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Boolean Functions

m Boolean function f: {-1,1}" — {-1,1}

) ~1 (TRUE) ifz=(-1)"

AND, (x) =
(=) {1 (FALSE)  otherwise



Approximate Degree

m A real polynomial p e-approximates a Boolean function f if
lp(z) — f(z)] <e Voe{-1,1}"

n &ﬁ(f) = minimum degree needed to e-approximate f

[ (fie\é(f) = &51/3(f) is the approximate degree of f



Why Care About Approximate Degree?

Upper bounds on Héés(f) yield efficient learning algorithms
m ¢ — 1: PAC learning [KS01]

m ¢ “close to” 1: Attribute-Efficient Learning [KS04, STT12]
m ¢ < 1 a constant: Agnostic Learning [KKMS05]



Why Care About Approximate Degree?

Lower bounds on a;_ée(f) yield lower bounds on:

m Quantum query complexity [BBCMW98] [AS01] [Amb03]
[KSW04]

m Communication complexity [BVWO07] [She07] [SZ07] [CA08]
[LS08] [Shel2]

m Circuit complexity [MP69] [Bei93] [Bei94] [She08]



Example: What is the Approximate Degree of AND,,?

deg(AND,,) = ©(y/n).
m Upper bound: Use Chebyshev Polynomials.

m Markov's Inequality: Let G(t) be a univariate polynomial s.t.
deg(G) < d and supc(_q,1) |G(?)] < 1. Then

sup |G'(t)] < d%
te[—1,1]

m Chebyshev polynomials are the extremal case.
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Example: What is the Approximate Degree of AND,,?

deg(AND,,) = O(/n).

m After shifting a scaling, can turn degree O(y/n) Chebyshev
polynomial into a univariate polynomial Q(t) that looks like:

Q(-1+2/n) =2/3

m Define n-variate polynomial p via p(z) = Q(>_7, xi/n).
m Then |p(z) — AND, (z)| <1/3 Vze {-1,1}".



Example: What is the Approximate Degree of AND,,?

[NS92] deg(AND,) = Q(/n).

Lower bound: Use symmetrization.
Suppose |p(x) — AND,(z)] <1/3 Vx e {-1,1}"

There is a way to turn p into a univariate polynomial p*¥™

that looks like this:

p¥™M(-1+2/n) = 2/3

Claim 1: deg(p¥™) < deg(p).
Claim 2: Markov's inequality = deg(p»™) = Q(n'/?).



Beyond Symmetrization: Analyzing the OR-AND
Tree



Beyond Symmetrization

m Symmetrization is “lossy”: in turning an n-variate poly p into
a univariate poly p*™, we throw away information about p.

= Challenge problem: What is deg(OR-AND,,)?

ORn1/2

7NN

AND,,1/2

//\\ N AN

LL’ n1/2



History of the OR-AND Tree

Upper bounds
[HMWO03] deg(OR-AND,,) = O(n!/2)

Lower bounds
[NS92]  Q(n!/%)
[Shiol]  Q(n'/*\/logn)
[Amb03]  Q(n'/3)
[Aar08]  Reposed Question
[She0d] O
[BT13a] Q(n'/?)
[Shel3a] €



Linear Programming Formulation of Approximate Degree

What is best error achievable by any degree d approximation of f7
Primal LP (Linear in € and coefficients of p):

min, . €
sit. |p(x) — f(z)| <e forall z € {—1,1}"
degp <d
Dual LP:
max, Y P(x)f(x)

ze{—-1,1}"

s.t. > @) =1
ze{-1,1}"

Z P(x)g(x) =0 whenever degq < d
ze{-1,1}"



Dual Characterization of Approximate Degree

Theorem: deg, (f) > d iff there exists a “dual polynomial”
¥ {-1,1}" — R with

(1) Z Y(a)f(x) > € “high correlation with f”
ze{-1,1}"

(2) Z [Y(z)] =1 “L1-norm 1”
ze{-1,1}"

(3) Z Y(z)g(z) = 0,degqg < d “pure high degree d’
ze{-1,1}"

(3) equivalent to: $(S) = 0 for all |S| < d.

Key technique in, e.g., [She07] [Lee09] [She09]



Goal: Construct an explicit dual polynomial
@/JOR-AND for OR-AND



Constructing a Dual Polynomial

m By [NS92], there are dual polynomials
YouT for deg (OR,,1/2) = Q(n/*)  and
@Z)IN for agé (ANDn1/2) = Q(n1/4)
m Can we combine oyt and N to obtain a dual polynomial
wOR-AND for OR-AND?



