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Motivation

Expander Graphs over the last two decades have found applications
in almost all areas of Theoretical Computer Science in designing

Algorithms

Error Correcting Codes

Randomness Extractors, Pseudo Random Generators

Sorting Networks

They have also been used heavily in proving a variety of
results in complexity theory such as SL = L(Reingold) and the
PCP theorem (Dinur)

Essentially expansion is ’good’ and we seek ways of achieving high
expansion efficiently
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What are expander graphs ?

There are three main perspectives of expansion

Combinatorial (“small” sets have “large” boundaries)

Linear Algebraic (large spectral gap)

Probabilistic (random walks converge rapidly)
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(One of) The combinatorial definitions

Definition

A graph G = (V,E) is said to be ε - edge expanding if for all
subsets S of V of size ≤ |V |/2, the number of cross edges
(e(S ,V \S)) is large. That is,

e(S ,V \S) ≥ ε(|S |)

In this sense the edge expansion h(G ) of a graph is defined as

h(G ) = minS∈V ,|S|≤|V |/2
e(S ,V \S)

|S |
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The spectral definition - Notation

Let λ1 ≥ λ2 ≥ . . . ≥ λn be the n eigenvalues of the adjacency
matrix of G , A(G ).

For a d- regular graph λ1 = d .

Iff graph is bipartite then λn = −d .

We call those the trivial eigenvalues.

For connected, d-reular graphs let λ = max|λi |<d{|λi |}
d − λ2 is referred to as the spectral gap.

The highest absolute eigenvalue of a matrix is called its
spectral radius
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The spectral definition

Graphs with large spectral gaps are good expanders. This is
quantified by the following theorem

Theorem (Cheeger’s Inequality)

Let G be a d-regular graph with spectrum as defined above. Then

d − λ2

2
≤ h(G ) ≤

√
2d(d − λ2)
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How much expansion can we expect?

Expansion is good and large spectral gap leads to good
expansion.

Therefore we want to know how much spectral gap can we
hope to get.

Theorem (Alon-Bopanna)

For a d-regular graph G

λ2 ≥ 2(
√

d − 1)− on(1)

The term on(1) goes to zero as n→∞
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Can we get as much expansion?

We would want to know whether the above bound is tight? In this
light we give the following definition

Definition (Ramanujan Graphs)

We call a d-regular graph Ramanujan if

λ ≤ 2
√

d − 1

We slightly modify this definition to a weaker one to be used later

Definition (Quasi - Ramanujan Graphs)

We call a d-regular graph Quasi-Ramanujan if

λ is Õ(
√

d − 1)

Do such graphs exist with arbitrarily large size?
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What is known about Ramanujan Graphs

Easy to find small Ramanujan graphs, e.g. Kd+1.

Question is do arbitrarily large Ramanujan graphs exist?

Arbitrary Large Ramanujan graphs exist when d − 1 is a prime
power. Due to
Margulis; Lubotzky − Phillips − Sarnak ; Morgenstern. They
gave a construction.

Friedman showed that almost every d regular graph satisfies
λ ≤ 2

√
d − 1 + ε

Recent breakthrough by Marcus-Spielman-Srivastava showed
that Ramanujan expanders exist of all degrees.

But no construction other than LPS is known.

Friedman suggested building expanders by “lifting” the
original graph
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What are lifts?

Figure : Base Graph

Figure : Lifted Graphs
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Formal Definition

Let H be a k-lift of G. We have that

V (H) = V (G )× [k]

For a vertex v ∈ V (G ) define the ’fiber of v’ as Fv = {v}× [k]

For every edge e = (x , y) ∈ E (G ) we select a permutation
π = πe ∈ Sk and connect (x , i) with (y , πi ) for all i

For the edge (y , x) we choose the permutation pi−1
(x ,y)

k is referred to as the degree of the lift, G the base graph
and H, the lifted graph

When the permutation for each edge is chosen indpendently
and uniformly at random, we refer to the lifts obtained as
Random Lifts

The lift of a d-regular graph is d-regular
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Edge expansion of Lifts

A lift cannot have better edge expansion than the base graph.

