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expanders

expanders are constant degree “highly connected” graphs
motivation

several ways to define
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(bipartite) vertex expansion

a bipartite graph H = (AU B, E) with A= B = [n] is an
expander if there exist ¢, d > 0 independent of n

» degree of each vertex is at most d
» forevery A’ C Aofsize |A'| <nj2

IF(A) = (1 +¢)|A]
where
rA)={beB:3acA {ab}cE}

interested in infinite families
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» Kazhdan’s property T: e.g. 8-regular graph on Z,, x Zp with
edges defined by simple affine maps
[Margulis, Gabber-Galil]
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existence:

» most graphs are expanders [Pinsker]
constructions:

» Kazhdan’s property T: e.g. 8-regular graph on Z,, x Zp with
edges defined by simple affine maps
[Margulis, Gabber-Galil]

» Selberg’s 3/16 theorem: e.g. 3-regular graph on Z, with

edges defined by algebraic maps
[Lubotzky-Phillips-Sarnak]
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background
existence:

» most graphs are expanders [Pinsker]
constructions:

» Kazhdan’s property T: e.g. 8-regular graph on Z,, x Zp with
edges defined by simple affine maps
[Margulis, Gabber-Galil]

» Selberg’s 3/16 theorem: e.g. 3-regular graph on Z, with
edges defined by algebraic maps
[Lubotzky-Phillips-Sarnak]

» zig-zag: if Gy, Gp are expanders, then zigzag(G;, Gy) is too
[Reingold-Vadhan-Wigderson]
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» most graphs are expanders [Pinsker]
» can not be planar [Ungar]
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» can not be planar [Ungar]

» no 1-dimensional analog of
Margulis-(Z, x Zn)-construction [Klawe]
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how simple can expanders be?

v

most graphs are expanders [Pinsker]
can not be planar [Ungar]

» no 1-dimensional analog of
Margulis-(Z, x Zn)-construction [Klawe]

are there d-page expanders?

v

v
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how simple can expanders be?

» most graphs are expanders [Pinsker]
» can not be planar [Ungar]

» no 1-dimensional analog of
Margulis-(Z, x Zn)-construction [Klawe]

» are there d-page expanders?
» are there d-monotone expanders?
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d-page graphs
vertices are on a spine of a book with d-pages and edges do
not cross each other

1-page
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vertices are on a spine of a book with d-pages and edges do
not cross each other

1-page
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2-page
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d-page graphs
vertices are on a spine of a book with d-pages and edges do
not cross each other

1-page
@ O

2-page

comment. related to Turing machines simulations
[Galil-Kannan-Szemeredi, Dvir-Wigderson]
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d-monotone graphs
the bipartite graph H = (AU B, E) with A= B = [n] is
d-monotone if its edges are a union of d partial monotone
maps:

there are partial’ monotone® maps v, . .., 14 So that edges
are of the form

e={avi(a)}

Yt Ai— Bwith A, C A

2think of x, y as integers: ¥i(x) < ¥i(y) for x < y in A;
:
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the bipartite graph H = (AU B, E) with A= B = [n] is
d-monotone if its edges are a union of d partial monotone

maps:
there are partial’ monotone® maps v, . .., 14 So that edges
are of the form
e={ai(a)}
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d-monotone are d-page [Dvir-Wigderson]

o o

monotone

o o

page
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d-monotone are d-page [Dvir-Wigderson]

monotone

page
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monotone expanders

theorem [Bourgain, Bourgain-Y].
there are d-monotone expanders
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monotone expanders

theorem [Bourgain, Bourgain-Y].
there are d-monotone expanders

corollary. there are d-page expanders

comment. “natural” distributions on monotone graphs yield
graphs that are close to 1-dimensional affine and such graphs
are not expanders [Klawe]
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monotone expanders

theorem [Bourgain, Bourgain-Y].
there are d-monotone expanders

corollary. there are d-page expanders
comment. “natural” distributions on monotone graphs yield
graphs that are close to 1-dimensional affine and such graphs

are not expanders [Klawe]

corollary [Dvir-Shpilka, Bourgain, Dvir-Wigderson]. there are
dimension expanders
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dimension expanders
a d-dimension expander over " is a collection of linear maps
Ly,..., Ly so that for every subspace V of dimension k < n/2,

d
dim span | J L;V > (1 + ¢)k

i=1

where ¢ > 0 is independent of n
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dimension expanders
a d-dimension expander over " is a collection of linear maps
Ly,..., Ly so that for every subspace V of dimension k < n/2,

