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Asymptotic extremal graph theory has been studied for more than
a century (Mantel 1908).

Few techniques are very common (Induction, Cauchy-Schwarz,
. . . ).
Recently, there has been several developments explaining this:
Freedman, Lovász, Schrijver, Szegedy, Razborov, Chayes, Borgs,
Sös, Vesztergombi, ...
Discovery of rich algebraic structure underlying many of these
techniques.
Neater proofs with no low-order terms.
Methods for applying these techniques in semi-automatic ways.
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Density of H in G
number of copies of H in G(|V (G)|

|V (H)|
) .

We can think of these densities as “moments” of the graph G.
Many fundamental theorems in extremal graph theory can be
expressed as algebraic inequalities between subgraph densities.
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Theorem (Freedman, Lovász, Schrijver 2007)
Every such inequality follows from the positive semi-definiteness of a
certain infinite matrix.

Equivalently (possibly infinitely many) applications of
Cauchy-Schwarz.

Razborov’s flag algebras
A formal calculus capturing many standard arguments (induction,
Cauchy-Schwarz,...) in the area.
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Applications

Automatic methods for proving theorems (based on SDP):

Razborov: Significant improvement over the known bounds on
Turán’s Hypergraph Problem.
HH, Hladky, Kral, Norin, Razborov: A question of Sidorenko and
Jagger, Št’ovíček and Thomason.
HH, Hladky, Kral, Norin, Razborov: A conjecture of Erdös.
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Applications

SDP methods + thinking:

Razborov: Minimal density of triangles, given an edge density.
Razborov: Turán’s hypergraph problem under mild extra
conditions.
other conjectures of Erdös, crossing number of complete bipartite
graphs, etc.
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How far can we go?
Is asymptotic extremal graph theory trivial? Is lack of enough
computational power the only barrier?

Question (Razborov)
Can every true algebraic inequality between subgraph densities be
proved using a finite amount of manipulation with subgraph densities
of finitely many graphs?

HH-Norine 2011
The answer is negative in a strong sense.
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Formal definitions
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Extremal graph theory
Studies the relations between the number of occurrences of different
subgraphs in a graph G.

Equivalently one can study the relations between the “homomorphism
densities”.
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Homomorphism Density
Definition

Map the vertices of H to the vertices of G independently at
random.

tH(G) := Pr[edges go to edges].

H
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Definition
A map f : H → G is called a homomorphism if it maps edges to edges.

tH(G) = Pr[f : H → G is a homomorphism].
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Asymptotically tH(·) and subgraph densities are equivalent.

The functions tH have nice algebraic structures:

tH1tH2(G) = tH1(G)tH2(G).

G

H1

H2
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Many fundamental theorems in extremal graph theory can be
expressed as algebraic inequalities between homomorphism
densities.

Example (Goodman’s bound 1959)

tK3(G) ≥ 2tK2(G)2 − tK2(G).

Every such inequality can be turned to a linear inequality:

a1tH1(G) + . . .+ amtHm(G) ≥ 0.

Example (Goodman’s bound 1959)

tK3(G)− 2tK2tK2(G) + tK2(G) ≥ 0.
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Algebra of Partially labeled
graphs
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Definition
A partially labeled graph is a graph in which some vertices are labeled
by distinct natural numbers.

Example

2 3
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Definition
Let H be partially labeled with labels L. For φ : L→ G, define

tH,φ(G) := Pr [f : H → G is a hom. | f |L = φ] .

Example

1
φ

H

G

tH,φ(G) = 3
6 = 1

2 .
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Example

1
φ

H

G

[[H]]

G

Definition
Let [H] be H with no labels.

Eφ
[
tH,φ(G)

]
= t[H](G)
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Recall that:
tH1tH2(G) = tH1(G)tH2(G).

G

H1

H2

This motivates us to define H1 × H2 := H1 t H2.

Hamed Hatami (McGill University) December 4, 2013 19 / 43



Recall that:
tH1tH2(G) = tH1(G)tH2(G).

G

H1

H2

This motivates us to define H1 × H2 := H1 t H2.

