Undecidability of Linear Inequalities Between Graph Homomorphism Densities

Hamed Hatami joint work with Sergey Norin

School of Computer Science McGill University

December 4, 2013

4 3 5 4 3 5 5

< 6 b

Introduction

э

-

 Asymptotic extremal graph theory has been studied for more than a century (Mantel 1908).

- Asymptotic extremal graph theory has been studied for more than a century (Mantel 1908).
- Few techniques are very common (Induction, Cauchy-Schwarz, ...).

4 D K 4 B K 4 B K 4 B K

- Asymptotic extremal graph theory has been studied for more than a century (Mantel 1908).
- Few techniques are very common (Induction, Cauchy-Schwarz, ...).
- Recently, there has been several developments explaining this: Freedman, Lovász, Schrijver, Szegedy, Razborov, Chayes, Borgs, Sös, Vesztergombi, ...

イロト イポト イラト イラト

- Asymptotic extremal graph theory has been studied for more than a century (Mantel 1908).
- Few techniques are very common (Induction, Cauchy-Schwarz, ...).
- Recently, there has been several developments explaining this: Freedman, Lovász, Schrijver, Szegedy, Razborov, Chayes, Borgs, Sös, Vesztergombi, ...
- Discovery of rich algebraic structure underlying many of these techniques.

< 口 > < 同 > < 回 > < 回 > < 回 > <

- Asymptotic extremal graph theory has been studied for more than a century (Mantel 1908).
- Few techniques are very common (Induction, Cauchy-Schwarz, ...).
- Recently, there has been several developments explaining this: Freedman, Lovász, Schrijver, Szegedy, Razborov, Chayes, Borgs, Sös, Vesztergombi, ...
- Discovery of rich algebraic structure underlying many of these techniques.
- Neater proofs with no low-order terms.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Asymptotic extremal graph theory has been studied for more than a century (Mantel 1908).
- Few techniques are very common (Induction, Cauchy-Schwarz, ...).
- Recently, there has been several developments explaining this: Freedman, Lovász, Schrijver, Szegedy, Razborov, Chayes, Borgs, Sös, Vesztergombi, ...
- Discovery of rich algebraic structure underlying many of these techniques.
- Neater proofs with no low-order terms.
- Methods for applying these techniques in semi-automatic ways.

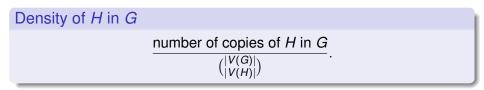
Density of *H* in *G* $\frac{\text{number of copies of } H \text{ in } G}{\binom{|V(G)|}{|V(H)|}}.$

Hamed Hatami (McGill University)

December 4, 2013 4 / 43

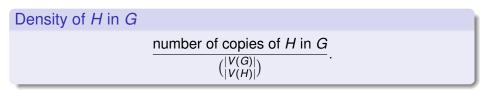
2

イロト イヨト イヨト イヨト



• We can think of these densities as "moments" of the graph G.

< ロ > < 同 > < 回 > < 回 >



- We can think of these densities as "moments" of the graph *G*.
- Many fundamental theorems in extremal graph theory can be expressed as algebraic inequalities between subgraph densities.

4 3 5 4 3

< 6 b

Theorem (Freedman, Lovász, Schrijver 2007)

Every such inequality follows from the positive semi-definiteness of a certain infinite matrix.

< ロ > < 同 > < 回 > < 回 >

Theorem (Freedman, Lovász, Schrijver 2007)

Every such inequality follows from the positive semi-definiteness of a certain infinite matrix.

 Equivalently (possibly infinitely many) applications of Cauchy-Schwarz.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Freedman, Lovász, Schrijver 2007)

Every such inequality follows from the positive semi-definiteness of a certain infinite matrix.

• Equivalently (possibly infinitely many) applications of Cauchy-Schwarz.

Razborov's flag algebras

A formal calculus capturing many standard arguments (induction, Cauchy-Schwarz,...) in the area.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Automatic methods for proving theorems (based on SDP):

э

イロト イポト イヨト イヨト

Automatic methods for proving theorems (based on SDP):

• Razborov: Significant improvement over the known bounds on Turán's Hypergraph Problem.

4 3 5 4 3 5

Image: A matrix and a matrix

Automatic methods for proving theorems (based on SDP):

- Razborov: Significant improvement over the known bounds on Turán's Hypergraph Problem.
- HH, Hladky, Kral, Norin, Razborov: A question of Sidorenko and Jagger, Šťovíček and Thomason.

