building monotone expanders

Amir Yehudayoff, Technion

work with Jean Bourgain, IAS

expanders

expanders are constant degree "highly connected" graphs

motivation

several ways to define

(bipartite) vertex expansion

a bipartite graph $H = (A \cup B, E)$ with $A = B = [n]$ is an **expander** if there exist *c*, *d* > 0 independent of *n*

- degree of each vertex is at most *d*
- ► for every $A' \subset A$ of size $|A'| \le n/2$

$$
|\Gamma(A')|\geq (1+c)|A'|
$$

where

$$
\Gamma(A') = \{b \in B : \exists a \in A' \: \{a, b\} \in E\}
$$

interested in infinite families

existence:

constructions:

existence:

 \triangleright most graphs are expanders [Pinsker]

constructions:

existence:

 \triangleright most graphs are expanders [Pinsker]

constructions:

Example X Kazhdan's property T: e.g. 8-regular graph on $\mathbb{Z}_n \times \mathbb{Z}_n$ with edges defined by simple affine maps [Margulis, Gabber-Galil]

existence:

 \triangleright most graphs are expanders [Pinsker]

constructions:

- **EXA** Kazhdan's property T: e.g. 8-regular graph on $\mathbb{Z}_n \times \mathbb{Z}_n$ with edges defined by simple affine maps [Margulis, Gabber-Galil]
- Selberg's 3/16 theorem: e.g. 3-regular graph on \mathbb{Z}_p with edges defined by algebraic maps [Lubotzky-Phillips-Sarnak]

existence:

 \triangleright most graphs are expanders [Pinsker]

constructions:

- **EXA** Kazhdan's property T: e.g. 8-regular graph on $\mathbb{Z}_n \times \mathbb{Z}_n$ with edges defined by simple affine maps [Margulis, Gabber-Galil]
- Selberg's 3/16 theorem: e.g. 3-regular graph on \mathbb{Z}_p with edges defined by algebraic maps [Lubotzky-Phillips-Sarnak]
- \triangleright zig-zag: if G_1 , G_2 are expanders, then *zigzag*(G_1 , G_2) is too [Reingold-Vadhan-Wigderson]

existence:

 \triangleright most graphs are expanders [Pinsker]

constructions:

- **Example X** Kazhdan's property T: e.g. 8-regular graph on $\mathbb{Z}_n \times \mathbb{Z}_n$ with edges defined by simple affine maps [Margulis, Gabber-Galil]
- Selberg's 3/16 theorem: e.g. 3-regular graph on \mathbb{Z}_p with edges defined by algebraic maps [Lubotzky-Phillips-Sarnak]
- \triangleright zig-zag: if G_1 , G_2 are expanders, then *zigzag*(G_1 , G_2) is too [Reingold-Vadhan-Wigderson]

^I . . .

 \triangleright most graphs are expanders [Pinsker]

- \triangleright most graphs are expanders [Pinsker]
- \triangleright can not be planar [Ungar]

- \triangleright most graphs are expanders [Pinsker]
- \triangleright can not be planar [Ungar]
- \triangleright no 1-dimensional analog of Margulis- $(\mathbb{Z}_n \times \mathbb{Z}_n)$ -construction [Klawe]

- \triangleright most graphs are expanders [Pinsker]
- \triangleright can not be planar [Ungar]
- \triangleright no 1-dimensional analog of Margulis- $(\mathbb{Z}_n \times \mathbb{Z}_n)$ -construction [Klawe]
- \triangleright are there *d*-page expanders?

- \triangleright most graphs are expanders [Pinsker]
- \triangleright can not be planar [Ungar]
- \triangleright no 1-dimensional analog of Margulis- $(\mathbb{Z}_n \times \mathbb{Z}_n)$ -construction [Klawe]
- \triangleright are there *d*-page expanders?
- \triangleright are there *d*-monotone expanders?