Hamed Hatami (McGill University) December 4, 2013 19 / 43



Definition
The product H1 · H2 of partially labeled graphs H1 and H2:

Take their disjoint union, and then identify vertices with the same
label.
If multiple edges arise, only one copy is kept.

Example

× =1

2

3

1

2

3 4

1

2

43
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Let H1 and H2 be partially labeled with labels L1 and L2.

Let φ : L1 ∪ L2 → G.
We have tH1,φ(G)tH2,φ(G) = tH1×H2,φ(G).

Example

× =1

2

3

1

2

3 4

1

2

43

H1 H2 H1 ×H2

G G

φ
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We want to understand the set of all valid inequalities of the form: For
all G a1tH1(G) + . . .+ ak tHk (G) ≥ 0.

Let H1, . . . ,Hk be partially labeled graphs with the set of labels L.
Let b1, . . . ,bk be real numbers and φ : L→ G.
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Reflection positivity

∑
bibj t[Hi×Hj ](G) ≥ 0

Let H1,H2, . . . be all partially labeled graphs. For every G:

Condition I: tK1(G) = 1.
Condition II: tHtK1(G) = tH(G) for all graph H.
Condition III: The infinite matrix whose ij-th entry is t[Hi×Hj ](G) is
positive semi-definite.

Theorem (Freedman, Lovász, Shrijver 2007)
These conditions describe the closure of the set

{(tF1(G), tF2(G), . . .) : G} ∈ [0,1]N.
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Quantum Graphs
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A quantum graph is a formal linear combination of graphs:

a1H1 + . . .+ akHk .

A quantum graph a1H1 + . . .+ akHk is called positive, if for all G,

a1tH1(G) + . . .+ ak tHk (G) ≥ 0.

Goodman:
K3 − 2(K2 t K2) + K2 ≥ 0.

We want to understand the set of all positive quantum graphs.
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A partially labeled quantum graph is a formal linear combination of
partially labeled graphs:

a1H1 + . . .+ akHk .

Partially labeled quantum graphs form an algebra:

(a1H1 + . . .+ akHk ) · (b1L1 + . . .+ b`L`) =
∑

aibjHi · Lj .
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Unlabeling operator

[·] : partially labeled quantum graph 7→ quantum graph

Recall [
(
∑

biHi)
2
]
=
∑

bibj
[
Hi × Hj

]
≥ 0

Equivalently

For every partially labeled quantum graph g we have
[
g2] ≥ 0.

Corollary
Always [

g2
1 + . . .+ g2

k

]
≥ 0.
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Question (Lovász’s 17th Problem, Lovász-Szegedy, Razborov)
Is it true that every f ≥ 0 is of the form

f =
[
g2

1 + g2
2 + . . .+ g2

k

]

Observation (Lovasz-Szegedy and Razborov)
If f ≥ 0 and ε > 0, there exists a positive integer k and quantum
labeled graphs g1,g2, . . . ,gk such that

−ε ≤ f −
[
g2

1 + g2
2 + . . .+ g2

k

]
≤ ε.

Theorem (HH and Norin)
The answer to the above question is negative.
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positive polynomials
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Polynomial p ∈ R[x1, . . . , xn] is called positive if it takes only
non-negative values.

p2
1 + . . .+ p2

k is always positive.

Theorem (Hilbert 1888)
There exist 3-variable positive homogenous polynomials which are not
sums of squares of polynomials.

Example (Motzkin’s polynomial)

x4y2 + y4z2 + z4x2 − 6x2y2z2 ≥ 0.
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Extending to quantum graphs
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Theorem (HH and Norin)
There are positive quantum graphs f which are not sums of squares.
That is, always f 6=

[
g2

1 + . . .+ g2
k
]
.

The proof is based on converting x4y2 + y4z2 + z4x2 − 6x2y2z2 to
a quantum graph.
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Theorem (Artin 1927, Solution to Hilbert’s 17th Problem)
Every positive polynomial is of the form

(p1/q1)
2 + . . .+ (pk/qk )

2.

