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expanders

expanders are constant degree “highly connected” graphs

motivation

several ways to define
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(bipartite) vertex expansion

a bipartite graph H = (A ∪ B,E) with A = B = [n] is an
expander if there exist c,d > 0 independent of n

I degree of each vertex is at most d
I for every A′ ⊂ A of size |A′| ≤ n/2

|Γ(A′)| ≥ (1 + c)|A′|

where

Γ(A′) =
{

b ∈ B : ∃ a ∈ A′ {a,b} ∈ E
}

interested in infinite families
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background

existence:

I most graphs are expanders [Pinsker]

constructions:

I Kazhdan’s property T: e.g. 8-regular graph on Zn × Zn with
edges defined by simple affine maps
[Margulis, Gabber-Galil]

I Selberg’s 3/16 theorem: e.g. 3-regular graph on Zp with
edges defined by algebraic maps
[Lubotzky-Phillips-Sarnak]

I zig-zag: if G1,G2 are expanders, then zigzag(G1,G2) is too
[Reingold-Vadhan-Wigderson]

I . . .
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how simple can expanders be?

I most graphs are expanders [Pinsker]
I can not be planar [Ungar]
I no 1-dimensional analog of

Margulis-(Zn × Zn)-construction [Klawe]
I are there d-page expanders?
I are there d-monotone expanders?
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d-page graphs
vertices are on a spine of a book with d-pages and edges do
not cross each other

1-page

2-page

comment. related to Turing machines simulations
[Galil-Kannan-Szemeredi, Dvir-Wigderson]
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d-monotone graphs
the bipartite graph H = (A ∪ B,E) with A = B = [n] is
d-monotone if its edges are a union of d partial monotone
maps:

there are partial1 monotone2 maps ψ1, . . . , ψd so that edges
are of the form

e = {a, ψi(a)}

B

A

1ψi : Ai → B with Ai ⊂ A

2think of x , y as integers: ψi(x) < ψi(y) for x < y in Ai
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d-monotone are d-page [Dvir-Wigderson]

monotone

page
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monotone expanders

theorem [Bourgain, Bourgain-Y].
there are d-monotone expanders

corollary. there are d-page expanders

comment. “natural” distributions on monotone graphs yield
graphs that are close to 1-dimensional affine and such graphs
are not expanders [Klawe]

corollary [Dvir-Shpilka, Bourgain, Dvir-Wigderson]. there are
dimension expanders
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dimension expanders

a d-dimension expander over Fn is a collection of linear maps
L1, . . . ,Ld so that for every subspace V of dimension k ≤ n/2,

dim span
d⋃

i=1

LiV > (1 + c)k

where c > 0 is independent of n

theorem [Lubotzky-Zelmanov]. over R many expanders yield
dimension expanders

lemma. if there is a d-monotone expander then there is a
d-dimension expander over any field with Li defined by
zero-one matrices

building monotone expanders



dimension expanders

a d-dimension expander over Fn is a collection of linear maps
L1, . . . ,Ld so that for every subspace V of dimension k ≤ n/2,

dim span
d⋃

i=1

LiV > (1 + c)k

where c > 0 is independent of n

theorem [Lubotzky-Zelmanov]. over R many expanders yield
dimension expanders

lemma. if there is a d-monotone expander then there is a
d-dimension expander over any field with Li defined by
zero-one matrices

building monotone expanders



dimension expanders

a d-dimension expander over Fn is a collection of linear maps
L1, . . . ,Ld so that for every subspace V of dimension k ≤ n/2,

dim span
d⋃

i=1

LiV > (1 + c)k

where c > 0 is independent of n

theorem [Lubotzky-Zelmanov]. over R many expanders yield
dimension expanders

lemma. if there is a d-monotone expander then there is a
d-dimension expander over any field with Li defined by
zero-one matrices

building monotone expanders



a monotone expander

presentation will have 4 parts

(a) Schreier diagrams
(b) continuous monotone expanders
(c) choices
(d) overview of proof
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(a) Schreier diagrams

a Schreier diagram: a graph H = Sch(G,S,X ) defined by

a group G

a finite subset S of G

an action: G y X
I every g in G defines a map g : X → X
I g(h(x)) = (gh)(x) for all g,h in G

vertex set: A = B = X
edge set:

{
(x ,g(x)) : x ∈ A, g ∈ S ∪ S−1}

Cayley graphs: action of G on itself
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(a) an example

1 group G

G = SL2(Fp) =

{
g =

(
a b
c d

)
: a,b, c,d ∈ Fp, ad − bc = 1

}
2 subset S of G

S =

{(
1 2
0 1

)
,

(
1 0
2 1

)}
3 G y X : the Möbius action of G on X = Fp ∪ {∞}

g(x) =
ax + b
cx + d

|G| ∼ p3, |A| = |B| = p + 1, 4-regular
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(b) continuous monotone expanders

a continuous monotone expander is an (infinite) bipartite
graph defined by ψ1, . . . , ψd as follows

I vertices: A = B = [0,1]

I monotone: edges of the form (x , ψi(x))

I ψi : Ai → B is smooth with Ai ⊂ A an interval
I ψi (x) < ψi (y) for x < y in Ai

I expansion: for every A′ ⊂ A of measure |A′| ≤ 1/2

|Γ(A′)| ≥ (1 + c)|A′|

where Γ(A′) =
⋃

i∈[d ] ψi(A′)
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(b) continuous monotone expanders

why are they useful?

