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Boolean Functions

Boolean function f : {−1, 1}n → {−1, 1}

ANDn(x) =

�
−1 (TRUE) if x = (−1)n

1 (FALSE) otherwise



Approximate Degree

A real polynomial p �-approximates a Boolean function f if

|p(x)− f(x)| < � ∀x ∈ {−1, 1}n

�deg�(f) = minimum degree needed to �-approximate f

�deg(f) := �deg1/3(f) is the approximate degree of f



Why Care About Approximate Degree?

Upper bounds on �deg�(f) yield efficient learning algorithms

� → 1: PAC learning [KS01]

� “close to” 1: Attribute-Efficient Learning [KS04, STT12]

� < 1 a constant: Agnostic Learning [KKMS05]



Why Care About Approximate Degree?

Lower bounds on �deg�(f) yield lower bounds on:

Quantum query complexity [BBCMW98] [AS01] [Amb03]
[KSW04]

Communication complexity [BVW07] [She07] [SZ07] [CA08]
[LS08] [She12]

Circuit complexity [MP69] [Bei93] [Bei94] [She08]



Example: What is the Approximate Degree of ANDn?

�deg(ANDn) = Θ(
√
n).

Upper bound: Use Chebyshev Polynomials.

Markov’s Inequality: Let G(t) be a univariate polynomial s.t.
deg(G) ≤ d and supt∈[−1,1] |G(t)| ≤ 1. Then

sup
t∈[−1,1]

|G�
(t)| ≤ d

2
.

Chebyshev polynomials are the extremal case.



Example: What is the Approximate Degree of ANDn?

�deg(ANDn) = O(
√
n).

After shifting a scaling, can turn degree O(
√
n) Chebyshev

polynomial into a univariate polynomial Q(t) that looks like:

!"#$%&'()*+*&',*

Define n-variate polynomial p via p(x) = Q(
�n

i=1 xi/n).

Then |p(x)−ANDn(x)| ≤ 1/3 ∀x ∈ {−1, 1}n.



Example: What is the Approximate Degree of ANDn?

[NS92] �deg(ANDn) = Ω(
√
n).

Lower bound: Use symmetrization.

Suppose |p(x)−ANDn(x)| ≤ 1/3 ∀x ∈ {−1, 1}n.
There is a way to turn p into a univariate polynomial psym

that looks like this:

!"#$%&'()*+,-.-)*/-

Claim 1: deg(psym) ≤ deg(p).

Claim 2: Markov’s inequality =⇒ deg(psym) = Ω(n1/2).



Beyond Symmetrization: Analyzing the OR-AND
Tree



Beyond Symmetrization

Symmetrization is “lossy”: in turning an n-variate poly p into
a univariate poly psym, we throw away information about p.

Challenge problem: What is �deg(OR-ANDn)?



History of the OR-AND Tree

Upper bounds

[HMW03] �deg(OR-ANDn) = O(n1/2)

Lower bounds

[NS92] Ω(n1/4)

[Shi01] Ω(n1/4
√
log n)

[Amb03] Ω(n1/3)

[Aar08] Reposed Question
[She09] Ω(n3/8)

[BT13a] Ω(n1/2)

[She13a] Ω(n1/2), independently



Linear Programming Formulation of Approximate Degree

What is best error achievable by any degree d approximation of f?
Primal LP (Linear in � and coefficients of p):

minp,� �

s.t. |p(x)− f(x)| ≤ � for all x ∈ {−1, 1}n

deg p ≤ d

Dual LP:

maxψ
�

x∈{−1,1}n
ψ(x)f(x)

s.t.
�

x∈{−1,1}n
|ψ(x)| = 1

�

x∈{−1,1}n
ψ(x)q(x) = 0 whenever deg q ≤ d



Dual Characterization of Approximate Degree

Theorem: deg�(f) > d iff there exists a “dual polynomial”
ψ : {−1, 1}n → R with

(1)

�

x∈{−1,1}n
ψ(x)f(x) > � “high correlation with f”

(2)

�

x∈{−1,1}n
|ψ(x)| = 1 “L1-norm 1”

(3)

�

x∈{−1,1}n
ψ(x)q(x) = 0, deg q ≤ d “pure high degree d”

(3) equivalent to: ψ̂(S) = 0 for all |S| ≤ d.

Key technique in, e.g., [She07] [Lee09] [She09]



Goal: Construct an explicit dual polynomial
ψOR-AND for OR-AND



Constructing a Dual Polynomial

By [NS92], there are dual polynomials

ψOUT for �deg (ORn1/2) = Ω(n1/4) and

ψIN for �deg (ANDn1/2) = Ω(n1/4)

Can we combine ψOUT and ψIN to obtain a dual polynomial
ψOR-AND for OR-AND?