4 3 5 4 3 5 5

Automatic methods for proving theorems (based on SDP):

- Razborov: Significant improvement over the known bounds on Turán's Hypergraph Problem.
- HH, Hladky, Kral, Norin, Razborov: A question of Sidorenko and Jagger, Šťovíček and Thomason.
- HH, Hladky, Kral, Norin, Razborov: A conjecture of Erdös.

4 3 5 4 3 5 5

SDP methods + thinking:

2

イロト イヨト イヨト イヨト

SDP methods + thinking:

• Razborov: Minimal density of triangles, given an edge density.

イロト イポト イヨト イヨト

SDP methods + thinking:

- Razborov: Minimal density of triangles, given an edge density.
- Razborov: Turán's hypergraph problem under mild extra conditions.

A B F A B F

Image: A matrix and a matrix

SDP methods + thinking:

- Razborov: Minimal density of triangles, given an edge density.
- Razborov: Turán's hypergraph problem under mild extra conditions.
- other conjectures of Erdös, crossing number of complete bipartite graphs, etc.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

How far can we go?

Is asymptotic extremal graph theory trivial? Is lack of enough computational power the only barrier?

< ロ > < 同 > < 回 > < 回 >

How far can we go?

Is asymptotic extremal graph theory trivial? Is lack of enough computational power the only barrier?

Question (Razborov)

Can every true algebraic inequality between subgraph densities be proved using a finite amount of manipulation with subgraph densities of finitely many graphs?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

How far can we go?

Is asymptotic extremal graph theory trivial? Is lack of enough computational power the only barrier?

Question (Razborov)

Can every true algebraic inequality between subgraph densities be proved using a finite amount of manipulation with subgraph densities of finitely many graphs?

HH-Norine 2011

The answer is negative in a strong sense.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Formal definitions

Hamed Hatami (McGill University)

4 3 > 4 3

Extremal graph theory

Studies the relations between the number of occurrences of different subgraphs in a graph G.

< ロ > < 同 > < 回 > < 回 >

Extremal graph theory

Studies the relations between the number of occurrences of different subgraphs in a graph G.

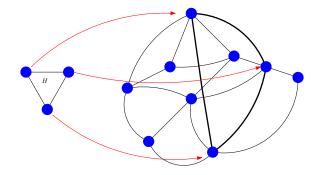
Equivalently one can study the relations between the "homomorphism densities".

4 3 5 4 3 5

Homomorphism Density

Definition

• Map the vertices of *H* to the vertices of *G* independently at random.



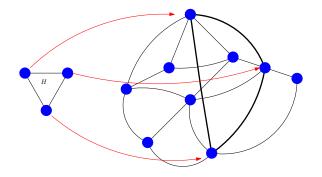
< 回 > < 三 > < 三 >

Homomorphism Density

Definition

• Map the vertices of *H* to the vertices of *G* independently at random.

 $t_H(G) := \Pr[\text{edges go to edges}].$



A B F A B F

A b

Definition

A map $f : H \rightarrow G$ is called a homomorphism if it maps edges to edges.

2

Definition

A map $f : H \rightarrow G$ is called a homomorphism if it maps edges to edges.

 $t_H(G) = \Pr[f : H \to G \text{ is a homomorphism}].$

イロト 不得 トイヨト イヨト 二日

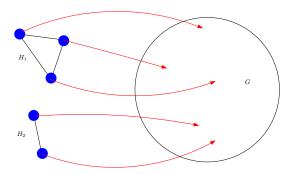
• Asymptotically $t_H(\cdot)$ and subgraph densities are equivalent.

э

イロト イポト イヨト イヨト

- Asymptotically $t_H(\cdot)$ and subgraph densities are equivalent.
- The functions t_H have nice algebraic structures:

$$t_{H_1\sqcup H_2}(G)=t_{H_1}(G)t_{H_2}(G).$$



< 6 b

 Many fundamental theorems in extremal graph theory can be expressed as algebraic inequalities between homomorphism densities.

The Sec. 74

< 6 b

 Many fundamental theorems in extremal graph theory can be expressed as algebraic inequalities between homomorphism densities.

Example (Goodman's bound 1959) $t_{\mathcal{K}_3}(G) \geq 2t_{\mathcal{K}_2}(G)^2 - t_{\mathcal{K}_2}(G).$

イロト イポト イラト イラト

 Many fundamental theorems in extremal graph theory can be expressed as algebraic inequalities between homomorphism densities.