Consider for any subset S ∈ V (G ) the set
SH = S × [k] ∈ V (H).

The number of vertices in SH increases k times and so does
the number of edges going out of SH .

It is also known that the expansion does not go down
arbitrarily as we increase the degree of the lifts.
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Spectrum of Lifts

Following is an easy and important observation

Observation

The eigenvalues of G are eigenvalues of H as well

Take any eigenvector f for G and a construct f ′ by repreating
over the whole fiber the value f (v). The resulting vector f ′ is
an eigenvector of H with the same eigenvalue.

Alexandra Kolla Small Lifts are Expanding



Expander Graphs
Lifts of Graphs

2-Lifts and Quasi Ramanujan Expanders
Future Directions

Spectrum of Lifts

Following is an easy and important observation

Observation

The eigenvalues of G are eigenvalues of H as well

Take any eigenvector f for G and a construct f ′ by repreating
over the whole fiber the value f (v). The resulting vector f ′ is
an eigenvector of H with the same eigenvalue.

Alexandra Kolla Small Lifts are Expanding



Expander Graphs
Lifts of Graphs

2-Lifts and Quasi Ramanujan Expanders
Future Directions

Spectrum of Lifts

Following is an easy and important observation

Observation

The eigenvalues of G are eigenvalues of H as well

Take any eigenvector f for G and a construct f ′ by repreating
over the whole fiber the value f (v). The resulting vector f ′ is
an eigenvector of H with the same eigenvalue.

Alexandra Kolla Small Lifts are Expanding



Expander Graphs
Lifts of Graphs

2-Lifts and Quasi Ramanujan Expanders
Future Directions

Old vs New EigenValues

We refer to the eigenvalues of G as the old eigenvalues and
the other eigenvalues of H as the new eigenvalues

Since λ2(H) ≥ λ2(G ), the spectral gap can only reduce
(analogous to expansion)

We would like to be able to keep the new eigenvalues
bounded. (Hopefully by 2 ∗

√
d − 1). Essentially preserve

expansion when we lift the graph

If we can do the above, using the following procedure we can
build an arbitrarily large Ramanujan graph

Start with a small Ramanujan Graph
Take a k-lift
Repeat
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Previous Results on Lifts

Most past approaches study Random Lifts for large k
(growing with n) and the existing results hold with high
probability with respect to k .

Friedman showed that λ(H) = O(d3/4)

Linial and Puder improved it to λ(H) = O(d2/3)

Addario-Berry and Griffits improved it to λ(H) = O(d1/2)
which is the best possible upto a constant

Recently, Puder gave an almost-optimal result of
λ(H) = 2

√
d − 1 + 1.
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Why Look at Small Lifts?

If we want to construct expanders, hard to “de-randomize”
lifts for large k .

Need to look at k constant, e.g. k = 2 and hope that we can
find lifts that preserve expansion.

Bilu-Linial studied 2-lifts and showed that for every base
graph, there is a 2-lift with λ(H) = O(

√
d log3 d) .

This can be extended to hold w.h.p. when base graph is good
expander.

In a recent breakthrough, Marcus-Spiemlan-Srivastava showed
that for every bipartite base graph exists a 2-lift with
λ(H) = 2

√
d − 1.

This is optimal, but we still don’t know what happens on
average (w.h.p over random lifts), nor do we know how to
construct them.
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Our Results

We next show two results on random small lifts, one for 2-lifts
and one for shift k-lifts.

