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Green–Tao Theorem (arXiv 2004; Annals 2008)

The primes contain arbitrarily long arithmetic progressions.

Examples:

3, 5, 7

5, 11, 17, 23, 29

7, 37, 67, 97, 127, 157

Longest known: 26 terms



Green–Tao Theorem (2008)

The primes contain arbitrarily long arithmetic progressions (AP).

Szemerédi’s Theorem (1975)

Every subset of N with positive density contains arbitrarily long
APs.

(upper) density of A ⊂ N is lim sup
N→∞

|A ∩ [N]|
N

[N] := {1, 2, . . . ,N}

P = prime numbers

Prime number theorem:
|P ∩ [N]|

N
∼ 1

log N



Proof strategy of Green–Tao theorem

P = prime numbers, Q = “almost primes”

P ⊆ Q with relative positive density, i.e.,
|P ∩ [N]|
|Q ∩ [N]|

> δ

Step 1:

Relative Szemerédi theorem (informally)

If S ⊂ N satisfies certain pseudorandomness conditions, then every
subset of S of positive density contains long APs.

Step 2: Construct a superset of primes that satisfies the conditions.



Relative Szemerédi theorem

Relative Szemerédi theorem (informally)

If S ⊂ N satisfies certain pseudorandomness conditions, then every
subset of S of positive density contains long APs.

What pseudorandomness conditions?

Green–Tao:
1 Linear forms condition

2 Correlation condition

← no longer needed

A natural question (e.g., asked by Green, Gowers, . . . )

Does relative Szemerédi theorem hold with weaker and more
natural hypotheses?

Our main result

Yes! A weak linear forms condition suffices.
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Does relative Szemerédi theorem hold with weaker and more
natural hypotheses?

Our main result

Yes! A weak linear forms condition suffices.



Szemerédi’s theorem
Host set: N

Relative Szemerédi theorem
Host set: some sparse subset of integers

Random host set

Kohayakawa– Luczak–Rödl ’96 3-AP, p & N−1/2

Conlon–Gowers ’10+
Schacht ’10+

k-AP, p & N−1/(k−1)

Pseudorandom host set

Green–Tao ’08 linear forms + correlation

Conlon–Fox–Z. ’13+ linear forms

Conclusion: relatively dense subsets contain long APs
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Roth’s theorem

Roth’s theorem (1952)

If A ⊆ [N] is 3-AP-free, then |A| = o(N).

[N] := {1, 2, . . . ,N}

3-AP = 3-term arithmetic progression

It’ll be easier (and equivalent) to work in ZN := Z/NZ.



Proof of Roth’s theorem

Roth’s theorem (1952)

If A ⊆ ZN is 3-AP-free, then |A| = o(N).

Given A, construct tripartite
graph GA with vertex sets
X = Y = Z = ZN .

Triangle xyz in GA ⇐⇒
2x + y , x − z , −y − 2z ∈ A

It’s a 3-AP with diff −x − y − z

GA

X

Y Z

No triangles? Only triangles ←→ trivial 3-APs with diff 0.
Every edge of the graph is contained in exactly one triangle
(the one with x + y + z = 0).
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Proof of Roth’s theorem

Roth’s theorem (1952)

If A ⊆ ZN is 3-AP-free, then |A| = o(N).

Constructed a graph with

3N vertices

3N|A| edges

every edge in exactly one triangle

Theorem (Ruzsa & Szemerédi ’76)

If every edge in a graph G = (V ,E ) is contained in exactly one
triangle, then |E | = o(|V |2).

(a consequence of the triangle removal lemma)

So 3N|A| = o(N2). Thus |A| = o(N).
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Relative Roth theorem

Roth’s theorem (1952)

If A ⊆ ZN is 3-AP-free, then |A| = o(N).

Relative Roth theorem (Conlon, Fox, Z.)

If S ⊆ ZN satisfies some pseudorandomness conditions,
and A ⊆ S is 3-AP-free, then |A| = o(|S |).

ZN

ZNZN

GS x

y z

x ∼ y iff
2x + y ∈ S

x ∼ z iff
x − z ∈ S

y ∼ z iff
−y − 2z ∈ S

Pseudorandomness condition for S :
GS has asymp. the expected number of
embeddings of K2,2,2 & its subgraphs
(compared to random graph of same density)

K2,2,2 & subgraphs,
e.g.,



Relative Roth theorem

Roth’s theorem (1952)

If A ⊆ ZN is 3-AP-free, then |A| = o(N).

Relative Roth theorem (Conlon, Fox, Z.)