lemma. by partitioning [0,1] to n equal-length intervals, a
continuous monotone expander yields an n-vertex monotone
expander

how? if A is partitioned to a1, . . . ,an and B to b1, . . . ,bn,
connect intervals aj ,bk when ψi(aj) ∩ bk 6= ∅ for some ψi
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(c) choices

an explicit continuous Schreier diagram

1 group G = SL2(R) =

{
g =

(
a b
c d

)
: ad − bc = 1

}
2 finite subset S of G: words of length at most R in(

1 1/K
0 1

)
,

(
1 1/Q
0 1

)
,

(
1 0

1/Q 1

)
where R,K ,Q are fixed integers

3 G y X := [0,1]: the Möbius action3 g(x) = ax+b
cx+d restricted so

that x ,g(x) in [0,1] for all x ,g

3

no longer an action due to restriction
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(c) monotone expanders: concluding

theorem. the (restricted) Möbius action of SL2(R) on [0,1] with
a constant number of simple matrices as generators yields a
continuous monotone expander

corollary. there is an explicit infinite family of monotone
expanders

comments.
I degree is constant but large, expansion is constant but

small
I monotone since action is monotone...
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(c) monotonicity

the Möbius action: for every x ∈ R

g(x) =
ax + b
cx + d

where ad − bc = 1

thus

g′(x) =
a(cx + d)− c(ax + b)

(cx + d)2 =
1

(cx + d)2 > 0

except at pole x = −d/c
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(d) a three-step proof: chess game [Sarnak]

Bourgain-Gamburd, Helfgott, ... :

opening.

large girth

middle-game.

product-growth

 group

endgame.

mixing property action
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(d) opening: large girth

effective Tits’ alternative [Eskin-Mozes-Oh, Breuillard,
Gelander]: there is a constant r so that if S ⊂ SL2(R)
generates a group containing SL2(Z) then in words of length r
in S there are two elements that generate a free group F2

corollary: there is a constant r so that for every k , if S ⊂ SL2(R)
generates a group containing SL2(Z) then in words of length k r

in S there are k elements that generate a free group Fk
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(d) middle-game: product-growth

product growth: under some conditions, if A is a subset of
SL2(R) then the metric entropy of A · A · A is much larger than
that of A

background:
discretized ring conjecture [Bourgain]
spectral gaps in SU(2) [Bourgain-Gamburd]

sum-product theorem [Bourgain-Katz-Tao]
growth in SL2(Fp) [Helfgott]
expansion for SL2(Fp) [Bourgain-Gamburd]
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(d) endgame: mixing property (an example)

assume G y X (both finite)

mixing property: for every µ : G→ R and f : X → R so that∑
x∈X f (x) = 0, we have

‖µ ∗ f‖22 ≤
|G|
N
‖µ‖22‖f‖22

where (µ ∗ f )(x) =
∑

g∈G µ(g)f (g−1(x))

useful: when N is large
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(d) endgame: mixing property (an example)

assume G y X (both finite)

mixing property: non-trivial bounds on convolution

[Sarnak-Xue, Gowers, Babai-Nikolov-Pyber, Gill]: holds when
non-trivial irreducible representations of G have large
dimension

claim: if action is 2-transitive then holds

well known: Möbius action is 3-transitive
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concluding

* there are “simple” expanders: monotone and constant-page

* proof has 3 parts:
- Tits’ alternative (groups, geometry)
- product growth (additive combinatorics)
- 3-transitivity (replaces representation theory)
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even simpler?
a natural way to construct monotone graphs is using affine
maps: given ai ,bi for i ∈ [d ] define edges via

{0,1,2, . . . ,n − 1} 3 x 7→ daix + bie mod n

theorem [Klawe]. if ai ,bi ∈ Q then no such graph is an
expander

why? holds for solvable groups

question. what about ai ,bi ∈ R?

comments.
- can slightly generalise Q: diophanite approximation
- no expanders using R for groups of polynomial growth
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thank you
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(d) combining parts (roughly)

goal (spectral expansion): for every f : [0,1]→ R with Ef = 0,

‖Tν ∗ f‖2 ≤ c‖f‖2, c < 1

with Tν the Hecke operator that corresponds to the uniform
distribution ν on (free) generators S
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(d) combining parts (roughly)

goal: for every f : [0,1]→ R with Ef = 0,

‖Tν ∗ f‖2 ≤ c‖f‖2, c < 1

with ν the uniform distribution on generators S

first work over G: let µ = ν ∗ p with p the density of uniform
measure on δ-ball around 1 in SL2(R) (‖µ‖∞ ∼ δ−3)

lemma: ‖µ∗t‖∞ ≤ δ−0.01 for t . log(1/δ)

using lemma: lemma + endgame (3-transitivity): can
non-trivially bound ‖T t

ν ∗ f‖2
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(d) combining parts (roughly)

lemma: ‖µ∗t‖∞ ≤ δ−0.01 for t . log(1/δ)

µ = ν ∗ p with ν uniform on generators and p on δ-ball

proof idea:
opening:

‖µ∗s‖22 ≤ δ−2.99 for small s

(µ grows along a tree so iterations smoothen it)

middle-game:

as long as ‖µ∗r‖2 is not too small,

‖µ∗3r‖2 ≤ δ0.01‖µ∗r‖2

(think of A = supp(µ∗r ) [Balog-Szemeredi-Gowers])
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