*d***-page graphs**

vertices are on a spine of a book with *d*-pages and edges do not cross each other

*d***-page graphs**

vertices are on a spine of a book with *d*-pages and edges do not cross each other

*d***-page graphs**

vertices are on a spine of a book with *d*-pages and edges do not cross each other

comment. related to Turing machines simulations [Galil-Kannan-Szemeredi, Dvir-Wigderson]

*d***-monotone graphs**

the bipartite graph $H = (A \cup B, E)$ with $A = B = [n]$ is *d***-monotone** if its edges are a union of *d* partial monotone maps:

there are partial¹ monotone² maps ψ_1, \ldots, ψ_d so that edges are of the form

 $e = {a, \psi_i(a)}$

 $\phi_i : A_i \to B$ with $A_i \subset A$

 2 think of *x*, *y* as integers: $\psi_i(\pmb{\mathsf{x}}) < \psi_i(\pmb{\mathsf{y}})$ for $\pmb{\mathsf{x}} < \pmb{\mathsf{y}}$ in $\pmb{\mathsf{A}}_i$

*d***-monotone graphs**

the bipartite graph $H = (A \cup B, E)$ with $A = B = [n]$ is *d***-monotone** if its edges are a union of *d* partial monotone maps:

there are partial¹ monotone² maps ψ_1, \ldots, ψ_d so that edges are of the form

 $e = {a, \psi_i(a)}$

 $\phi_i : A_i \to B$ with $A_i \subset A$

 2 think of *x*, *y* as integers: $\psi_i(\pmb{x}) < \psi_i(\pmb{y})$ for $\pmb{x} < \pmb{y}$ in \pmb{A}_i

*d***-monotone graphs**

the bipartite graph $H = (A \cup B, E)$ with $A = B = [n]$ is *d***-monotone** if its edges are a union of *d* partial monotone maps:

there are partial¹ monotone² maps ψ_1, \ldots, ψ_d so that edges are of the form

 $e = {a, \psi_i(a)}$

 $\psi_i: A_i \to B$ with $A_i \subset A$

 2 think of *x*, *y* as integers: $\psi_i(\pmb{x}) < \psi_i(\pmb{y})$ for $\pmb{x} < \pmb{y}$ in \pmb{A}_i

*d***-monotone are** *d***-page [Dvir-Wigderson]**

*d***-monotone are** *d***-page [Dvir-Wigderson]**

theorem [Bourgain, Bourgain-Y]. there are *d*-monotone expanders

theorem [Bourgain, Bourgain-Y]. there are *d*-monotone expanders

corollary. there are *d*-page expanders

theorem [Bourgain, Bourgain-Y]. there are *d*-monotone expanders

corollary. there are *d*-page expanders

comment. "natural" distributions on monotone graphs yield graphs that are close to 1-dimensional affine and such graphs are not expanders [Klawe]

theorem [Bourgain, Bourgain-Y]. there are *d*-monotone expanders

corollary. there are *d*-page expanders

comment. "natural" distributions on monotone graphs yield graphs that are close to 1-dimensional affine and such graphs are not expanders [Klawe]

corollary [Dvir-Shpilka, Bourgain, Dvir-Wigderson]. there are dimension expanders

dimension expanders

a d**-dimension expander** over \mathbb{F}^n is a collection of linear maps *L*₁, ..., *L*_{*d*} so that for every subspace *V* of dimension $k \leq n/2$,

dim span
$$
\bigcup_{i=1}^d L_i V > (1+c)k
$$

where *c* > 0 is independent of *n*

dimension expanders

a d**-dimension expander** over \mathbb{F}^n is a collection of linear maps *L*₁, ..., *L*_{*d*} so that for every subspace *V* of dimension $k \leq n/2$,

dim span
$$
\bigcup_{i=1}^d L_i V > (1+c)k
$$

where $c > 0$ is independent of n

theorem [Lubotzky-Zelmanov]. over R many expanders yield dimension expanders

dimension expanders

a d**-dimension expander** over \mathbb{F}^n is a collection of linear maps *L*₁, ..., L_d so that for every subspace *V* of dimension $k \leq n/2$,

dim span
$$
\bigcup_{i=1}^d L_i V > (1+c)k
$$

where *c* > 0 is independent of *n*

theorem [Lubotzky-Zelmanov]. over $\mathbb R$ many expanders yield dimension expanders

lemma. if there is a *d*-monotone expander then there is a *d*-dimension expander over any field with *Lⁱ* defined by zero-one matrices

presentation will have 4 parts

- (a) Schreier diagrams
- (b) continuous monotone expanders
- (c) choices
- (d) overview of proof