A First Attempt

ψOR-AND(x1, . . . , xn1/2) := ψOUT(. . . , ψIN(xi), . . . )

Easy to check: ψOR-AND has pure high degree at least
n1/4 · n1/4 = n1/2.

E.g. If ψOUT(y1, y2) = y1y2 and ψIN(z1, z2) = z1z2, then

ψOR-AND(x11, x12, x21, x22) = (x11x12)(x21x22) = x11x12x21x22.

Does ψOR-AND have high correlation with OR-ANDn?

Problem: Proposed definition of ψOR-AND may feed
non-Boolean values into ψOUT. But we only have control over
ψOUT on Boolean inputs.
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A Second (and Final) Attempt [She09, Lee09]

ψOR-AND(x1, . . . , xn1/2) := C · ψOUT(. . . , sgn(ψIN(xi)), . . . )

n1/2�

i=1

|ψIN(xi)|

(C chosen to ensure ψOR-AND has L1-norm 1).

Must verify:

1 ψOR-AND has pure high degree ≥ n1/4 · n1/4 = n1/2.

2 ψOR-AND has high correlation with OR-AND.
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Must verify:
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2 ψOR-AND has high correlation with OR-AND. [BT13a]



(Sub)Goal: Show ψOR-AND has pure high degree at
least n1/2 [She09]



Pure High Degree Analysis [She09]

ψOR-AND(x1, . . . , xn1/2) := C · ψOUT(. . . , sgn(ψIN(xi)), . . . )

n1/2�

i=1

|ψIN(xi)|

Intuition: Consider ψOUT(y1, y2, y3) = y1y2. Then
ψOR-AND(x1, x2, x3) equals:

C · sgn(ψIN(x1)) · sgn(ψIN(x2)) ·
3�

i=1

|ψIN(xi)|

= ψIN(x1) · ψIN(x2) · |ψIN(x3)|

Each term of ψOR-AND is the product of PHD(ψOUT)

polynomials over disjoint variable sets, each of pure high
degree at least PHD(ψIN).

So PHD(ψOR-AND) ≥ PHD(ψOUT)·PHD(ψIN).
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(Sub)Goal: Show ψOR-AND has high correlation with
OR-AND



Correlation Analysis

ψOR-AND(x1, . . . , xn1/2) := C · ψOUT(. . . , sgn(ψIN(xi)), . . . )

n1/2�

i=1

|ψIN(xi)|

Idea: Show
�

x∈{−1,1}n
ψOR-AND(x) ·OR-ANDn(x) ≈

�

y∈{−1,1}n1/2

ψOUT(y) ·ORn1/2(y).

Intuition: We are feeding sgn(ψIN(xi)) into ψOUT.

ψIN is correlated with ANDn1/2 , so sgn(ψIN(xi)) is a “decent
predictor” of ANDn1/2 .

But there are errors. Need to show errors don’t “build up”.



Correlation Analysis

ψOR-AND(x1, . . . , xn1/2) := C · ψOUT(. . . , sgn(ψIN(xi)), . . . )

n1/2�

i=1

|ψIN(xi)|

Goal: Show
�

x∈{−1,1}n
ψOR-AND(x) ·OR-ANDn(x) ≈

�

y∈{−1,1}n1/2

ψOUT(y) ·ORn1/2(y).

Case 1: Consider any y = (sgnψIN(x1), . . . , sgnψIN(xn1/2)) �=
All-False.

There is some coordinate of y that equals TRUE. Only need
to “trust” this coordinate to force OR-ANDn to evaluate to
True on (x1, . . . , xn1/2). So errors do not build up!



Correlation Analysis

Case 2: Consider y = All-False.

ORn1/2(y)=OR-ANDn(x1, . . . , xn1/2) only if all coordinates
of y are “error-free”.

Fortunately, ψIN has a special one-sided error property:

If sgn(ψIN(xi)) = 1, then ANDn1/2(xi) is guaranteed to
equal 1.



Summary of Correlation Analysis

Two Cases.

In first case (feeding at least one TRUE into ψOUT), errors did
not build up, because we only needed to “trust” the TRUE
value.

In second case (all values fed into ψOUT are FALSE), we
needed to trust all values. But we could do this because ψIN

had one-sided error.