d
dim span | J L;V > (1 + ¢)k

i=1

where ¢ > 0 is independent of n

theorem [Lubotzky-Zelmanov]. over R many expanders yield
dimension expanders
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dimension expanders

a d-dimension expander over " is a collection of linear maps
Ly,..., Ly so that for every subspace V of dimension k < n/2,

d
dim span | J L;V > (1 + ¢)k

i=1

where ¢ > 0 is independent of n

theorem [Lubotzky-Zelmanov]. over R many expanders yield
dimension expanders

lemma. if there is a d-monotone expander then there is a
d-dimension expander over any field with L; defined by
zero-one matrices
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a monotone expander

presentation will have 4 parts

(a) Schreier diagrams

(b) continuous monotone expanders
(c) choices

(d) overview of proof
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(a) Schreier diagrams
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(a) Schreier diagrams
a Schreier diagram: a graph H = Sch(G, S, X) defined by

agroup G
a finite subset S of G

an action: G ~ X
» every gin Gdefinesamapg: X — X
» g(h(x)) = (gh)(x) forallg,hin G

vertexset: A=B=X
edge set: {(x,g(x)): x€ A ge SUS}
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(a) Schreier diagrams
a Schreier diagram: a graph H = Sch(G, S, X) defined by

agroup G
a finite subset S of G

an action: G~ X
» every gin Gdefinesamapg: X — X
» g(h(x)) = (gh)(x) forallg,hin G

vertexset: A=B=X
edge set: {(x,g(x)): x€ A ge SUS}

Cayley graphs: action of G on itself
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(a) an example
1 group G
G:SLQ(IFp):{g: < i Z) :a,b,c,d e Fp, ad—bc:1}

2 subset S of G

={(o )2 7))

3 G ~ X: the Mébius action of Gon X = Fp U {oo}

_ax+b
ex+d

9(x)
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(a) an example
1 group G
G:SLQ(Fp):{g: < i Z) :a,b,c,d e Fp, ad—bc:1}

2 subset S of G

={(o )2 7))

3 G ~ X: the Mébius action of Gon X = Fp U {oo}

_ax+b
ex+d

9(x)

|Gl ~p°, |Al=|Bl=p+1, 4regular
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(b) continuous monotone expanders
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(b) continuous monotone expanders

a continuous monotone expander is an (infinite) bipartite
graph defined by v, ..., 14 as follows

» vertices: A= B =10,1]

» monotone: edges of the form (x, 1;(x))
» 1) . A; — Bis smooth with A; C A an interval

> Yi(x) < Yi(y) for x < yin A;
» expansion: for every A' C A of measure |A'| <1/2
IF(A)| > (1 + ¢)|A]

where [(A") = Ujc(q) Vi(A)
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(b) continuous monotone expanders

why are they useful?
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(b) continuous monotone expanders

why are they useful?
lemma. by partitioning [0, 1] to n equal-length intervals, a

continuous monotone expander yields an n-vertex monotone
expander
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(b) continuous monotone expanders

why are they useful?

lemma. by partitioning [0, 1] to n equal-length intervals, a
continuous monotone expander yields an n-vertex monotone
expander

how? if Ais partitioned to ay,...,a, and Bto by,..., by,
connect intervals a;, by when ;(a;) N bx # () for some );
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(c) choices

an explicit continuous Schreier diagram

3
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(c) choices

an explicit continuous Schreier diagram

1 group G

2 finite subset S of G

3G X:

3

| :
building monotone expanders




(c) choices

an explicit continuous Schreier diagram

1groqu=SL2(]R):{g: (i 2):ad—bc=1}

2 finite subset S of G

3G X:

3
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(c) choices

an explicit continuous Schreier diagram

1groqu:SL2(R):{g: (i 2):ad—bc:1}

2 finite subset S of G: words of length at most R in

1 1/K 1 1/Q 1 0
0o 1 L0 1 1/Q 1
where R, K, Q are fixed integers

3G X:

