldots,\text{sgn}(\psi_{\text{IN}}(x_i)),\ldots)\prod_{i=1}^{n^{1/2}}|\psi_{\text{IN}}(x_i)|
$$

Intuition: Consider $\psi_{\text{OUT}}(y_1, y_2, y_3) = y_1y_2$. Then ψ OR-AND (x_1, x_2, x_3) equals: Ω

$$
C \cdot \text{sgn}(\psi_{\mathsf{IN}}(x_1)) \cdot \text{sgn}(\psi_{\mathsf{IN}}(x_2)) \cdot \prod_{i=1}^{3} |\psi_{\mathsf{IN}}(x_i)|
$$

$$
= \psi_{\mathsf{IN}}(x_1) \cdot \psi_{\mathsf{IN}}(x_2) \cdot |\psi_{\mathsf{IN}}(x_3)|
$$

Pure High Degree Analysis [She09]

$$
\psi_{\text{OR-AND}}(x_1,\ldots,x_{n^{1/2}}) := C \cdot \psi_{\text{OUT}}(\ldots,\text{sgn}(\psi_{\text{IN}}(x_i)),\ldots)\prod_{i=1}^{n^{1/2}}|\psi_{\text{IN}}(x_i)|
$$

Intuition: Consider $\psi_{\text{OUT}}(y_1, y_2, y_3) = y_1 y_2$. Then ψ OR-AND (x_1, x_2, x_3) equals:

$$
C \cdot \text{sgn}(\psi_{\text{IN}}(x_1)) \cdot \text{sgn}(\psi_{\text{IN}}(x_2)) \cdot \prod_{i=1}^{3} |\psi_{\text{IN}}(x_i)|
$$

$$
= \psi_{\text{IN}}(x_1) \cdot \psi_{\text{IN}}(x_2) \cdot |\psi_{\text{IN}}(x_3)|
$$

- **Each term of** $\psi_{\text{OR-AND}}$ **is the product of PHD(** ψ_{OUT} **)** polynomials over disjoint variable sets, each of pure high degree at least $PHD(\psi_{IN})$.
- So PHD($\psi_{\text{OR-AND}}$) \geq PHD(ψ_{OUT})·PHD(ψ_{IN}).

(Sub)Goal: Show $\psi_{\textbf{OR-AND}}$ has high correlation with OR-AND

$$
\psi_{\text{OR-AND}}(x_1,\ldots,x_{n^{1/2}}) := C \cdot \psi_{\text{OUT}}(\ldots,\text{sgn}(\psi_{\text{IN}}(x_i)),\ldots)\prod_{i=1}^{n^{1/2}}|\psi_{\text{IN}}(x_i)|
$$

■ Idea: Show

$$
\sum_{x \in \{-1,1\}^n} \psi_{\text{OR-AND}}(x) \cdot \text{OR-AND}_n(x) \approx \sum_{y \in \{-1,1\}^{n^{1/2}}} \psi_{\text{OUT}}(y) \cdot \text{OR}_{n^{1/2}}(y).
$$

- **Iour Intuition:** We are feeding $sgn(\psi_{\text{IN}}(x_i))$ into ψ_{OUT} .
- $\blacksquare \psi_{\text{IN}}$ is correlated with $\text{AND}_{n^{1/2}}$, so $\text{sgn}(\psi_{\text{IN}}(x_i))$ is a "decent predictor" of $AND_{n^{1/2}}$.
- But there are errors. Need to show errors don't "build up".

Correlation Analysis

$$
\psi_{\text{OR-AND}}(x_1,\ldots,x_{n^{1/2}}) := C \cdot \psi_{\text{OUT}}(\ldots,\text{sgn}(\psi_{\text{IN}}(x_i)),\ldots)\prod_{i=1}^{n^{1/2}}|\psi_{\text{IN}}(x_i)|
$$

Goal: Show

$$
\sum_{x \in \{-1,1\}^n} \psi_{\text{OR-AND}}(x) \cdot \text{OR-AND}_n(x) \approx \sum_{y \in \{-1,1\}^{n^{1/2}}} \psi_{\text{OUT}}(y) \cdot \text{OR}_{n^{1/2}}(y).
$$

- **Case 1: Consider any** $y = (sgn \psi_{\text{IN}}(x_1), \ldots, sgn \psi_{\text{IN}}(x_{n^{1/2}}))$ \neq All-False.
- **There is some coordinate of y that equals TRUE. Only need** to "trust" this coordinate to force $OR-AND_n$ to evaluate to True on $(x_1, \ldots, x_{n1/2})$. So errors do not build up!