One-Sided Approximate Degree

A real polynomial p is a one-sided �-approximation for f if

|p(x)− 1| < � ∀x ∈ f
−1

(1)

p(x) ≤ −1 ∀x ∈ f
−1

(−1)

�odeg�(f) = min degree of a one-sided �-approximation for f .

�odeg(f) :=�odeg1/3(f) is the one-sided approximate degree of
f .



Dual Formulation of �odeg

Primal LP (Linear in � and coefficients of p):

minp,� �

s.t. |p(x)− 1| ≤ � for all x ∈ f
−1

(1)

p(x) ≤ −1 for all x ∈ f
−1

(−1)

deg p ≤ d

Dual LP:

maxψ
�

x∈{−1,1}n
ψ(x)f(x)

s.t.
�

x∈{−1,1}n
|ψ(x)| = 1

�

x∈{−1,1}n
ψ(x)q(x) = 0 whenever deg q ≤ d

ψ(x) ≤ 0 ∀x ∈ f
−1

(−1)



Proof that �odeg(ANDn) = Ω(
√
n)

We argued that the symmetrization of any 1/3-approximation to
ANDn had to look like this:

!"#$%&'()*+,-.-)*/-



Hardness Amplification for Constant-Depth Circuits
[BT13b]



Main Theorem

Given: A “simple” Boolean function f that is “hard to
approximate to low error” by degree d polynomials.

Can we turn f into a “still-simple” F that is hard to
approximate even to very high error?

A: Yes.

Theorem

Let f be a Boolean function with �odeg1/2(f) ≥ d. Let

F = ORt(f, . . . , f). Then �odeg1−2−t(F ) ≥ d.
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Theorem

Let f be a Boolean function with �odeg1/2(f) ≥ d. Let

F = ORt(f, . . . , f). Then �odeg1−2−t(F ) ≥ d.



Proof of Main Theorem

Define ψIN to be any dual witness to the fact that
�odeg(f) ≥ d.

Define ψOUT : {−1, 1}t → R via:

ψOUT(y) =






1/2 if y = ALL-FALSE

−1/2 if y = ALL-TRUE

0 otherwise

Combine ψOUT and ψIN exactly as before to obtain a dual
witness ψF for F .

Must verify:

1 ψF has pure high degree d.

2 ψF has correlation at least 1− 2−t with F .



Proof of Main Theorem: Pure High Degree

Notice ψOUT is balanced (i.e., it has pure high degree 1).

So previous analysis shows ψF has pure high degree at least
1 · d = d.



Proof of Main Theorem: Correlation Analysis

ψF (x1, . . . , xt) := C · ψOUT(. . . , sgn(ψIN(xi)), . . . )

t�

i=1

|ψIN(xi)|

Idea: Show
�

x∈{−1,1}n
ψF (x) · F (x) ≥

�

y∈{−1,1}t
ψOUT(y) ·ORt(y)− 2

−t
= 1− 2

−t
.

Case 1: Consider y = (sgnψIN(x1), . . . , sgnψIN(xt))=

All-True.

If even a single coordinate yi of y is “error-free”, then
F (x) = ORt(f(x1), . . . , f(xt)) = −1. :-D

Any individual coordinate of y is in error with probability at
most 1/2, since ψIN is well-correlated with f .

So all coordinates of y are in error with probability only 2−t.



Proof of Main Theorem: Correlation Analysis

ψF (x1, . . . , xt) := C · ψOUT(. . . , sgn(ψIN(xi)), . . . )

t�

i=1

|ψIN(xi)|

Idea: Show
�

x∈{−1,1}n
ψF (x) · F (x) ≥

�

y∈{−1,1}t
ψOUT(y) ·ORt(y)− 2

−t
= 1− 2

−t
.

Case 2: Consider y = (sgnψIN(x1), . . . , sgnψIN(xt)) =

All-False. Then sgn(ψF (x)) = sgn(ψOUT(y)) = 1.

Then F (y)=ORt(f(x1), . . . , f(xt) = 1 only if all coordinates
of y are “error-free”.

Fortunately, ψIN has one-sided error: If sgn(ψIN(xi)) = 1,
then f(xi) is guaranteed to equal 1.



A New �odeg Bound for AC0

We want to apply amplification to functions in AC0, getting
out very “hard” functions that are still in AC0.

Let ED : {−1, 1}n → {−1, 1} denote the Element
Distinctness function.

[AS04] showed �deg(ED) = Ω((n/ log n)2/3).

This is the best known lower bound on the approximate
degree of an AC0 function.

We show that in fact �odeg(ED) = Ω((n/ log n)2/3).