Corollary
The problem of checking the positivity of a polynomial is decidable.

Co-recursively enumerable: Try to find a point that makes p
negative.
recursively enumerable: Try to write p =

∑
(pi/qi)

2.
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Our solution to Lovász’s 17th problem was based on an analogy
to polynomials.

Since there are polynomials which are positive but not sums of
squares, our theorem was expected.
Lovász: Does Artin’s theorem (sums of rational functions) hold for
graph homomorphisms?
Maybe at least the decidability? (A 10th problem)

Theorem (HH and Norin)
The following problem is undecidable.

QUESTION: Does the inequality a1tH1(G) + . . .+ ak tHk (G) ≥ 0 hold
for every graph G?
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Proof
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Theorem (HH and Norin)
The following problem is undecidable.

QUESTION: Does the inequality a1tH1(G) + . . .+ ak tHk (G) ≥ 0 hold
for every graph G?

Equivalently

Theorem (HH and Norin)
The following problem is undecidable.

INSTANCE: A polynomial p(x1, . . . , xk ) and graphs H1, . . . ,Hk .
QUESTION: Does the inequality p(tH1(G), . . . , tHk (G)) ≥ 0 hold for
every graph G?
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every graph G?

Instead I will prove the following theorem:

Theorem
The following problem is undecidable.

INSTANCE: A polynomial p(x1, . . . , xk , y1, . . . , yk ).
QUESTION: Does the inequality
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Matiyasevich 1970 Solution to Hilbert’s 10th problem: Checking
the positivity of p ∈ R[x1, . . . , xk ] on

{
1− 1

n : n ∈ Z
}k

is
undecidable.

Bollobás, Razborov: Goodman’s bound is achieved only when
tK2(G) ∈

{
1− 1

n : n ∈ Z
}

.

1 

1 

1/2 

2/3 

t(K2; G) 1/2 

3/4 

4/5 

Kruskal-Katona 
Goodman 

Razborov 

t(K3; G)  
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Let S be the grey area and g(x) = 2x2 − x . (Goodman:
tK3(G) ≥ 2tK2(G)2 − tK2(G).)

1 

1 

1/2 

2/3 

t(K2; G) 1/2 

3/4 

4/5 

Kruskal-Katona 
Goodman 

Razborov 

t(K3; G)  
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Let S be the grey area and g(x) = 2x2 − x . (Goodman:
tK3(G) ≥ 2tK2(G)2 − tK2(G).)

Lemma
Let p ∈ R[x1, . . . , xk ]. Define q(x1, . . . , xk , y1, . . . , yk ) as

q := p
k∏

i=1

(1− xi)
6 + Cp ×

(
k∑

i=1

yi − g(xi)

)
.

T.F.A.E.

p < 0 for some x1, . . . , xk ∈ {1− 1/n : n ∈ N}. (undecidable)
q < 0 for some (xi , yi) ∈ S’s.
q < 0 for some xi = tK2(Gi) and yi = tK3(Gi). (reduction)
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Where do we go from here?
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On can hope decidability for restricted classes of graphs.

Bollobas: Linear inequalities a1Kn1 + . . .+ akKnk ≥ 0 is decidable.
Question: What about unions of cliques?
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Let R denote the closure of {(tH1(G), tH2(G), . . .) : G} ⊂ [0,1]N.

R
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Graphons: The points in R (graph limits) can be represented by
symmetric measurable W : [0,1]2 → [0,1].

Finitely Forcible: A point in R is finitely forcible if a finite number of
coordinates uniquely determine it.

Lovász’s Conjecture: Every feasible inequality
a1tH1(W ) + . . .+ ak tHk (W ) < 0 has a finitely forcible solution W .
Lovász-Szegedy’s Conjecture: Finitely forcible graphons have
simple structures (finite dimensional).

[Glebov, Klimošová, Král 2013+]
There are finitely forcible W ’s such that {W (x , ·) : x ∈ [0,1]} with the
L1 distance contains a subset homeomorphic to [0,1]∞.
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