Example (Goodman's bound 1959)

$$t_{K_3}(G) \geq 2t_{K_2}(G)^2 - t_{K_2}(G).$$

• Every such inequality can be turned to a linear inequality:

$$a_1t_{H_1}(G)+\ldots+a_mt_{H_m}(G)\geq 0.$$

 Many fundamental theorems in extremal graph theory can be expressed as algebraic inequalities between homomorphism densities.

Example (Goodman's bound 1959)

$$t_{K_3}(G) \geq 2t_{K_2}(G)^2 - t_{K_2}(G).$$

• Every such inequality can be turned to a linear inequality:

$$a_1t_{H_1}(G)+\ldots+a_mt_{H_m}(G)\geq 0.$$

Example (Goodman's bound 1959)

$$t_{\mathcal{K}_3}(G)-2t_{\mathcal{K}_2\sqcup\mathcal{K}_2}(G)+t_{\mathcal{K}_2}(G)\geq 0.$$

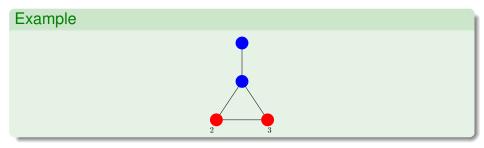
イロト イポト イラト イラ

Algebra of Partially labeled graphs

Hamed Hatami (McGill University)

< 回 > < 三 > < 三 >

A partially labeled graph is a graph in which some vertices are labeled by *distinct* natural numbers.



э

A partially labeled graph is a graph in which some vertices are labeled by *distinct* natural numbers.

Recall

$t_H(G) := \Pr[f : H \to G \text{ is a homomorphism}].$

3

イロト 不得 トイヨト イヨト

A partially labeled graph is a graph in which some vertices are labeled by *distinct* natural numbers.

Recall

$$t_H(G) := \Pr[f : H \to G \text{ is a homomorphism}].$$

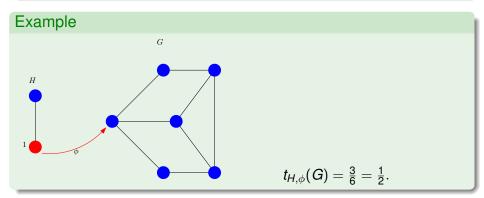
Definition

Let *H* be partially labeled with labels *L*. For $\phi : L \rightarrow G$, define

$$t_{H,\phi}(G) := \Pr\left[f: H \to G \text{ is a hom. } \mid f|_L = \phi\right].$$

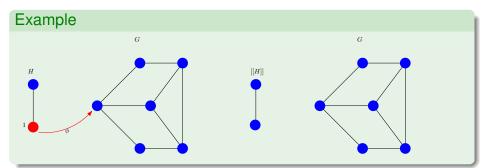
Let *H* be partially labeled with labels *L*. For $\phi : L \rightarrow G$, define

```
t_{H,\phi}(G) := \Pr[f: H \to G \text{ is a hom. } | f|_L = \phi].
```



э

(日)

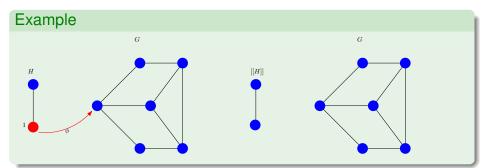


Let [H] be H with no labels.

Hamed Hatami (McGill University)

æ

イロト イヨト イヨト イヨト



Let [H] be H with no labels.

$$\mathbb{E}_{\phi}\left[t_{H,\phi}(G)\right] = t_{[H]}(G)$$

Hamed Hatami (McGill University)

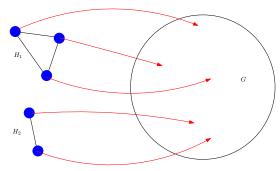
December 4, 2013 18 / 43

2

イロト イヨト イヨト イヨト

• Recall that:

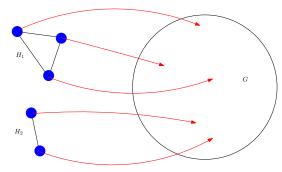
 $t_{H_1 \sqcup H_2}(G) = t_{H_1}(G)t_{H_2}(G).$



イロト イヨト イヨト イヨト

• Recall that:

 $t_{H_1 \sqcup H_2}(G) = t_{H_1}(G)t_{H_2}(G).$



• This motivates us to define $H_1 \times H_2 := H_1 \sqcup H_2$.