New Lower Bounds for AC0

Theorem

Let F = ORn2/5(EDn3/5 , . . . ,EDn3/5) and � = 1− 2−n2/5
. Then

�odeg�(F ) = Ω̃(n2/5).

Proof: Combine lower bound on �odeg(ED) with Main Theorem.



New Lower Bounds for AC0

Definition

Let f : X × Y → {−1, 1} be a function, and µ a probability
distribution on X × Y . The discrepancy of f under µ is

discµ(f) := max
S⊆X,T⊆Y

������

�

x∈S

�

y∈T
µ(x, y)f(x, y)

������
.

The discrepancy of f is: disc(f) := minµ discµ(f).

Low discrepancy implies high communication complexity in
nearly every communication model.

Also a central quantity in learning theory and circuit
complexity.



New Lower Bounds for AC0

Theorem (She08, “Pattern Matrix Method”)

Let F : {−1, 1}n be any function satisfying �deg1−1/W (F ) ≥ d. Let

F � : {−1, 1}4n × {−1, 1}4n → {−1, 1} by

F
�
(x, y) = F (. . . ,∨4

j=1(xi,j ∧ yi,j), . . . ).

Then disc(F �) � max{1/W, 2−d}.

Corollary

There is an AC
0
function f (computed by a depth four circuit)

with discrepancy exp
�
−Ω(n2/5)

�
.

Proof: Apply Pattern Mat. Meth. to ORn2/5(EDn3/5 , . . . ,EDn3/5).

Previous best bound: exp
�
−Ω(n1/3)

�
[She08, BVW07].



More applications

Corollary

There is an AC
0
function f that cannot be computed by

MAJ ◦ THR circuits of size exp
�
Ω(n2/5)

�
.

Corollary

There is an AC
0
function f with threshold weight exp

�
Ω(n2/5)

�
.

Previous bests were both exp(Ω(n1/3)) [Sher08, BVW07, KP97].



Back to OR-AND Trees

Let OR-ANDd,n denote the balanced OR-AND tree of depth
d (with an OR gate at the top).

Earlier, we proved �deg(OR-AND2,n) = Θ(n1/2).

But proving equivalent lower bound for depth 3 or greater
remained open.

Theorem

For any constant d > 1, �deg(OR-ANDd,n) = Ω(n1/2/ log
d−2

(n)).

(Upper bound of O(n1/2) for any constant d follows from [She12]).
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First Proof Attempt (for the case d = 3)

Goal: construct a dual polynomial for OR-AND3,n.

Let ψIN denote the dual polynomial for AND-OR2,n2/3

constructed earlier.

Let ψOUT denote a dual polynomial witnessing
�deg(ORn1/3) = Ω(n1/6)

Combine ψIN and ψOUT exactly as before:

ψCOMB(x1, . . . , xn1/3) := C · ψOUT(. . . , sgn(ψIN(xi)), . . . )

n1/3�

i=1

|ψIN(xi)|

ψCOMB has p.h.d. Ω(n1/6 · n1/3) = Ω(n1/2). �
But ψCOMB may have poor correlation with OR-AND3,n.
Problem: ψIN does not have one-sided error.
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Actual Proof (for the case d = 3)

Instead, use a different dual polynomial ψIN for
OR-AND2,n2/3 .

Construction of ψIN uses hardness amplification to achieve the
following:

ψIN has error “on both sides”, but the error from the “wrong
side” will be very small.

Hardness amplification step causes ψIN to have p.h.d.
Ω(n1/3/

√
log n), rather than Ω(n1/3).



Subsequent Work by Sherstov [She13b]



Threshold Degree

Definition

Let f : {−1, 1}n → {−1, 1} be a Boolean function. A polynomial
p sign-represents f if sgn(p(x)) = f(x) for all x ∈ {−1, 1}n.

Definition

The threshold degree of f is min deg(p), where the minimum is

over all sign-representations of f . (Equivalent to lim�→1
�deg�(f)).



Threshold Degree of AC0

Minsky and Papert [MP68] proved an Ω(n1/3) lower bound on
the threshold degree of a specific DNF.

It has been open ever since to prove a lower bound of
Ω(n1/3+δ) for any function in AC0.

Only progress: Ω(n1/3 log
k
n) for any constant k [OS03].

We conjectured in [BT13b] that ORn2/5(EDn3/5 , . . . ,EDn3/5)

has threshold degree Ω(n2/5).



Subsequent Work

Sherstov [She13b] has recently proved our conjecture.

More generally, he exhibits a depth k circuit of polynomial size
with threshold degree Ω(n(k−1)/(2k−1)).