A First Attempt

//'\\ YoR-AND(Z1, - - -, Tp1/2) := Yout(- .., Uin(Ts), . . .)
//\\ AN //\\



A First Attempt

OR,,1/2

//'\\ YoR-AND(Z1, - - -, Tp1/2) := Yout(- .., Uin(Ts), . . .)
//\\ AN //\\

m Easy to check: ¥gr.anDp has pure high degree at least
nl/4 /4 — p1/2

m Eg. If Yout(v1,y2) = y1y2 and Yin(21, 22) = 2122, then

¢0R-AND($11,$12,9C21,$22) = (33111‘12)(33211‘22) = T11212721222-



A First Attempt

OR,,1/2

//'\\ YoR-AND(Z1, - - -, Tp1/2) := Yout(- .., Uin(Ts), . . .)
//\\ AN //\\

m Easy to check: ¥gr.anD has pure high degree at least
nl/4 /4 — p1/2

m Eg. If Yout(v1,y2) = y1y2 and Yin(21, 22) = 2122, then

¢0R-AND(3311,$12,3321,$22) = (33111‘12)(33211‘22) = T11212721222-

m Does 1or.anDp have high correlation with OR-AND,,?

m Problem: Proposed definition of ¥)or-.anp may feed
non-Boolean values into ¥gyt. But we only have control over
1out on Boolean inputs.



A Second (and Final) Attempt [She09, Lee(9]

nl/2

YorR-AND (1, - - -, Z,1/2) := C - YouT(. . .,sgn(vin(z;)) H | ()|

(C chosen to ensure Yor.anp has Li-norm 1).



A Second (and Final) Attempt [She09, Lee(9]

nl/2

YorR-AND (1, - - -, Z,1/2) := C - YouT(. . .,sgn(vin(z;)) H | ()|

(C chosen to ensure Yor.anp has Li-norm 1).

Must verify:
1or-anD has pure high degree > nl/4.nl/4 = pt/2,

1or-AND has high correlation with OR-AND.



A Second (and Final) Attempt [She09, Lee(9]

nl/2

YOR-AND(Z1, - - -, Tp1/2) i= C - Yourt(. .., sgn(vin(@i)) H N (3)|

(C chosen to ensure Yor.anp has Li-norm 1).

Must verify:
or.aND has pure high degree > n'/4.n!/4 = nl/2 /[She09)
1or-anD has high correlation with OR-AND. [BT13a]



(Sub)Goal: Show Yor.anp has pure high degree at
least n'/2 [She09]



Pure High Degree Analysis [She09]

nl/2

YOR-AND (71, - - -, Z172) == C - Yout(. . .,sgn(vin(z:)) H [N ()]

m Intuition: Consider ¥ouT(¥1,¥2,¥3) = y1y2. Then
tor-anD (21, T2, x3) equals:

C - sgn(yin(z1)) - sgn(tin(z2)) H|¢|N (23)]
= Uin(z1) - Yin(z2) - |[Yin(3)]



Pure High Degree Analysis [She09]

nl/2

YOR-AND(T1, -, Tp1/2) i= C - Yourt(. . ., sgn(vin(@i)) H [N ()|

m Intuition: Consider ¥ouT(¥1,¥2,¥3) = y1y2. Then
tor-anD (21, T2, x3) equals:

C - sgn(yin(z1)) - sgn(tin(z2)) H|¢|N (23)]
= Uin(z1) - Yin(z2) - |[Yin(3)]

m Each term of ¥or.anD is the product of PHD(¢ouT)
polynomials over disjoint variable sets, each of pure high
degree at least PHD ().

m So PHD(¥or-anD) > PHD(¥out)-PHD(¢iN)-



(Sub)Goal: Show Yor.anp has high correlation with
OR-AND



Correlation Analysis

nl/2

YOR-AND(Z1, - - -, Tp1/2) := C - Yout (. - ., sgn(¢in(zi)) H [N ()|

m Idea: Show

> voranp(z) - OR-AND,(z) ~ > vout(y) - OR,u/2(y).

ve{-11}n ye{-1,1}n'/2

m Intuition: We are feeding sgn(¢yn(x;)) into YouT.

m ¢y is correlated with AND, 1,2, so sgn(¢in(z;)) is a “decent
predictor” of AND, 1/2.

m But there are errors. Need to show errors don’t “build up”.



Correlation Analysis

nl/2

YOR-AND(Z1, - - -, Tp1/2) := C - Yourt (. - ., sgn(in(zi)) H [N ()|

m Goal: Show

> voranp(z) - OR-AND,(z) & > vout(y) - OR,u/2(y).

ee{-11}" ye{-1,1}n"/?

m Case 1: Consider any y = (sgnt¢in(z1), - . .,sgnin(z,,1/2)) #
All-False.

m There is some coordinate of y that equals TRUE. Only need
to “trust” this coordinate to force OR-AND,, to evaluate to
True on (z1,...,,1/2). So errors do not build up!