(a) Schreier diagrams

(a) Schreier diagrams

a **Schreier diagram:** a graph $H = Sch(G, S, X)$ defined by

a group *G*

a finite subset *S* of *G*

an action: $G \curvearrowright X$

- \blacktriangleright every *g* in *G* defines a map $g: X \to X$
- \blacktriangleright *g*(*h*(*x*)) = (*gh*)(*x*) for all *g*, *h* in *G*

vertex set: $A = B = X$ **edge set:** $\{(x, g(x)) : x \in A, g \in S \cup S^{-1}\}$

(a) Schreier diagrams

a **Schreier diagram:** a graph $H = Sch(G, S, X)$ defined by

a group *G*

a finite subset *S* of *G*

an action: $G \curvearrowright X$

- \blacktriangleright every *g* in *G* defines a map $q: X \to X$
- \bullet *g*(*h*(*x*)) = (*gh*)(*x*) for all *g*, *h* in *G*

vertex set: $A = B = X$ **edge set:** $\{(x, g(x)) : x \in A, g \in S \cup S^{-1}\}$

Cayley graphs: action of *G* on itself

(a) an example

1 group
$$
G
$$

\n
$$
G = SL_2(\mathbb{F}_p) = \left\{ g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{F}_p, ad - bc = 1 \right\}
$$

2 subset *S* of *G*

$$
S = \left\{ \left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 2 & 1 \end{array} \right) \right\}
$$

3 *G* \sim *X*: the Möbius action of *G* on *X* = $\mathbb{F}_p \cup \{\infty\}$

$$
g(x)=\frac{ax+b}{cx+d}
$$
(a) an example

1 group
$$
G
$$

\n
$$
G = SL_2(\mathbb{F}_p) = \left\{ g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{F}_p, ad - bc = 1 \right\}
$$

2 subset *S* of *G*

$$
S = \left\{ \left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 2 & 1 \end{array} \right) \right\}
$$

3 *G* \sim *X*: the Möbius action of *G* on $X = \mathbb{F}_p \cup \{\infty\}$

$$
g(x)=\frac{ax+b}{cx+d}
$$

$$
|G| \sim p^3, |A| = |B| = p + 1, 4
$$
-regular

a **continuous monotone expander** is an (infinite) bipartite graph defined by ψ_1, \ldots, ψ_d as follows

 \blacktriangleright vertices: $A = B = [0, 1]$

• monotone: edges of the form $(x, \psi_i(x))$

- ^I ψ*ⁱ* : *Aⁱ* → *B* is smooth with *Aⁱ* ⊂ *A* an interval
- \blacktriangleright $\psi_i(x) < \psi_i(y)$ for $x < y$ in A_i
- ► expansion: for every $A' \subset A$ of measure $|A'| \leq 1/2$

$$
|\Gamma(A')|\geq (1+c)|A'|
$$

where
$$
\Gamma(A') = \bigcup_{i \in [d]} \psi_i(A')
$$

why are they useful?

why are they useful?

lemma. by partitioning [0, 1] to *n* equal-length intervals, a continuous monotone expander yields an *n*-vertex monotone expander

why are they useful?

lemma. by partitioning [0, 1] to *n* equal-length intervals, a continuous monotone expander yields an *n*-vertex monotone expander

how? if *A* is partitioned to a_1, \ldots, a_n and *B* to b_1, \ldots, b_n , $\mathsf{connect}\ \mathsf{intervals}\ \mathsf{a}_j, \mathsf{b}_k$ when $\psi_i(\mathsf{a}_j) \cap \mathsf{b}_k \neq \emptyset$ for some ψ_i

an explicit continuous Schreier diagram

an explicit continuous Schreier diagram

1 group *G*

2 finite subset *S* of *G*

$$
3 G \curvearrowright X
$$

an explicit continuous Schreier diagram

1 group
$$
G = SL_2(\mathbb{R}) = \left\{ g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : ad - bc = 1 \right\}
$$

2 finite subset *S* of *G*

$$
3 G \curvearrowright X
$$

an explicit continuous Schreier diagram

1 group
$$
G = SL_2(\mathbb{R}) = \left\{ g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : ad - bc = 1 \right\}
$$