Correlation Analysis

- Gase 2: Consider $y =$ All-False.
- \bullet OR_{n1/2}(y) = OR-AND_n $(x_1,...,x_{n1/2})$ only if all coordinates of y are "error-free".
- **Fortunately,** ψ_{IN} **has a special one-sided error** property: If $sgn(\psi_{\text{IN}}(x_i)) = 1$, then $AND_{n^{1/2}}(x_i)$ is **guaranteed** to equal 1.
- **Two Cases.**
- In first case (feeding at least one TRUE into ψ_{OUT}), errors did not build up, because we only needed to "trust" the TRUE value.
- In second case (all values fed into ψ_{OUT} are FALSE), we needed to trust all values. But we could do this because ψ_{IN} had one-sided error.

A real polynomial p is a one-sided ϵ -approximation for f if

$$
|p(x) - 1| < \epsilon \quad \forall x \in f^{-1}(1)
$$

$$
p(x) \le -1 \quad \forall x \in f^{-1}(-1)
$$

 \bullet odeg_e (f) = min degree of a one-sided ϵ -approximation for f. $\widetilde{\bullet}$ odeg $(f) := \widetilde{\mathrm{odeg}}_{1/3}(f)$ is the one-sided approximate degree of f.

Primal LP (Linear in ϵ and coefficients of p):

$$
\begin{aligned}\n\min_{p,\epsilon} & \quad \epsilon \\
\text{s.t.} & \quad |p(x) - 1| \le \epsilon \\
& p(x) \le -1 \\
\text{deg } p \le d\n\end{aligned}\n\qquad \text{for all } x \in f^{-1}(1)
$$

$$
|p(x) - 1| \le \epsilon \qquad \text{for all } x \in f^{-1}(1)
$$

$$
p(x) \le -1 \qquad \text{for all } x \in f^{-1}(-1)
$$

Dual LP:

$$
\begin{aligned}\n\max_{\psi} \quad & \sum_{x \in \{-1, 1\}^n} \psi(x) f(x) \\
\text{s.t.} \quad & \sum_{x \in \{-1, 1\}^n} |\psi(x)| = 1 \\
& \sum_{x \in \{-1, 1\}^n} \psi(x) q(x) = 0 \qquad \text{whenever } \deg q \le d \\
\psi(x) \le 0 \quad \forall x \in f^{-1}(-1)\n\end{aligned}
$$

Proof that $\widetilde{\text{odeg}}(\text{AND}_n) = \Omega(\sqrt{n})$

We argued that the symmetrization of any $1/3$ -approximation to AND_n had to look like this:

Hardness Amplification for Constant-Depth Circuits [BT13b]

Main Theorem

- Given: A "simple" Boolean function f that is "hard to approximate to low error" by degree d polynomials.
- **Can we turn f into a "still-simple"** F that is hard to approximate even to very high error?

Main Theorem

- Given: A "simple" Boolean function f that is "hard to approximate to low error" by degree d polynomials.
- **Can we turn f into a "still-simple"** F that is hard to approximate even to very high error?
- A: Yes.

Theorem

Let f be a Boolean function with $odeg_{1/2}(f) \geq d$ *. Let* $F = \text{OR}_{t}(f, \ldots, f)$ *.* Then $\text{odeg}_{1-2^{-t}}(F) \geq d$ *.*

Proof of Main Theorem

Define ψ_{IN} to be any dual witness to the fact that $odeg(f) > d$.

Define $\psi_{\text{OUT}}: \{-1,1\}^t \to \mathbb{R}$ via:

$$
\psi_{\text{OUT}}(y) = \begin{cases} 1/2 & \text{if } y = \text{ ALL-FALSE} \\ -1/2 & \text{if } y = \text{ ALL-TRUE} \\ 0 & \text{otherwise} \end{cases}
$$

Combine ψ_{OUT} and ψ_{IN} exactly as before to obtain a dual witness ψ_F for F.

Must verify:

- 1 ψ_F has pure high degree d.
- 2 ψ_F has correlation at least $1 2^{-t}$ with F.

Proof of Main Theorem: Pure High Degree

- Notice ψ_{OUT} is balanced (i.e., it has pure high degree 1).
- So previous analysis shows ψ_F has pure high degree at least $1 \cdot d = d$.