2

イロト イポト イヨト イヨト

The product $H_1 \cdot H_2$ of partially labeled graphs H_1 and H_2 :

æ

イロト イポト イヨト イヨト

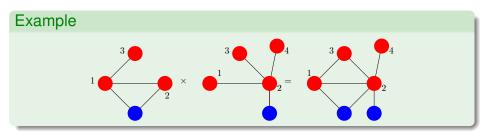
The product $H_1 \cdot H_2$ of partially labeled graphs H_1 and H_2 :

• Take their disjoint union, and then identify vertices with the same label.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The product $H_1 \cdot H_2$ of partially labeled graphs H_1 and H_2 :

- Take their disjoint union, and then identify vertices with the same label.
- If multiple edges arise, only one copy is kept.



(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• Let H_1 and H_2 be partially labeled with labels L_1 and L_2 .

2

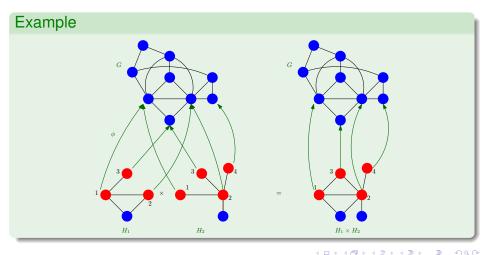
イロト イポト イヨト イヨト

Let H₁ and H₂ be partially labeled with labels L₁ and L₂.
Let φ : L₁ ∪ L₂ → G.

э

イロト イポト イヨト イヨト

- Let H_1 and H_2 be partially labeled with labels L_1 and L_2 .
- Let $\phi: L_1 \cup L_2 \rightarrow G$.
- We have $t_{H_1,\phi}(G)t_{H_2,\phi}(G) = t_{H_1 \times H_2,\phi}(G)$.



э

• Let H_1, \ldots, H_k be partially labeled graphs with the set of labels *L*.

イロト イポト イラト イラ

Let *H*₁,..., *H_k* be partially labeled graphs with the set of labels *L*.
Let *b*₁,..., *b_k* be real numbers and *φ* : *L* → *G*.

Let *H*₁,..., *H_k* be partially labeled graphs with the set of labels *L*.
Let *b*₁,..., *b_k* be real numbers and *φ* : *L* → *G*.

$$0 \leq \left(\sum b_i t_{H_i,\phi}(G)\right)^2 = \sum b_i b_j t_{H_i,\phi}(G) t_{H_j,\phi}(G)$$
$$= \sum b_i b_j t_{H_i \times H_j,\phi}(G)$$

Let *H*₁,..., *H_k* be partially labeled graphs with the set of labels *L*.
Let *b*₁,..., *b_k* be real numbers and *φ* : *L* → *G*.

 $\sum b_i b_j t_{H_i \times H_i,\phi}(G) \geq 0$

Let *H*₁,..., *H_k* be partially labeled graphs with the set of labels *L*.
Let *b*₁,..., *b_k* be real numbers and *φ* : *L* → *G*.

 $\sum b_i b_j t_{H_i \times H_i,\phi}(G) \geq 0$

$$\mathbb{E}_{\phi}\left[\sum b_i b_j t_{\mathcal{H}_i \times \mathcal{H}_j, \phi}(\boldsymbol{G})\right] \geq 0$$

Let *H*₁,..., *H_k* be partially labeled graphs with the set of labels *L*.
Let *b*₁,..., *b_k* be real numbers and *φ* : *L* → *G*.

 $\sum b_i b_i t_{H_i \times H_i,\phi}(G) \geq 0$

$$\mathbb{E}_{\phi}\left[\sum b_i b_j t_{\mathcal{H}_i \times \mathcal{H}_j, \phi}(\boldsymbol{G})\right] \geq 0$$

 $\sum b_i b_j t_{[H_i \times H_j]}(G) \geq 0$

イロト イポト イラト イラト

 $\sum b_i b_j t_{[H_i imes H_j]}(G) \ge 0$

2

イロト イヨト イヨト イヨト

 $\sum b_i b_j t_{[H_i \times H_j]}(G) \geq 0$

Let H_1, H_2, \ldots be all partially labeled graphs. For every *G*:

イロト 不得 トイヨト イヨト 二日

$$\sum b_i b_j t_{\left[H_i \times H_j\right]}(G) \geq 0$$

Let H₁, H₂,... be all partially labeled graphs. For every G:
Condition I: t_{K1}(G) = 1.