2 finite subset *S* of *G*: words of length at most *R* in

$$
\left(\begin{array}{cc}1 & 1/K \\0 & 1\end{array}\right), \left(\begin{array}{cc}1 & 1/Q \\0 & 1\end{array}\right), \left(\begin{array}{cc}1 & 0 \\1/Q & 1\end{array}\right)
$$

where *R*, *K*, *Q* are fixed integers

 $3 G \cap X$:

3

an explicit continuous Schreier diagram

1 group
$$
G = SL_2(\mathbb{R}) = \left\{ g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : ad - bc = 1 \right\}
$$

2 finite subset *S* of *G*: words of length at most *R* in

$$
\left(\begin{array}{cc}1 & 1/K \\0 & 1\end{array}\right), \left(\begin{array}{cc}1 & 1/Q \\0 & 1\end{array}\right), \left(\begin{array}{cc}1 & 0 \\1/Q & 1\end{array}\right)
$$

where *R*, *K*, *Q* are fixed integers

 \overline{G} $G \curvearrowright X := [0,1]$: the Möbius action 3 $g(x) = \frac{ax+b}{cx+d}$ restricted so that $x, g(x)$ in [0, 1] for all x, g

³no longer an action due to restriction

theorem. the (restricted) Möbius action of $SL_2(\mathbb{R})$ on [0, 1] with a constant number of simple matrices as generators yields a continuous monotone expander

theorem. the (restricted) Möbius action of $SL_2(\mathbb{R})$ on [0, 1] with a constant number of simple matrices as generators yields a continuous monotone expander

corollary. there is an explicit infinite family of monotone expanders

theorem. the (restricted) Möbius action of $SL_2(\mathbb{R})$ on [0, 1] with a constant number of simple matrices as generators yields a continuous monotone expander

corollary. there is an explicit infinite family of monotone expanders

comments.

theorem. the (restricted) Möbius action of $SL_2(\mathbb{R})$ on [0, 1] with a constant number of simple matrices as generators yields a continuous monotone expander

corollary. there is an explicit infinite family of monotone expanders

comments.

 \triangleright degree is constant but large, expansion is constant but small

theorem. the (restricted) Möbius action of $SL_2(\mathbb{R})$ on [0, 1] with a constant number of simple matrices as generators yields a continuous monotone expander

corollary. there is an explicit infinite family of monotone expanders

comments.

- \triangleright degree is constant but large, expansion is constant but small
- \triangleright monotone since action is monotone...

(c) monotonicity

the Möbius action: for every $x \in \mathbb{R}$

$$
g(x)=\frac{ax+b}{cx+d}
$$

where $ad - bc = 1$

(c) monotonicity

the Möbius action: for every $x \in \mathbb{R}$

$$
g(x)=\frac{ax+b}{cx+d}
$$

where $ad - bc = 1$

thus

$$
g'(x) = \frac{a(cx+d) - c(ax+b)}{(cx+d)^2} = \frac{1}{(cx+d)^2} > 0
$$

except at pole $x = -d/c$

Bourgain-Gamburd, Helfgott, ... :

opening.

middle-game.

endgame.

Bourgain-Gamburd, Helfgott, ... :

opening. large girth

middle-game.

endgame.

Bourgain-Gamburd, Helfgott, ... :

opening. large girth

middle-game. product-growth

endgame.

Bourgain-Gamburd, Helfgott, ... :

opening. large girth

middle-game. product-growth

endgame. mixing property

Bourgain-Gamburd, Helfgott, ... :

opening. large girth *middle-game.* product-growth \mathcal{L} \mathcal{L} I **group**

endgame. mixing property

Bourgain-Gamburd, Helfgott, ... :

opening. large girth *middle-game.* product-growth \mathcal{L} \mathcal{L} I **group**

endgame. mixing property **action**

(d) opening: large girth

(d) opening: large girth

effective Tits' alternative [Eskin-Mozes-Oh, Breuillard, Gelander]: there is a constant *r* so that if $S \subset SL_2(\mathbb{R})$ generates a group containing *SL*2(Z) then in words of length *r* in *S* there are two elements that generate a free group F_2

(d) opening: large girth

effective Tits' alternative [Eskin-Mozes-Oh, Breuillard, Gelander]: there is a constant *r* so that if $S \subset SL_2(\mathbb{R})$ generates a group containing *SL*2(Z) then in words of length *r* in *S* there are two elements that generate a free group F_2

corollary: there is a constant *r* so that for every *k*, if $S \subset SL_2(\mathbb{R})$ generates a group containing $SL_2(\mathbb{Z})$ then in words of length k^i in *S* there are *k* elements that generate a free group *F^k*