We also give a new characterization of the spectrum of shift
k-lifts.
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Our Results

Theorem 1

Let G be a d -regular graph with non-trivial eigenvalues at most λ
in absolute value, and H be a (uniformly random) 2-lift of G . Let
λnew be the largest in absolute value new eigenvalue of H. Then

λnew ≤ O(λ)

with probability at least 1− e−Ω(n/d2). Moreover, if G is
moderately expanding such that λ ≤ d

log d , then

λnew ≤ λ+O(
√

d)

with probability at least 1− e−Ω(n/d2)
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Our Results

Theorem 2

Let G be a d -regular graph with non-trivial eigenvalues at most λ
in absolute value, and H be a random shift k-lift of G . Let λnew
be the be the largest in absolute value new eigenvalue of H. Then

λnew ≤ O(λ)

with probability at least 1− k · e−Ω(n/d2). Moreover, if G is
moderately expanding such that λ ≤ d

log d , then

λnew ≤ λ+O(
√

d)

with probability at least 1− k · e−Ω(n/d2)
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Discussion: How Optimal Are Our Bounds?

There would be two possible ways to improve our bounds
from Theorems 1 and 2.

First, can we get rid of the dependency on λ of the base
graph and obtain bounds that depend on d like is the case for
large lifts?

NO! The dependency on λ is necessary.

Let G be a disconnected graph on n vertices that consists of
n/(d + 1) copies of Kd+1, and let H be a random 2-lift of G .
Then the largest non-trivial eigenvalue of G is λ = d and it
can be shown that with high probability, λnew = λ = d (noted
by BL).
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Discussion: How Optimal Are Our Bounds?

Can we get that a 2-lift is Ramanujan w.h.p.?

NO! Disproved experimentally. The probability that a 2-lift is
exactly Ramanujan is about 1/2.

Thus, our results are nearly optimal, maybe we can improve
the constant!
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Some Definitions

We will sketch the proof of the 2-lifts case next.

A signing of the edges of G is a function s : E (G )→ {−1, 1}.
The signed adjacency matrix of G , denoted by As(G ) is its
adjacency matrix with edge e replaced by s(e)

A 2-lift corresponding to a signing s can be defined by letting
the edges in the fiber of edge (x , y) be (x0, y0), (x1, y1) if
s(x , y) = 1 and (x1, y0), (x0, y1) otherwise.

Alexandra Kolla Small Lifts are Expanding



Expander Graphs
Lifts of Graphs

2-Lifts and Quasi Ramanujan Expanders
Future Directions

Some Definitions

We will sketch the proof of the 2-lifts case next.

A signing of the edges of G is a function s : E (G )→ {−1, 1}.

The signed adjacency matrix of G , denoted by As(G ) is its
adjacency matrix with edge e replaced by s(e)

A 2-lift corresponding to a signing s can be defined by letting
the edges in the fiber of edge (x , y) be (x0, y0), (x1, y1) if
s(x , y) = 1 and (x1, y0), (x0, y1) otherwise.

Alexandra Kolla Small Lifts are Expanding



Expander Graphs
Lifts of Graphs

2-Lifts and Quasi Ramanujan Expanders
Future Directions

Some Definitions

We will sketch the proof of the 2-lifts case next.

A signing of the edges of G is a function s : E (G )→ {−1, 1}.
The signed adjacency matrix of G , denoted by As(G ) is its
adjacency matrix with edge e replaced by s(e)

A 2-lift corresponding to a signing s can be defined by letting
the edges in the fiber of edge (x , y) be (x0, y0), (x1, y1) if
s(x , y) = 1 and (x1, y0), (x0, y1) otherwise.

Alexandra Kolla Small Lifts are Expanding



Expander Graphs
Lifts of Graphs

2-Lifts and Quasi Ramanujan Expanders
Future Directions

Some Definitions

We will sketch the proof of the 2-lifts case next.

A signing of the edges of G is a function s : E (G )→ {−1, 1}.
The signed adjacency matrix of G , denoted by As(G ) is its
adjacency matrix with edge e replaced by s(e)

A 2-lift corresponding to a signing s can be defined by letting
the edges in the fiber of edge (x , y) be (x0, y0), (x1, y1) if
s(x , y) = 1 and (x1, y0), (x0, y1) otherwise.