э

$$\sum b_i b_j t_{\left[H_i \times H_j\right]}(G) \geq 0$$

Let H_1, H_2, \ldots be all partially labeled graphs. For every *G*:

- Condition I: $t_{K_1}(G) = 1$.
- Condition II: $t_{H \sqcup K_1}(G) = t_H(G)$ for all graph *H*.

$$\sum b_i b_j t_{\left[H_i \times H_j\right]}(G) \geq 0$$

Let H_1, H_2, \ldots be all partially labeled graphs. For every *G*:

- Condition I: $t_{\mathcal{K}_1}(G) = 1$.
- Condition II: $t_{H \sqcup K_1}(G) = t_H(G)$ for all graph *H*.
- Condition III: The infinite matrix whose *ij*-th entry is t_[Hi×Hj](G) is positive semi-definite.

$$\sum b_i b_j t_{\left[H_i \times H_j\right]}(G) \geq 0$$

Let H_1, H_2, \ldots be all partially labeled graphs. For every *G*:

- Condition I: $t_{\mathcal{K}_1}(G) = 1$.
- Condition II: $t_{H \sqcup K_1}(G) = t_H(G)$ for all graph *H*.
- Condition III: The infinite matrix whose *ij*-th entry is t_[Hi×Hj](G) is positive semi-definite.

Theorem (Freedman, Lovász, Shrijver 2007)

These conditions describe the closure of the set

$$\{(t_{F_1}(G), t_{F_2}(G), \ldots) : G\} \in [0, 1]^{\mathbb{N}}.$$

-

イロト 不得 トイヨト イヨト

Quantum Graphs

Hamed Hatami (McGill University)

э

A B F A B F

 $a_1H_1+\ldots+a_kH_k$.

э

イロト イポト イヨト イヨト

$$a_1H_1+\ldots+a_kH_k$$
.

• A quantum graph $a_1H_1 + \ldots + a_kH_k$ is called positive, if for all *G*,

$$a_1t_{H_1}(G)+\ldots+a_kt_{H_k}(G)\geq 0.$$

3

EN 4 EN

$$a_1H_1+\ldots+a_kH_k$$
.

• A quantum graph $a_1H_1 + \ldots + a_kH_k$ is called positive, if for all *G*,

$$a_1t_{H_1}(G)+\ldots+a_kt_{H_k}(G)\geq 0.$$

Goodman:

$$K_3 - 2(K_2 \sqcup K_2) + K_2 \ge 0.$$

3

E N 4 E N

$$a_1H_1+\ldots+a_kH_k$$
.

• A quantum graph $a_1H_1 + \ldots + a_kH_k$ is called positive, if for all *G*,

$$a_1t_{H_1}(G)+\ldots+a_kt_{H_k}(G)\geq 0.$$

Goodman:

$$K_3-2(K_2\sqcup K_2)+K_2\geq 0.$$

• We want to understand the set of all positive quantum graphs.

• A partially labeled quantum graph is a formal linear combination of partially labeled graphs:

$$a_1H_1+\ldots+a_kH_k.$$

(4) (5) (4) (5)

 A partially labeled quantum graph is a formal linear combination of partially labeled graphs:

$$a_1H_1+\ldots+a_kH_k.$$

• Partially labeled quantum graphs form an algebra:

$$(a_1H_1+\ldots+a_kH_k)\cdot(b_1L_1+\ldots+b_\ell L_\ell)=\sum a_ib_jH_i\cdot L_j.$$

$[\cdot]$: partially labeled quantum graph \mapsto quantum graph

2

$[\cdot]$: partially labeled quantum graph \mapsto quantum graph

Recall

$$\left[(\sum b_i H_i)^2\right] = \sum b_i b_j \left[H_i \times H_j\right] \ge 0$$

2

< 日 > < 同 > < 回 > < 回 > < 回 > <

$[\cdot]$: partially labeled quantum graph \mapsto quantum graph

Recall

$$\left[(\sum b_i H_i)^2 \right] = \sum b_i b_j \left[H_i \times H_j \right] \ge 0$$

Equivalently

For every partially labeled quantum graph g we have $[g^2] \ge 0$.

$[\cdot]$: partially labeled quantum graph \mapsto quantum graph

Recall

$$\left[(\sum b_i H_i)^2 \right] = \sum b_i b_j \left[H_i \times H_j \right] \ge 0$$

Equivalently

For every partially labeled quantum graph g we have $[g^2] \ge 0$.