(d) middle-game: product-growth

(d) middle-game: product-growth

product growth: under some conditions, if *A* is a subset of $SL_2(\mathbb{R})$ then the metric entropy of $A \cdot A \cdot A$ is much larger than that of *A*

background:

discretized ring conjecture [Bourgain] spectral gaps in *SU*(2) [Bourgain-Gamburd]

sum-product theorem [Bourgain-Katz-Tao] growth in *SL*2(F*p*) [Helfgott] expansion for *SL*2(F*p*) [Bourgain-Gamburd]

assume $G \cap X$ (both finite) $\sum_{x \in X} f(x) = 0$, we have mixing property: for every $\mu : G \to \mathbb{R}$ and $f : X \to \mathbb{R}$ so that

$$
\|\mu * f\|_2^2 \le \frac{|G|}{N} \|\mu\|_2^2 \|f\|_2^2
$$

where $(\mu*f)(x) = \sum_{g \in G} \mu(g)f(g^{-1}(x))$

assume $G \curvearrowright X$ (both finite)

 $\sum_{x \in X} f(x) = 0$, we have mixing property: for every $\mu : G \to \mathbb{R}$ and $f : X \to \mathbb{R}$ so that

$$
\|\mu * f\|_2^2 \le \frac{|G|}{N} \|\mu\|_2^2 \|f\|_2^2
$$

where $(\mu*f)(x) = \sum_{g \in G} \mu(g)f(g^{-1}(x))$

useful: when *N* is large

```
assume G \cap X (both finite)
```
mixing property: non-trivial bounds on convolution

```
assume G \curvearrowright X (both finite)
```
mixing property: non-trivial bounds on convolution

[Sarnak-Xue, Gowers, Babai-Nikolov-Pyber, Gill]: holds when non-trivial irreducible representations of *G* have large dimension

```
assume G \curvearrowright X (both finite)
```
mixing property: non-trivial bounds on convolution

[Sarnak-Xue, Gowers, Babai-Nikolov-Pyber, Gill]: holds when non-trivial irreducible representations of *G* have large dimension

claim: if action is 2-transitive then holds

```
assume G \curvearrowright X (both finite)
```
mixing property: non-trivial bounds on convolution

[Sarnak-Xue, Gowers, Babai-Nikolov-Pyber, Gill]: holds when non-trivial irreducible representations of *G* have large dimension

claim: if action is 2-transitive then holds

well known: Möbius action is 3-transitive
concluding

- * there are "simple" expanders: monotone and constant-page
- * proof has 3 parts:
- Tits' alternative (groups, geometry)
- product growth (additive combinatorics)
- 3-transitivity (replaces representation theory)

a natural way to construct monotone graphs is using affine maps: given a_i, b_i for $i \in [d]$ define edges via

 $\{0, 1, 2, \ldots, n-1\} \ni x \mapsto [a_i x + b_i] \mod n$

a natural way to construct monotone graphs is using affine maps: given a_i, b_i for $i \in [d]$ define edges via

$$
\{0, 1, 2, \ldots, n-1\} \ni x \mapsto [a_i x + b_i] \mod n
$$

theorem [Klawe]. if $a_i, b_i \in \mathbb{Q}$ then no such graph is an expander

a natural way to construct monotone graphs is using affine maps: given a_i, b_i for $i \in [d]$ define edges via

$$
\{0,1,2,\ldots,n-1\}\ni x\mapsto \lceil a_ix+b_i\rceil\mod n
$$

theorem [Klawe]. if $a_i, b_i \in \mathbb{Q}$ then no such graph is an expander

why? holds for solvable groups

a natural way to construct monotone graphs is using affine maps: given a_i, b_i for $i \in [d]$ define edges via

$$
\{0, 1, 2, \ldots, n-1\} \ni x \mapsto [a_i x + b_i] \mod n
$$

theorem [Klawe]. if $a_i, b_i \in \mathbb{Q}$ then no such graph is an expander

why? holds for solvable groups

 q uestion. what about $a_i, b_i \in \mathbb{R}$?

comments.