Alexandra Kolla Small Lifts are Expanding



Expander Graphs
Lifts of Graphs

2-Lifts and Quasi Ramanujan Expanders
Future Directions

The signed adjacency matrix

Eigenvalues of a 2-lift H can be easily characterized by the
following lemma

Lemma

Every eigenvalue of A(G ) and As(G ) is an eigenvalue of A(H).
The multiplicity of each eigenvalue is the same as in A or As

To see this note that 2 ∗ A(H) =(
A + As A− As

A− As A + As

)
Now for an eigenvector u of As(G ) the eigenvector (u,−u) is an
eigenvector of A(H) with the same eigenvalue.
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Aim of the game

In light of the previous observation we want to be able to
claim that for base graph G , the spectral radius of a typical
signing is proportional to λ(G ).

Thus, we need a high probability bound on

||As || = maxx∈Rn
|xTAsx |
||x ||2 .
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Bilu-Linial Take on Proving Theorem 1

Bilu-Linial used the following “Converse” of Expander Mixing
Lemma

Lemma (Bilu-Linial)

A be an n × n real symmetric matrix with zeros on the diagonal

The l1 norm of each row in A is at most d

For all vectors u, v ∈ {0, 1}n the following holds

|uTAv |
‖u‖‖v‖

≤ α

Then the spectral radius of A is O(α(log(d/α) + 1))
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Bilu-Linial Take on Proving Theorem 1

Using this lemma, their proof goes as follows:

Show that for fixed u, v with (high enough) probability the
following condition of Converse EML holds:
|uTAsv |
‖u‖‖v‖ ≤ O(

√
d log d).

Use Lovasz Local Lemma to show that there exists a single s
such that for all u, v the same signing graph As has
|uTAsv |
‖u‖‖v‖ ≤ O(

√
d log d).

Conclude by Converse EML that there exists an As with
spectral radius O(

√
d log3 d).
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Why is the Previous Approach not Enough?

Double loss of log d factors.

The proof cannot provide that the bound holds with high
probability in n.

We need a more delicate analysis of the spectral norm, which
we show next.
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Sketch of Proof of Theorem 1

We need to upper bound ||As || = maxx∈Rn
|xTAsx |
||x ||2 .

Look at a fixed vector x ∈ Rn.

Round x into y such that y ∈ {±1/2,±1/4 . . .}.

It can be shown that |y
TAsy |
‖y‖2 approximates |x

TAsx |
‖x‖2 with a loss

of at most a factor of 4.

Consider the diadic decomposition of y to vectors
ui ∈ {0,±1}n, such that y =

∑
i 2−iui .

Now it is easy to see that |yTAsy | = |
∑
i ,j

(2−iui )
TAs(2−juj)|.

Alexandra Kolla Small Lifts are Expanding



Expander Graphs
Lifts of Graphs

2-Lifts and Quasi Ramanujan Expanders
Future Directions

Sketch of Proof of Theorem 1

We need to upper bound ||As || = maxx∈Rn
|xTAsx |
||x ||2 .

Look at a fixed vector x ∈ Rn.

Round x into y such that y ∈ {±1/2,±1/4 . . .}.

It can be shown that |y
TAsy |
‖y‖2 approximates |x

TAsx |
‖x‖2 with a loss

of at most a factor of 4.

Consider the diadic decomposition of y to vectors
ui ∈ {0,±1}n, such that y =

∑
i 2−iui .

Now it is easy to see that |yTAsy | = |
∑
i ,j

(2−iui )
TAs(2−juj)|.

Alexandra Kolla Small Lifts are Expanding



Expander Graphs
Lifts of Graphs

2-Lifts and Quasi Ramanujan Expanders
Future Directions

Sketch of Proof of Theorem 1

We need to upper bound ||As || = maxx∈Rn
|xTAsx |
||x ||2 .