3
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(c) choices

an explicit continuous Schreier diagram

1groqu:SL2(R):{g: (2 Z):ad—bc:1}

2 finite subset S of G: words of length at most R in

1 1/K 1 1/Q 1 0
0o 1 "\0 1 1/Q 1
where R, K, Q are fixed integers

3 G ~ X:= [0, 1]: the Mébius action® g(x) = %‘} restricted so
that x, g(x) in [0, 1] for all x,g

3no longer an action due to restriction
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(c) monotone expanders: concluding

theorem. the (restricted) Mdbius action of SLy(R) on [0, 1] with
a constant number of simple matrices as generators yields a
continuous monotone expander
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(c) monotone expanders: concluding

theorem. the (restricted) Mdbius action of SLy(R) on [0, 1] with
a constant number of simple matrices as generators yields a
continuous monotone expander

corollary. there is an explicit infinite family of monotone
expanders
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(c) monotone expanders: concluding

theorem. the (restricted) Mdbius action of SLy(R) on [0, 1] with
a constant number of simple matrices as generators yields a
continuous monotone expander

corollary. there is an explicit infinite family of monotone
expanders

comments.
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(c) monotone expanders: concluding

theorem. the (restricted) Mdbius action of SLy(R) on [0, 1] with
a constant number of simple matrices as generators yields a
continuous monotone expander

corollary. there is an explicit infinite family of monotone
expanders

comments.

» degree is constant but large, expansion is constant but
small
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(c) monotone expanders: concluding

theorem. the (restricted) Mdbius action of SLy(R) on [0, 1] with
a constant number of simple matrices as generators yields a
continuous monotone expander

corollary. there is an explicit infinite family of monotone
expanders

comments.

» degree is constant but large, expansion is constant but
small

» monotone since action is monotone...
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(c) monotonicity

the Mdbius action: for every x € R

_ax+b
ex+d

9(x)

where ad — bc = 1
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(c) monotonicity

the Mdbius action: for every x € R

(x) = ax+b
9= o+ d
where ad — bc = 1
thus
oy alex+d)—clax+b) 1
g = (cx + d)2 = loxrae 0

except at pole x = —d/c
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(d) a three-step proof: chess game [Sarnak]

Bourgain-Gamburd, Helfgott, ... :

opening.

middle-game.

endgame.
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middle-game. product-growth
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Bourgain-Gamburd, Helfgott, ... :

opening. large girth
group

middle-game. product-growth

endgame. mixing property
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(d) a three-step proof: chess game [Sarnak]

Bourgain-Gamburd, Helfgott, ... :

opening. large girth
group

middle-game. product-growth

endgame. mixing property action
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(d) opening: large girth
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(d) opening: large girth

effective Tits’ alternative [Eskin-Mozes-Oh, Breuillard,
Gelander]: there is a constant r so that if S € SL>(R)
generates a group containing SLy(Z) then in words of length r
in S there are two elements that generate a free group F>
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(d) opening: large girth

effective Tits’ alternative [Eskin-Mozes-Oh, Breuillard,
Gelander]: there is a constant r so that if S € SL>(R)
generates a group containing SLy(Z) then in words of length r
in S there are two elements that generate a free group F>

corollary: there is a constant r so that for every k, if S C SLy(R)
generates a group containing SL,(Z) then in words of length k"
in S there are k elements that generate a free group Fx
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(d) middle-game: product-growth
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(d) middle-game: product-growth

product growth: under some conditions, if A is a subset of
SL,(R) then the metric entropy of A- A - A is much larger than
that of A

background:
discretized ring conjecture [Bourgain]
spectral gaps in SU(2) [Bourgain-Gamburd]

sum-product theorem [Bourgain-Katz-Tao]
growth in SLy(IF,) [Helfgott]
expansion for SL,(Fp) [Bourgain-Gamburd]
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(d) endgame: mixing property (an example)
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(d) endgame: mixing property (an example)

assume G ~ X (both finite)

mixing property: for every u: G — R and f : X — R so that
> xex f(x) = 0, we have

G
o 12 < L g

where (1 f)(x) = Y 4c1(9)f(97 1 (%))
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(d) endgame: mixing property (an example)

assume G ~ X (both finite)

mixing property: for every u: G — R and f : X — R so that
> xex f(x) = 0, we have

e 113 < S 31912
where (p * f)(x) = deG w(@)f(g=1(x))

useful: when N is large
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(d) endgame: mixing property (an example)

assume G ~ X (both finite)

mixing property: non-trivial bounds on convolution
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(d) endgame: mixing property (an example)

assume G ~ X (both finite)
mixing property: non-trivial bounds on convolution

[Sarnak-Xue, Gowers, Babai-Nikolov-Pyber, Gill]: holds when
non-trivial irreducible representations of G have large
dimension
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(d) endgame: mixing property (an example)

assume G ~ X (both finite)
mixing property: non-trivial bounds on convolution

[Sarnak-Xue, Gowers, Babai-Nikolov-Pyber, Gill]: holds when
non-trivial irreducible representations of G have large
dimension

claim: if action is 2-transitive then holds
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(d) endgame: mixing property (an example)

assume G ~ X (both finite)
mixing property: non-trivial bounds on convolution

[Sarnak-Xue, Gowers, Babai-Nikolov-Pyber, Gill]: holds when
non-trivial irreducible representations of G have large
dimension

claim: if action is 2-transitive then holds

well known: Mobius action is 3-transitive
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concluding