Correlation Analysis

m Case 2: Consider y = All-False.

m OR,1/2(y)=OR-AND,,(z1,...,x,1/2) only if all coordinates
of y are “error-free”.

m Fortunately, ¥yn has a special one-sided error property:
If sgn(¢in(zi)) = 1, then AND, 1/2(x;) is guaranteed to
equal 1.



Summary of Correlation Analysis

m Two Cases.

m In first case (feeding at least one TRUE into ¥ouT), errors did
not build up, because we only needed to “trust” the TRUE
value.

m In second case (all values fed into ¥oyT are FALSE), we
needed to trust all values. But we could do this because ¢y
had one-sided error.



One-Sided Approximate Degree

m A real polynomial p is a one-sided e-approximation for f if

Ip(z) — 1| <e Vze f (1)
p(z) < -1 Vze fl(-1)

m cﬁ;gﬁ(f) = min degree of a one-sided e-approximation for f.

] cja\(—::g(f) ::g(_:l\e;gl/g,(f) is the one-sided approximate degree of

f.



Dual Formulation of odeg

Primal LP (Linear in € and coefficients of p):
min, . ¢
st [p(x)—1| <e for all 2 € f71(1)
p(z) < -1 for all z € f~1(—1)
degp<d
Dual LP:
maxy,  » W(2)f(x)

s.t. > ) =1

Z Y(z)q(z) =0 whenever degq < d



Proof that odeg(AND,,) = Q(y/n)

We argued that the symmetrization of any 1/3-approximation to
AND,, had to look like this:

N\

p¥™(-1+2/n) 2 2/3




Hardness Amplification for Constant-Depth Circuits
[BT13b]



Main Theorem

m Given: A “simple” Boolean function f that is “hard to
approximate to low error” by degree d polynomials.

m Can we turn f into a “still-simple” F' that is hard to
approximate even to very high error?



Main Theorem

m Given: A “simple” Boolean function f that is “hard to
approximate to low error” by degree d polynomials.

m Can we turn f into a “still-simple” F' that is hard to
approximate even to very high error?

A: Yes.

Theorem

Let f be a Boolean function with odeg1/2 . Let

(f) =
F =OR(f,...,f). Then odeg1_2_t( ) >d.



Proof of Main Theorem

m Define ¢y to be any dual witness to the fact that
odeg(f) > d.
m Define Yoyt : {—1,1} — R via:

1/2  ify= ALL-FALSE
Yout(y) =< —1/2 ify= ALL-TRUE

0 otherwise

m Combine 1oyt and ¥ exactly as before to obtain a dual
witness Y for F.
Must verify:
1 has pure high degree d.
1 has correlation at least 1 — 27 with F.



Proof of Main Theorem: Pure High Degree

m Notice oyt is balanced (i.e., it has pure high degree 1).

m So previous analysis shows g has pure high degree at least
1-d=d.



Proof of Main Theorem: Correlation Analysis

Yp(@1,...,2) == C - Yout(...,sgn(in(zi)) H [N ()|

m Idea: Show

Y tr@)-F(x) =) dout(y) - ORy(y) —27 =1-27",

ze{—1,1}n ye{ 1,1}t
m Case 1: Consider y = (sgntin(z1), ... ,sgnyn(ze)) =
All-True.

m If even a single coordinate y; of y is “error-free”, then
F((,C) = ORt(f(xl)a e 7f(mt)) =-1. :-D

m Any individual coordinate of y is in error with probability at
most 1/2, since Yy is well-correlated with f.

m So all coordinates of y are in error with probability only 2.



Proof of Main Theorem: Correlation Analysis

Yp(, .. 2) = C - Yout(. .., sgn(tin(i)) H [N ()|

m Idea: Show

> wp(x)-F(z) = dout(y) - ORy(y) —27" =1-27".

ze{—1,1}n ye{ 1,1}t

m Case 2: Consider y = (sgn¢in(x1),...,sgnn(xe)) =
All-False. Then sgn(¢r(z)) = sgn(vouTt(y)) = 1.

m Then F(y)=O0R¢(f(z1),..., f(z:) = 1 only if all coordinates
of y are “error-free".

m Fortunately, ¥y has one-sided error: If sgn(¢n(x;)) = 1,
then f(x;) is guaranteed to equal 1.



A New odeg Bound for AC”

m We want to apply amplification to functions in ACY, getting
out very “hard” functions that are still in AC.

Let ED : {-1,1}" — {—1,1} denote the ELEMENT
DISTINCTNESS function.

[AS04] showed deg(ED) = Q((n/logn)/3).
This is the best known lower bound on the approximate
degree of an AC? function.

m We show that in fact (?aé:g(ED) = Q((n/logn)?/3).



New Lower Bounds for AC®

Theorem

Let F = OR,2/5(ED, s/5,...,ED, 5/5) and e = 1 —27"""° Then
odeg, (F) = Q(n?/%).

Proof: Combine lower bound on (;a(;g(ED) with Main Theorem.