Look at a fixed vector x ∈ Rn.

Round x into y such that y ∈ {±1/2,±1/4 . . .}.

It can be shown that |y
TAsy |
‖y‖2 approximates |x

TAsx |
‖x‖2 with a loss

of at most a factor of 4.

Consider the diadic decomposition of y to vectors
ui ∈ {0,±1}n, such that y =

∑
i 2−iui .

Now it is easy to see that |yTAsy | = |
∑
i ,j

(2−iui )
TAs(2−juj)|.

Alexandra Kolla Small Lifts are Expanding



Expander Graphs
Lifts of Graphs

2-Lifts and Quasi Ramanujan Expanders
Future Directions

Sketch of Proof of Theorem 1

We need to upper bound ||As || = maxx∈Rn
|xTAsx |
||x ||2 .

Look at a fixed vector x ∈ Rn.

Round x into y such that y ∈ {±1/2,±1/4 . . .}.

It can be shown that |y
TAsy |
‖y‖2 approximates |x

TAsx |
‖x‖2 with a loss

of at most a factor of 4.

Consider the diadic decomposition of y to vectors
ui ∈ {0,±1}n, such that y =

∑
i 2−iui .

Now it is easy to see that |yTAsy | = |
∑
i ,j

(2−iui )
TAs(2−juj)|.

Alexandra Kolla Small Lifts are Expanding



Expander Graphs
Lifts of Graphs

2-Lifts and Quasi Ramanujan Expanders
Future Directions

Sketch of Proof of Theorem 1

We need to upper bound ||As || = maxx∈Rn
|xTAsx |
||x ||2 .

Look at a fixed vector x ∈ Rn.

Round x into y such that y ∈ {±1/2,±1/4 . . .}.

It can be shown that |y
TAsy |
‖y‖2 approximates |x

TAsx |
‖x‖2 with a loss

of at most a factor of 4.

Consider the diadic decomposition of y to vectors
ui ∈ {0,±1}n, such that y =

∑
i 2−iui .

Now it is easy to see that |yTAsy | = |
∑
i ,j

(2−iui )
TAs(2−juj)|.

Alexandra Kolla Small Lifts are Expanding



Expander Graphs
Lifts of Graphs

2-Lifts and Quasi Ramanujan Expanders
Future Directions

Sketch of Proof of Theorem 1

We need to upper bound ||As || = maxx∈Rn
|xTAsx |
||x ||2 .

Look at a fixed vector x ∈ Rn.

Round x into y such that y ∈ {±1/2,±1/4 . . .}.

It can be shown that |y
TAsy |
‖y‖2 approximates |x

TAsx |
‖x‖2 with a loss

of at most a factor of 4.

Consider the diadic decomposition of y to vectors
ui ∈ {0,±1}n, such that y =

∑
i 2−iui .

Now it is easy to see that |yTAsy | = |
∑
i ,j

(2−iui )
TAs(2−juj)|.

Alexandra Kolla Small Lifts are Expanding



Expander Graphs
Lifts of Graphs

2-Lifts and Quasi Ramanujan Expanders
Future Directions

Sketch of Proof of Theorem 1

Look at an individual term (2−iui )
TAs(2−juj) in the above

sum.

Over random choices of the signing, the product
(2−iui )

TAs(2−juj) is a sum of independent, zero-mean
random variables and a simple application of the Chernoff
bound gives that

Pr[|uT
i Asuj | ≥

√
d log d |S(ui )||S(uj)|] ≤ d−(|S(ui )|+|S(uj )|)

S(u) is the support of vector u.

So far, this is what BL have also used

But now we are faced with two significant challenges
mentioned above, the high probability and the log d loss.
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Small Support Sets: The High Probability Remedy

When The support of vectors ui , uj are small, then the
probability d−(|S(ui )|+|S(uj )|) is not enough for our goal.