* there are “simple” expanders: monotone and constant-page

* proof has 3 parts:

- Tits’ alternative (groups, geometry)

- product growth (additive combinatorics)

- 3-transitivity (replaces representation theory)
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even simpler?
a natural way to construct monotone graphs is using affine
maps: given a;, b; for i € [d] define edges via

{0,1,2,....,n—1}>x— [aix+b;j] modn

building monotone expanders
00




even simpler?
a natural way to construct monotone graphs is using affine
maps: given a;, b; for i € [d] define edges via

{0,1,2,...,n—1} > x— [ax+b;] modn

theorem [Klawe]. if a;, b; € Q then no such graph is an
expander
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a natural way to construct monotone graphs is using affine
maps: given a;, b; for i € [d] define edges via

{0,1,2,...,n—1} > x— [ax+b;] modn

theorem [Klawe]. if a;, b; € Q then no such graph is an
expander

why? holds for solvable groups
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even simpler?
a natural way to construct monotone graphs is using affine
maps: given a;, b; for i € [d] define edges via

{0,1,2,....,n—1}>x— [aix+b;j] modn

theorem [Klawe]. if a;, b; € Q then no such graph is an
expander

why? holds for solvable groups

question. what about a;, b; € R?

comments.
- can slightly generalise Q: diophanite approximation
- no expanders using R for groups of polynomial growth
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thank you
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(d) combining parts (roughly)
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(d) combining parts (roughly)

goal (spectral expansion): for every f : [0,1] — R with Ef = 0,
1T, = fll2 < cl|fll2, c<1

with T, the Hecke operator that corresponds to the uniform
distribution v on (free) generators S

building monotone expanders
00




(d) combining parts (roughly)
goal: for every f : [0,1] — R with Ef =0,
[Ty * fll2 < c[[f]l2, c<1

with v the uniform distribution on generators S
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(d) combining parts (roughly)
goal: for every f : [0,1] — R with Ef =0,
1T, = fll2 < c|fll2, c<T1

with v the uniform distribution on generators S

first work over G: let i = v * p with p the density of uniform
measure on d-ball around 1in SLa(R)  (||4]/ee ~ 672%)
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(d) combining parts (roughly)
goal: for every f : [0,1] — R with Ef =0,
1T, = fll2 < c|fll2, c<T1

with v the uniform distribution on generators S

first work over G: let i = v * p with p the density of uniform
measure on d-ball around 1in SLa(R)  (||4]/ee ~ 672%)

lemma: ||p*!||oe < 6700 for t < log(1/6)
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(d) combining parts (roughly)
goal: for every f : [0,1] — R with Ef =0,
[Ty« fll2 < clfl2, c<1

with v the uniform distribution on generators S

first work over G: let i = v * p with p the density of uniform
measure on d-ball around 1in SLa(R)  (||4]/ee ~ 672%)

lemma: ||p*!||oe < 6700 for t < log(1/6)

using lemma: lemma + endgame (3-transitivity): can
non-trivially bound || T}  f||»
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(d) combining parts (roughly)

lemma: ||*!]|oo < 67901 for t < log(1/6)

u = v * p with v uniform on generators and p on ¢-ball
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(d) combining parts (roughly)
lemma: ||*!]| 0 < 6790 for t < log(1/9)

u = v * p with v uniform on generators and p on ¢-ball

proof idea:
opening:

middle-game:
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(d) combining parts (roughly)

lemma: ||*!]|oo < 67901 for t < log(1/6)
u = v * p with v uniform on generators and p on ¢-ball

proof idea:
opening: ||*S||3 < 629 for small s

(1 grows along a tree so iterations smoothen it)

middle-game:
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(d) combining parts (roughly)

lemma: ||*!]|oo < 67901 for t < log(1/6)
u = v * p with v uniform on generators and p on ¢-ball

proof idea:
opening: |1*%||3 < 629 for small s

(1 grows along a tree so iterations smoothen it)

middle-game: as long as ||x*"||2 is not too small,
7% Iz < 6% |12

(think of A = supp(n*") [Balog-Szemeredi-Gowers])
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