Proof of Main Theorem: Correlation Analysis

$$
\psi_F(x_1,\ldots,x_t) := C \cdot \psi_{\text{OUT}}(\ldots,\text{sgn}(\psi_{\text{IN}}(x_i)),\ldots) \prod_{i=1}^t |\psi_{\text{IN}}(x_i)|
$$

• **Ideal:** Show

t

$$
\sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) \ge \sum_{y \in \{-1,1\}^t} \psi_{\text{OUT}}(y) \cdot \text{OR}_t(y) - 2^{-t} = 1 - 2^{-t}.
$$

- **Case 1:** Consider $y = (sgn \psi_{\text{IN}}(x_1), \ldots, sgn \psi_{\text{IN}}(x_t)) =$ All-True.
- If even a single coordinate y_i of y is "error-free", then $F(x) = OR_t(f(x_1),...,f(x_t)) = -1.$:-D
- Any individual coordinate of y is in error with probability at most $1/2$, since ψ_{IN} is well-correlated with f.
- So all coordinates of y are in error with probability only $2^{-t}.$

Proof of Main Theorem: Correlation Analysis

$$
\psi_F(x_1,\ldots,x_t) := C \cdot \psi_{\text{OUT}}(\ldots,\text{sgn}(\psi_{\text{IN}}(x_i)),\ldots) \prod_{i=1}^r |\psi_{\text{IN}}(x_i)|
$$

• **Idea:** Show

 \overline{t}

$$
\sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) \ge \sum_{y \in \{-1,1\}^t} \psi_{\text{OUT}}(y) \cdot \text{OR}_t(y) - 2^{-t} = 1 - 2^{-t}.
$$

- **Case 2: Consider** $y = (sgn \psi_{\text{IN}}(x_1), \ldots, sgn \psi_{\text{IN}}(x_t)) =$ **All-False**. Then $sgn(\psi_F(x)) = sgn(\psi_{\text{OUT}}(y)) = 1$.
- **Then** $F(y) = \text{OR}_{t}(f(x_1), \ldots, f(x_t)) = 1$ only if all coordinates of y are "error-free".
- **F** Fortunately, ψ_{IN} has one-sided error: If $\text{sgn}(\psi_{\text{IN}}(x_i)) = 1$, then $f(x_i)$ is guaranteed to equal 1.
- We want to apply amplification to functions in AC^0 , getting out very "hard" functions that are still in AC^0 .
- Let $ED: \{-1, 1\}^n \rightarrow \{-1, 1\}$ denote the ELEMENT DISTINCTNESS function.
- **[AS04]** showed $\deg(\text{ED}) = \Omega((n/\log n)^{2/3})$.
- **This is the best known lower bound on the approximate** degree of an $AC⁰$ function.
- We show that in fact $odeg(ED) = \Omega((n/\log n)^{2/3})$.

New Lower Bounds for $AC⁰$

Theorem

 \mathcal{L} et $F = \text{OR}_{n^{2/5}}(\text{ED}_{n^{3/5}}, \dots, \text{ED}_{n^{3/5}})$ and $\epsilon = 1 - 2^{-n^{2/5}}$. Then $\widetilde{\text{odeg}}_{\epsilon}(F) = \widetilde{\Omega}(n^{2/5}).$

Proof: Combine lower bound on $\widetilde{\text{odeg}}(\text{ED})$ with Main Theorem.

Definition

Let $f: X \times Y \rightarrow \{-1, 1\}$ be a function, and μ a probability distribution on $X \times Y$. The discrepancy of f under μ is

$$
\mathrm{disc}_{\mu}(f) := \max_{S \subseteq X, T \subseteq Y} \left| \sum_{x \in S} \sum_{y \in T} \mu(x, y) f(x, y) \right|.
$$

The discrepancy of f is: $\operatorname{disc}(f) := \min_{\mu} \operatorname{disc}_{\mu}(f)$.

- **E** Low discrepancy implies high communication complexity in nearly every communication model.
- **Also a central quantity in learning theory and circuit** complexity.

Theorem (She08, "Pattern Matrix Method")

Let $F: \{-1,1\}^n$ *be any function satisfying* $\deg_{1-1/W}(F) \geq d$ *. Let* F' : {-1, 1}⁴ⁿ × {-1, 1}⁴ⁿ → {-1, 1} by

$$
F'(x, y) = F(\ldots, \vee_{j=1}^{4} (x_{i,j} \wedge y_{i,j}), \ldots).
$$

Then disc(F') \lesssim max $\{1/W, 2^{-d}\}.$

Corollary

*There is an AC*⁰ *function* f *(computed by a depth four circuit) with discrepancy* $\exp(-\Omega(n^{2/5}))$.

Proof: Apply Pattern Mat. Meth. to $OR_{n^2/5}(ED_{n^3/5}, \ldots, ED_{n^3/5})$. Previous best bound: $\exp \left(- \Omega(n^{1/3}) \right)$ [She08, BVW07].

Corollary

*There is an AC*⁰ *function* f *that cannot be computed by MAJ* \circ *THR circuits of size* $\exp(\Omega(n^{2/5}))$.