When |S(ui )|, |S(uj)| ≤ n
d2 we use a trivial bound and show

that their total contribution to the (absolute value of the)
sum is less than λ‖y‖2.

Note that we already argued that the dependence on λ in
Theorem 1 cannot possibly be improved since for two small
sets the number of edges is essentially governed by λ in the
base graph. This explains intuitively the choice of dealing with
small sets separately first.

Once we are left with sets of large support, then we can get
good probability bounds.
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Large Support Sets: The log d factors Remedy

Number of terms in the sum
|yTAsy | = |

∑
i ,j

(2−iui )
TAs(2−juj)| is at most E (S(ui ), S(uj)).

We approximate them by using Expander Mixing Lemma by
d |S(ui )||S(uj)|/n + λ

√
|S(ui )||S(uj)|.

To make the analysis easier we consider two cases according
to which of the two terms in EML dominates the other.
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The Expander Mixing Lemma

Recall the expander mixing lemma

Lemma (Expander Mixing Lemma)

For any two vertex subsets S ,T ∈ V of a graph G we have that

|E (S ,T )− d · |S ||T |
n

| ≤ λ(
√
|S | · |T |)
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Case 1: λ
√
|S(ui )||S(uj)| ≤ d |S(ui )||S(uj)|/n

Remember the original Chernoff bound:
Pr[|uT

i Asuj | ≥
√

d log d |S(ui )||S(uj)|] ≤ d−(|S(ui )|+|S(uj )|)

First, we need a tighter bound on the deviation of the
quantity |uT

i Asuj |. Instead of the crude log d bound we now

use log(d ∗ S(ui )
S(uj )

) .

Alexandra Kolla Small Lifts are Expanding



Expander Graphs
Lifts of Graphs

2-Lifts and Quasi Ramanujan Expanders
Future Directions

Case 1: λ
√
|S(ui )||S(uj)| ≤ d |S(ui )||S(uj)|/n

Remember the original Chernoff bound:
Pr[|uT

i Asuj | ≥
√

d log d |S(ui )||S(uj)|] ≤ d−(|S(ui )|+|S(uj )|)

First, we need a tighter bound on the deviation of the
quantity |uT

i Asuj |. Instead of the crude log d bound we now

use log(d ∗ S(ui )
S(uj )

) .

Alexandra Kolla Small Lifts are Expanding



Expander Graphs
Lifts of Graphs

2-Lifts and Quasi Ramanujan Expanders
Future Directions

Case 1: λ
√
|S(ui )||S(uj)| ≤ d |S(ui )||S(uj)|/n

Remember the original Chernoff bound:
Pr[|uT

i Asuj | ≥
√

d log d |S(ui )||S(uj)|] ≤ d−(|S(ui )|+|S(uj )|)

First, we need a tighter bound on the deviation of the
quantity |uT

i Asuj |. Instead of the crude log d bound we now

use log(d ∗ S(ui )
S(uj )

) .

Alexandra Kolla Small Lifts are Expanding



Expander Graphs
Lifts of Graphs

2-Lifts and Quasi Ramanujan Expanders
Future Directions

Case 1: λ
√
|S(ui )||S(uj)| ≤ d |S(ui )||S(uj)|/n

Specifically, we show that with probability at least 1− e−Ω( n
d2 )

we have for each relevant term of the sum:

|uT
i Asuj | ≤ 8

√
λ
√
|S(ui )||S(uj)||S(uj)| log(

2d |S(ui )|
|S(uj)|

)

This turns out to be exactly what is needed for a union bound
to go through.

Also counters the discrepancy between the sizes of the sets
S(ui ) and S(uj). Bilu-Linial ended up losing a lot when one
set was much smaller than the other.
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Case 2: λ
√
|S(ui )||S(uj)| ≥ d |S(ui )||S(uj)|/n.

“Easy” case when |i − j | > 1
2 log d . Focus on the part where

|i − j | ≤ 1
2 log d .

We need to consider multiple terms |
∑

i uiAsuj | for a fixed uj .