- can slightly generalise Q: diophanite approximation
- no expanders using $\mathbb R$ for groups of polynomial growth

thank you

[building monotone expanders](#page-0-0)

goal (spectral expansion): for every $f : [0, 1] \rightarrow \mathbb{R}$ with $\mathbb{E}f = 0$,

$$
||T_{\nu}*f||_2 \leq c||f||_2, c < 1
$$

with T_{ν} the Hecke operator that corresponds to the uniform distribution ν on (free) generators *S*

```
goal: for every f : [0, 1] \rightarrow \mathbb{R} with \mathbb{E}f = 0,
```

```
||T_{\nu} * f||_2 \leq c||f||_2, c < 1
```
with ν the uniform distribution on generators *S*

```
goal: for every f : [0, 1] \rightarrow \mathbb{R} with \mathbb{E}f = 0,
```

```
||T_{\nu} * f||_2 \leq c||f||_2, c < 1
```
with ν the uniform distribution on generators S

first work over *G*: let $\mu = \nu * p$ with *p* the density of uniform measure on δ -ball around 1 in $SL_2(\mathbb R) \quad (\|\mu\|_\infty \sim \delta^{-3})$

```
goal: for every f : [0, 1] \rightarrow \mathbb{R} with \mathbb{E}f = 0,
```

```
||T_{\nu} * f||_2 \leq c||f||_2, \quad c < 1
```
with ν the uniform distribution on generators *S*

first work over *G*: let $\mu = \nu * p$ with *p* the density of uniform measure on δ -ball around 1 in $SL_2(\mathbb R) \quad (\|\mu\|_\infty \sim \delta^{-3})$

 $\textsf{lemma}\colon \|\mu^{*t}\|_\infty\leq \delta^{-0.01}$ for $t\lesssim \log(1/\delta)$

```
goal: for every f : [0, 1] \rightarrow \mathbb{R} with \mathbb{E}f = 0,
```

```
||T_{\nu} * f||_2 \leq c||f||_2, \quad c < 1
```
with ν the uniform distribution on generators *S*

first work over *G*: let $\mu = \nu * p$ with *p* the density of uniform measure on δ -ball around 1 in $SL_2(\mathbb R) \quad (\|\mu\|_\infty \sim \delta^{-3})$

 $\textsf{lemma}\colon \|\mu^{*t}\|_\infty\leq \delta^{-0.01}$ for $t\lesssim \log(1/\delta)$

using lemma: lemma + endgame (3-transitivity): can non-trivially bound $\| \mathcal{T}_{\nu}^t * f \|_2$

 $\textsf{lemma}\colon \|\mu^{*t}\|_\infty\leq \delta^{-0.01}$ for $t\lesssim \log(1/\delta)$

 $\mu = \nu * p$ with ν uniform on generators and p on δ -ball

 $\textsf{lemma}\colon \|\mu^{*t}\|_\infty\leq \delta^{-0.01}$ for $t\lesssim \log(1/\delta)$

 $\mu = \nu * p$ with ν uniform on generators and p on δ -ball

proof idea: **opening:**

middle-game:

[building monotone expanders](#page-0-0)

 $\textsf{lemma}\colon \|\mu^{*t}\|_\infty\leq \delta^{-0.01}$ for $t\lesssim \log(1/\delta)$

 $\mu = \nu * p$ with ν uniform on generators and p on δ -ball

proof idea: **opening:** $\|\mu^{*s}\|_2^2 \le \delta^{-2.99}$ for small *s*

 $(\mu$ grows along a tree so iterations smoothen it)

middle-game:

 $\textsf{lemma}\colon \|\mu^{*t}\|_\infty\leq \delta^{-0.01}$ for $t\lesssim \log(1/\delta)$

 $\mu = \nu * p$ with ν uniform on generators and p on δ -ball

proof idea: **opening:** $\|\mu^{*s}\|_2^2 \le \delta^{-2.99}$ for small *s*

 $(\mu$ grows along a tree so iterations smoothen it)

 $\textsf{middle-game:} \;\; \text{as long as} \, \|\mu^{*\prime}\|_2 \; \text{is not too small},$

 $\|\mu^{*3r}\|_2 \leq \delta^{0.01} \|\mu^{*r}\|_2$

(think of $A = \text{supp}(\mu^{*r})$ [Balog-Szemeredi-Gowers])