Corollary

Always

$$\left[g_1^2+\ldots+g_k^2\right]\geq 0.$$

Question (Lovász's 17th Problem, Lovász-Szegedy, Razborov) Is it true that every $f \ge 0$ is of the form

$$f = \left[g_1^2 + g_2^2 + \ldots + g_k^2\right]$$

3

< ロ > < 同 > < 回 > < 回 >

Question (Lovász's 17th Problem, Lovász-Szegedy, Razborov) Is it true that every $f \ge 0$ is of the form

$$f = \left[g_1^2 + g_2^2 + \ldots + g_k^2\right]$$

Observation (Lovasz-Szegedy and Razborov)

If $f \ge 0$ and $\epsilon > 0$, there exists a positive integer k and quantum labeled graphs g_1, g_2, \ldots, g_k such that

$$-\epsilon \leq f - \left[g_1^2 + g_2^2 + \ldots + g_k^2\right] \leq \epsilon.$$

Question (Lovász's 17th Problem, Lovász-Szegedy, Razborov) Is it true that every $f \ge 0$ is of the form

$$f = \left[g_1^2 + g_2^2 + \ldots + g_k^2\right]$$

Observation (Lovasz-Szegedy and Razborov)

If $f \ge 0$ and $\epsilon > 0$, there exists a positive integer k and quantum labeled graphs g_1, g_2, \ldots, g_k such that

$$-\epsilon \leq f - \left[g_1^2 + g_2^2 + \ldots + g_k^2\right] \leq \epsilon.$$

Theorem (HH and Norin)

The answer to the above question is negative.

positive polynomials

Hamed Hatami (McGill University)

э

< ロ > < 同 > < 回 > < 回 >

 Polynomial p ∈ ℝ[x₁,..., x_n] is called positive if it takes only non-negative values.

э

イロト イポト イヨト イヨト

- Polynomial p ∈ ℝ[x₁,..., x_n] is called positive if it takes only non-negative values.
- $p_1^2 + \ldots + p_k^2$ is always positive.

3

 Polynomial p ∈ ℝ[x₁,..., x_n] is called positive if it takes only non-negative values.

•
$$p_1^2 + \ldots + p_k^2$$
 is always positive.

Theorem (Hilbert 1888)

There exist 3-variable positive homogenous polynomials which are not sums of squares of polynomials.

 Polynomial p ∈ ℝ[x₁,..., x_n] is called positive if it takes only non-negative values.

•
$$p_1^2 + \ldots + p_k^2$$
 is always positive.

Theorem (Hilbert 1888)

There exist 3-variable positive homogenous polynomials which are not sums of squares of polynomials.

Example (Motzkin's polynomial)

$$x^4y^2 + y^4z^2 + z^4x^2 - 6x^2y^2z^2 \ge 0.$$

Extending to quantum graphs

Hamed Hatami (McGill University)

12 N A 12

There are positive quantum graphs f which are not sums of squares. That is, always $f \neq [g_1^2 + \ldots + g_k^2]$.

< ロ > < 同 > < 回 > < 回 >

There are positive quantum graphs f which are not sums of squares. That is, always $f \neq [g_1^2 + \ldots + g_k^2]$.

• The proof is based on converting $x^4y^2 + y^4z^2 + z^4x^2 - 6x^2y^2z^2$ to a quantum graph.

BA 4 BA

Every positive polynomial is of the form

 $(p_1/q_1)^2 + \ldots + (p_k/q_k)^2.$

э

Every positive polynomial is of the form

$$(p_1/q_1)^2 + \ldots + (p_k/q_k)^2.$$

Corollary

The problem of checking the positivity of a polynomial is decidable.

3

Every positive polynomial is of the form

$$(p_1/q_1)^2 + \ldots + (p_k/q_k)^2.$$

Corollary

The problem of checking the positivity of a polynomial is decidable.

• Co-recursively enumerable: Try to find a point that makes *p* negative.

3

Every positive polynomial is of the form

$$(p_1/q_1)^2 + \ldots + (p_k/q_k)^2.$$

Corollary

The problem of checking the positivity of a polynomial is decidable.

- Co-recursively enumerable: Try to find a point that makes p negative.
- recursively enumerable: Try to write $p = \sum (p_i/q_i)^2$.

3

 Our solution to Lovász's 17th problem was based on an analogy to polynomials.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Our solution to Lovász's 17th problem was based on an analogy to polynomials.
- Since there are polynomials which are positive but not sums of squares, our theorem was expected.

4 3 5 4 3 5 5

- Our solution to Lovász's 17th problem was based on an analogy to polynomials.
- Since there are polynomials which are positive but not sums of squares, our theorem was expected.
- Lovász: Does Artin's theorem (sums of rational functions) hold for graph homomorphisms?