New Lower Bounds for AC®

Let f: X xY — {—1,1} be a function, and p a probability
distribution on X x Y. The discrepancy of f under y is

disc,(f) ==  max 1> > ulz,y)f(xy)|-
=7 T |zeSyeT

The discrepancy of f is: disc(f) := min, disc,(f).

m Low discrepancy implies high communication complexity in
nearly every communication model.

m Also a central quantity in learning theory and circuit
complexity.



New Lower Bounds for AC®

Theorem (She08, “Pattern Matrix Method")

Let F': {—1,1}" be any function satisfying cflevgl_l/W(F) >d. Let
Fo{—1,137" x {—1,1}4" — {~1,1} by

F/(IB,y) = F( .. 7\/?:1(xi,j N yi,j)a .. )

Then disc(F') < max{1/W,27%}.

Corollary

There is an ACY function f (computed by a depth four circuit)
with discrepancy exp (—Q(n%?)).

Proof: Apply Pattern Mat. Meth. to OR,,2/5(ED,3/s,...,ED,3/5).
Previous best bound: exp (—Q(n1/3)) [She08, BVWOT7].



More applications

Corollary

There is an ACY function f that cannot be computed by
MAJ o THR circuits of size exp (Q(n%/?)).

Corollary

There is an ACY function f with threshold weight exp (Q(n2/5)).

Previous bests were both exp(€2(n'/3)) [Sher08, BVWO07, KP97].



Back to OR-AND Trees

m Let OR-ANDy,, denote the balanced OR-AND tree of depth
d (with an OR gate at the top).

m Earlier, we proved (Te_g/(OR—ANng) = 0(n'/?).

m But proving equivalent lower bound for depth 3 or greater
remained open.



Back to OR-AND Trees

m Let OR-ANDy,, denote the balanced OR-AND tree of depth
d (with an OR gate at the top).

m Earlier, we proved (Tejg(OR—ANngn) = 0(n'/?).

m But proving equivalent lower bound for depth 3 or greater
remained open.

For any constant d > 1, &(OR—ANDd,n) = Q(n'/2/log? 2 (n)).

(Upper bound of O(n'/?) for any constant d follows from [She12]).



First Proof Attempt (for the case d = 3)

m Goal: construct a dual polynomial for OR-AND3 ,,.

m Let ¢yn denote the dual polynomial for AND-OR, ,,2/s
constructed earlier.

m Let ¢)oyT denote a dual polynomial witnessing
deg(OR,1/5) = Q(n!/0)

m Combine ¢y and Yoyt exactly as before: s

Yeome (1, - - - Tp1/8) = C - Yout(. - ., sgn(vin(i)) H [N ()]



First Proof Attempt (for the case d = 3)

m Goal: construct a dual polynomial for OR-AND3 ,,.

m Let ¢yn denote the dual polynomial for AND-OR, ,,2/s
constructed earlier.

m Let ¢)oyT denote a dual polynomial witnessing
deg(ORnl/s) = Q(nl/5)

m Combine ¢y and Yoyt exactly as before: s

Yeome (1, - - - Tp1/8) = C - Yout(. - ., sgn(vin(i)) H [N ()]

] wCOMB has p.h.d. Q(nl/ﬁ . n1/3) = Q(?’Ll/Q). v
m But ¢¥)comp may have poor correlation with OR-AND3 ,.
Problem: 1y does not have one-sided error.



Actual Proof (for the case d = 3)

m Instead, use a different dual polynomial N for
OR‘ANDQJLQ/S.

m Construction of vy uses hardness amplification to achieve the
following:

m YNy has error “on both sides”, but the error from the “wrong
side” will be very small.

m Hardness amplification step causes ¥y to have p.h.d.
Q(n'/3/\/logn), rather than Q(n'/3).



Subsequent Work by Sherstov [Shel3b]



Threshold Degree

Let f: {—1,1}" — {—1,1} be a Boolean function. A polynomial
p sign-represents f if sgn(p(x)) = f(x) for all z € {—1,1}".

Definition

The threshold degree of f is mindeg(p), where the minimum is

over all sign-representations of f. (Equivalent to lim._,; agée(f)).



Threshold Degree of AC’

= Minsky and Papert [MP68] proved an Q(n'/3) lower bound on
the threshold degree of a specific DNF.

m It has been open ever since to prove a lower bound of
Q(n'/3+9) for any function in AC.

m Only progress: Q(n'/3log* n) for any constant k [0S03].

m We conjectured in [BT13b] that OR,,2/5(ED,3/5,...,ED,s/5)
has threshold degree Q(n?/%).



Subsequent Work

m Sherstov [Shel3b] has recently proved our conjecture.

m More generally, he exhibits a depth & circuit of polynomial size
with threshold degree Q(n(k—1)/(2k=1)),