Corollary

*There is an AC*⁰ *function f with threshold weight* $\exp(\Omega(n^{2/5}))$.

Previous bests were both $\exp(\Omega(n^{1/3}))$ [Sher08, BVW07, KP97].

- Let $OR-AND_{d,n}$ denote the balanced OR-AND tree of depth d (with an OR gate at the top).
- **Earlier, we proved** $\deg(\text{OR-AND}_{2,n}) = \Theta(n^{1/2})$.
- But proving equivalent lower bound for depth 3 or greater remained open.
- **Let** OR-AND_{d,n} denote the balanced OR-AND tree of depth d (with an OR gate at the top).
- **Earlier, we proved** $\deg(\text{OR-AND}_{2,n}) = \Theta(n^{1/2})$.
- But proving equivalent lower bound for depth 3 or greater remained open.

Theorem

For any constant $d > 1$, $\deg(\text{OR-AND}_{d,n}) = \Omega(n^{1/2}/\log^{d-2}(n)).$

(Upper bound of $O(n^{1/2})$ for any constant d follows from [She12]).

First Proof Attempt (for the case $d=3$)

- Goal: construct a dual polynomial for $OR-AND_{3,n}$.
- Let ψ_{IN} denote the dual polynomial for AND-OR_{2,n2}/3</sup> constructed earlier.
- Let ψ_{OUT} denote a dual polynomial witnessing $deg(OR_{n1/3}) = \Omega(n^{1/6})$
- **Combine** ψ_{IN} **and** ψ_{OUT} **exactly as before:**

$$
\psi_{\text{COMB}}(x_1,\ldots,x_{n^{1/3}}) := C \cdot \psi_{\text{OUT}}(\ldots,\text{sgn}(\psi_{\text{IN}}(x_i)),\ldots)\prod_{i=1}^{n^{1/3}}|\psi_{\text{IN}}(x_i)|
$$

First Proof Attempt (for the case $d=3$)

- Goal: construct a dual polynomial for $OR-AND_{3,n}$.
- **E** Let ψ_{IN} denote the dual polynomial for AND-OR_{2,n^{2/3}} constructed earlier.
- Let ψ_{OUT} denote a dual polynomial witnessing $deg(OR_{n1/3}) = \Omega(n^{1/6})$

Combine ψ_{IN} **and** ψ_{OUT} **exactly as before:**

 ψ COMB $(x_1,\ldots,x_{n^{1/3}}):=C\cdot\psi$ OUT $(\ldots,\mathrm{sgn}(\psi_{\mathsf{IN}}(x_i)),\ldots)\prod^{n^{1/3}}|\psi_{\mathsf{IN}}(x_i)|$ $n^{1/3}$ $i=1$

- \blacktriangleright ψ _{COMB} has p.h.d. $\Omega(n^{1/6} \cdot n^{1/3}) = \Omega(n^{1/2})$. \checkmark
- But ψ_{COMB} may have poor correlation with $\text{OR-AND}_{3,n}$. Problem: ψ_{IN} does not have one-sided error.
- **I** Instead, use a different dual polynomial ψ_{IN} for OR-AND_{2,n^{2/3}}.
- **Construction of** ψ_{IN} **uses hardness amplification to achieve the** following:
- \blacksquare ψ_{IN} has error "on both sides", but the error from the "wrong side" will be very small.
- **Hardness amplification step causes** ψ_{IN} **to have p.h.d.** $\Omega(n^{1/3}/\sqrt{\log n})$, rather than $\Omega(n^{1/3})$.

Subsequent Work by Sherstov [She13b]

Definition

Let $f : \{-1,1\}^n \to \{-1,1\}$ be a Boolean function. A polynomial p sign-represents f if sgn $(p(x)) = f(x)$ for all $x \in \{-1, 1\}^n$.

Definition

The threshold degree of f is $\min \deg(p)$, where the minimum is over all sign-representations of f. (Equivalent to $\lim_{\epsilon \to 1} \deg_{\epsilon}(f)$).

- Minsky and Papert [MP68] proved an $\Omega(n^{1/3})$ lower bound on the threshold degree of a specific DNF.
- If has been open ever since to prove a lower bound of $\Omega(n^{1/3+\delta})$ for any function in AC⁰.
- Only progress: $\Omega(n^{1/3} \log^k n)$ for any constant k [OS03].
- We conjectured in [BT13b] that $OR_{n^2/5}(ED_{n^3/5}, \ldots, ED_{n^3/5})$ has threshold degree $\Omega(n^{2/5})$.
- **Sherstov [She13b] has recently proved our conjecture.**
- \blacksquare More generally, he exhibits a depth k circuit of polynomial size with threshold degree $\Omega(n^{(k-1)/(2k-1)})$.