If instead we considered each term separately, then for each uj

the term |S(ui )| would get counted 1
2 log d times, which would

result in a log d factor loss we cannot afford.

We show that with probability at least 1− e−Ω( n
d2 ) we have

for each relevant uj :

|
∑
i

uT
i Asuj | ≤ 8

√
1/n ∗ d |S(uj)|2(

∑
i

|S(ui )|22i ) log(
2n

|S(uj)|
)

This can be done because all these S(ui ) have no intersection
giving us independence to apply a Chernoff bound on a sum
of them.
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giving us independence to apply a Chernoff bound on a sum
of them.
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Case 2: λ
√
|S(ui )||S(uj)| ≥ d |S(ui )||S(uj)|/n.
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Putting the Large Support Terms Together

Lemma

Let u1, u2, . . . ∈ {0,±1}n, v1, v2 . . . ∈ {0,±1}n be two families of
vector sets such that for all (i , j),S(ui )∩ S(uj) = S(vi )∩ S(vj) = ∅
and either for all i , |S(vi )| > n

d2 or for all i , |S(ui )| > n
d2 . Let As

be a random signing matrix. The following holds with high
probability over random choices of signing.

|
∑
i≤j

(2−i ∗ uT
i )As(2−j ∗ vj)| ≤

O(max(
√
λ log d ,

√
d))
∑
i

|S(ui )|2−2i+(
λ

5
+O(
√

d))
∑
j

|S(vj)|2−2j
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Theorem 2 and Shift Lifts

Definition

Shift lift of a graph G is obtained by replacing each vertex of G by
k vertices (fibre) and replacing each edge by a shift permutation
between the corresponding fibres.

e.g. for an edge (x , y) we would have a permutation of the
form x − y = c mod k.

This can be seen as a generalization of 2-lift.

Alexandra Kolla Small Lifts are Expanding



Expander Graphs
Lifts of Graphs

2-Lifts and Quasi Ramanujan Expanders
Future Directions

Theorem 2 and Shift Lifts

Definition

Shift lift of a graph G is obtained by replacing each vertex of G by
k vertices (fibre) and replacing each edge by a shift permutation
between the corresponding fibres.

e.g. for an edge (x , y) we would have a permutation of the
form x − y = c mod k.

This can be seen as a generalization of 2-lift.

Alexandra Kolla Small Lifts are Expanding



Expander Graphs
Lifts of Graphs

2-Lifts and Quasi Ramanujan Expanders
Future Directions

Theorem 2 and Shift Lifts

Definition

Shift lift of a graph G is obtained by replacing each vertex of G by
k vertices (fibre) and replacing each edge by a shift permutation
between the corresponding fibres.

e.g. for an edge (x , y) we would have a permutation of the
form x − y = c mod k.

This can be seen as a generalization of 2-lift.

Alexandra Kolla Small Lifts are Expanding



Expander Graphs
Lifts of Graphs

2-Lifts and Quasi Ramanujan Expanders
Future Directions

Shift Lifts: Spectral Characterization

Given a graph G, sign each edge by +1 or -1 depending on
whether the permutation in the 2-lift is identity permutation
or a cross permutation. Then, new eigenvalues of the lift are
eigenvalues of the signed adjacency matrix As .

Can we get such a characterization for k−lift?

We can, by the following theorem:

Theorem

Given a graph G, “sign” each edge by t0, t1, . . . , tk−1. Let A(t) be
the “signed” adjacency matrix. Then, the eigenvalues of the lift
are the eigenvalues of A(ω) where ω is the k-th root of unity.

Easy to see that a shift k-lift is equivalent to such a “signing”.

Now, Theorem 2 can (almost) reduce to Theorem 1.
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Open Questions

What percentage of lifts is exactly Ramanujan?

How likely is the event that λ of the lift is the same (with no
loss) as λ of the base graph?

How can we use our results to build good expanders?
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Thank you
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