3

4 E N 4 E N

- Our solution to Lovász's 17th problem was based on an analogy to polynomials.
- Since there are polynomials which are positive but not sums of squares, our theorem was expected.
- Lovász: Does Artin's theorem (sums of rational functions) hold for graph homomorphisms?
- Maybe at least the decidability? (A 10th problem)

3

- Our solution to Lovász's 17th problem was based on an analogy to polynomials.
- Since there are polynomials which are positive but not sums of squares, our theorem was expected.
- Lovász: Does Artin's theorem (sums of rational functions) hold for graph homomorphisms?
- Maybe at least the decidability? (A 10th problem)

The following problem is undecidable.

 QUESTION: Does the inequality a₁ t_{H₁}(G) + ... + a_kt_{H_k}(G) ≥ 0 hold for every graph G?

Proof

Hamed Hatami (McGill University)

-2

<ロ> <同> <同> <同> <同> 、

The following problem is undecidable.

 QUESTION: Does the inequality a₁ t_{H₁}(G) + ... + a_kt_{H_k}(G) ≥ 0 hold for every graph G?

3

The following problem is undecidable.

 QUESTION: Does the inequality a₁ t_{H₁}(G) + ... + a_kt_{H_k}(G) ≥ 0 hold for every graph G?

Equivalently

Theorem (HH and Norin)

The following problem is undecidable.

- INSTANCE: A polynomial $p(x_1, ..., x_k)$ and graphs $H_1, ..., H_k$.
- QUESTION: Does the inequality p(t_{H₁}(G),..., t_{H_k}(G)) ≥ 0 hold for every graph G?

The following problem is undecidable.

- INSTANCE: A polynomial $p(x_1, ..., x_k)$ and graphs $H_1, ..., H_k$.
- QUESTION: Does the inequality p(t_{H₁}(G),..., t_{Hk}(G)) ≥ 0 hold for every graph G?

The following problem is undecidable.

- INSTANCE: A polynomial $p(x_1, ..., x_k)$ and graphs $H_1, ..., H_k$.
- QUESTION: Does the inequality p(t_{H₁}(G),..., t_{Hk}(G)) ≥ 0 hold for every graph G?

Instead I will prove the following theorem:

Theorem

The following problem is undecidable.

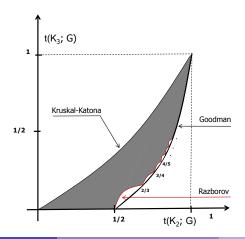
- INSTANCE: A polynomial $p(x_1, \ldots, x_k, y_1, \ldots, y_k)$.
- QUESTION: Does the inequality $p(t_{K_2}(G_1), \ldots, t_{K_2}(G_k), t_{K_3}(G_1), \ldots, t_{K_3}(G_k)) \ge 0$ hold for every G_1, \ldots, G_k ?

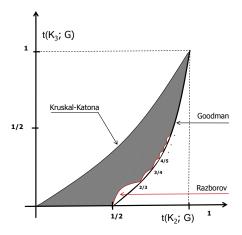
・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Matiyasevich 1970 Solution to Hilbert's 10th problem: Checking the positivity of *p* ∈ ℝ[*x*₁,..., *x*_k] on {1 − ¹/_n : *n* ∈ ℤ}^k is undecidable.

э

- Matiyasevich 1970 Solution to Hilbert's 10th problem: Checking the positivity of *p* ∈ ℝ[*x*₁,..., *x_k*] on {1 − ¹/_n : *n* ∈ ℤ}^k is undecidable.
- Bollobás, Razborov: Goodman's bound is achieved only when $t_{\mathcal{K}_2}(G) \in \{1 \frac{1}{n} : n \in \mathbb{Z}\}.$





Lemma

Let $p \in \mathbb{R}[x_1, \dots, x_k]$. Define $q(x_1, \dots, x_k, y_1, \dots, y_k)$ as

$$q:=
ho\prod_{i=1}^k(1-x_i)^6+C_{
ho} imes\left(\sum_{i=1}^ky_i-g(x_i)
ight).$$

T.F.A.E.

Lemma

Let $p \in \mathbb{R}[x_1, \dots, x_k]$. Define $q(x_1, \dots, x_k, y_1, \dots, y_k)$ as

$$q:=
ho\prod_{i=1}^k(1-x_i)^6+C_{
ho} imes\left(\sum_{i=1}^ky_i-g(x_i)
ight).$$

T.F.A.E.

• p < 0 for some $x_1, \ldots, x_k \in \{1 - 1/n : n \in \mathbb{N}\}$. (undecidable)

Lemma

Let $p \in \mathbb{R}[x_1, \ldots, x_k]$. Define $q(x_1, \ldots, x_k, y_1, \ldots, y_k)$ as

$$q:=
ho\prod_{i=1}^k(1-x_i)^6+C_{
ho} imes\left(\sum_{i=1}^ky_i-g(x_i)
ight).$$

T.F.A.E.

p < 0 for some x₁,..., x_k ∈ {1 − 1/n : n ∈ N}. (undecidable) *q* < 0 for some (x_i, y_i) ∈ S's.

Lemma

Let $p \in \mathbb{R}[x_1, \ldots, x_k]$. Define $q(x_1, \ldots, x_k, y_1, \ldots, y_k)$ as

$$q :=
ho \prod_{i=1}^k (1-x_i)^6 + C_
ho imes \left(\sum_{i=1}^k y_i - g(x_i)
ight).$$

T.F.A.E.

- p < 0 for some $x_1, \ldots, x_k \in \{1 1/n : n \in \mathbb{N}\}$. (undecidable)
- *q* < 0 for some (*x_i*, *y_i*) ∈ S's.
- q < 0 for some $x_i = t_{K_2}(G_i)$ and $y_i = t_{K_3}(G_i)$. (reduction)

Where do we go from here?

э

3 → 4 3

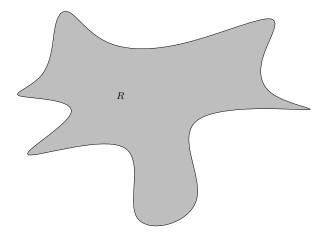
• On can hope decidability for restricted classes of graphs.

2

- On can hope decidability for restricted classes of graphs.
- Bollobas: Linear inequalities $a_1 K_{n_1} + \ldots + a_k K_{n_k} \ge 0$ is decidable.

- On can hope decidability for restricted classes of graphs.
- Bollobas: Linear inequalities $a_1 K_{n_1} + \ldots + a_k K_{n_k} \ge 0$ is decidable.
- Question: What about unions of cliques?

• Let *R* denote the closure of $\{(t_{H_1}(G), t_{H_2}(G), \ldots) : G\} \subset [0, 1]^{\mathbb{N}}$.



э

イロト イポト イヨト イヨト

• Graphons: The points in *R* (graph limits) can be represented by symmetric measurable $W : [0, 1]^2 \rightarrow [0, 1]$.

3

- Graphons: The points in *R* (graph limits) can be represented by symmetric measurable $W : [0, 1]^2 \rightarrow [0, 1]$.
- Finitely Forcible: A point in *R* is finitely forcible if a finite number of coordinates uniquely determine it.

3

- Graphons: The points in *R* (graph limits) can be represented by symmetric measurable $W : [0, 1]^2 \rightarrow [0, 1]$.
- Finitely Forcible: A point in *R* is finitely forcible if a finite number of coordinates uniquely determine it.
- Lovász's Conjecture: Every feasible inequality
 a₁t_{H1}(W) + ... + a_kt_{Hk}(W) < 0 has a finitely forcible solution W.

- Graphons: The points in *R* (graph limits) can be represented by symmetric measurable $W : [0, 1]^2 \rightarrow [0, 1]$.
- Finitely Forcible: A point in *R* is finitely forcible if a finite number of coordinates uniquely determine it.
- Lovász's Conjecture: Every feasible inequality $a_1 t_{H_1}(W) + \ldots + a_k t_{H_k}(W) < 0$ has a finitely forcible solution W.
- Lovász-Szegedy's Conjecture: Finitely forcible graphons have simple structures (finite dimensional).

- Graphons: The points in *R* (graph limits) can be represented by symmetric measurable $W : [0, 1]^2 \rightarrow [0, 1]$.
- Finitely Forcible: A point in *R* is finitely forcible if a finite number of coordinates uniquely determine it.
- Lovász's Conjecture: Every feasible inequality $a_1 t_{H_1}(W) + \ldots + a_k t_{H_k}(W) < 0$ has a finitely forcible solution W.
- Lovász-Szegedy's Conjecture: Finitely forcible graphons have simple structures (finite dimensional).

[Glebov, Klimošová, Král 2013+]

There are finitely forcible *W*'s such that $\{W(x, \cdot) : x \in [0, 1]\}$ with the L_1 distance contains a subset homeomorphic to $[0, 1]^{\infty}$.