If S ⊆ ZN satisfies some pseudorandomness conditions,
and A ⊆ S is 3-AP-free, then |A| = o(|S |).

ZN

ZNZN

GS x

y z

x ∼ y iff
2x + y ∈ S

x ∼ z iff
x − z ∈ S

y ∼ z iff
−y − 2z ∈ S

Pseudorandomness condition for S :
GS has asymp. the expected number of
embeddings of K2,2,2 & its subgraphs
(compared to random graph of same density)

K2,2,2 & subgraphs,
e.g.,



Relative Roth theorem

Roth’s theorem (1952)

If A ⊆ ZN is 3-AP-free, then |A| = o(N).

Relative Roth theorem (Conlon, Fox, Z.)

If S ⊆ ZN satisfies some pseudorandomness conditions,
and A ⊆ S is 3-AP-free, then |A| = o(|S |).

ZN

ZNZN

GS x

y z

x ∼ y iff
2x + y ∈ S

x ∼ z iff
x − z ∈ S

y ∼ z iff
−y − 2z ∈ S

Pseudorandomness condition for S :
GS has asymp. the expected number of
embeddings of K2,2,2 & its subgraphs
(compared to random graph of same density)

K2,2,2 & subgraphs,
e.g.,



Analogy with quasirandom graphs

Chung-Graham-Wilson ’89 showed that in constant edge-density
graphs, many quasirandomness conditions are equivalent, one of
which is having the correct C4 count

2-blow-up−−−−−−→

In sparse graphs, the CGW equivalences do not hold.

Our results can be viewed as saying that:

Many extremal and Ramsey results about H (e.g., H = K3) in
sparse graphs hold if there is a host graph that behaves
pseudorandomly with respect to counts of the 2-blow-up of H.

2-blow-up−−−−−−→
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Roth’s theorem: from one 3-AP to many 3-APs

Roth’s theorem

∀δ > 0. Every A ⊂ ZN with |A| ≥ δN contains a 3-AP, provided N
is sufficiently large.

By an averaging argument (Varnavides), we get many 3-APs:

Roth’s theorem (counting version)

∀δ > 0 ∃c > 0 so that every A ⊂ ZN with |A| ≥ δN contains at
least cN2 3-APs, provided N is sufficiently large.
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Transference

Start with

(sparse) A ⊂ S ⊂ ZN , |A| ≥ δ |S |

One can find a dense model Ã for A:

(dense) Ã ⊂ ZN ,
|Ã|
N
≈ |A|
|S |
≥ δ

Counting lemma will tell us that(
N

|S |

)3

|{3-APs in A}| ≈ |{3-APs in Ã}|

≥ cN2 [By Roth’s Theorem]

=⇒ relative Roth theorem
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|Ã|
N
≈ |A|
|S |
≥ δ

Counting lemma will tell us that(
N

|S |

)3

|{3-APs in A}| ≈ |{3-APs in Ã}|
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Roth’s theorem: weighted version

Roth’s theorem (counting version)

∀δ > 0 ∃c > 0 so that every A ⊂ ZN with |A| ≥ δN contains at
least cN2 3-APs, provided N is sufficiently large.

Roth’s theorem (weighted version)

∀δ > 0 ∃c > 0 so that every f : ZN → [0, 1] with Ef ≥ δ satisfies

Ex ,d∈ZN
[f (x)f (x + d)f (x + 2d)] ≥ c

provided N is sufficiently large.



Roth’s theorem: weighted version

Roth’s theorem (counting version)

∀δ > 0 ∃c > 0 so that every A ⊂ ZN with |A| ≥ δN contains at
least cN2 3-APs, provided N is sufficiently large.

Roth’s theorem (weighted version)

∀δ > 0 ∃c > 0 so that every f : ZN → [0, 1] with Ef ≥ δ satisfies

Ex ,d∈ZN
[f (x)f (x + d)f (x + 2d)] ≥ c

provided N is sufficiently large.



Roth’s theorem (weighted version)

∀δ > 0 ∃c > 0 so that every f : ZN → [0, 1] with E[f ] ≥ δ satisfies

Ex ,d∈ZN
[f (x)f (x + d)f (x + 2d)] ≥ c

provided N is sufficiently large.

Sparse setting: some sparse host set S ⊂ ZN . More generally, use
a normalized measure:

ν : ZN → [0,∞) with Eν = 1.

E.g., ν = N
|S |1S normalized indicator function.

The subset A ⊂ S with |A| ≥ δ|S | corresponds to

f : ZN → [0,∞), Ef ≥ δ

and f majorized by ν, meaning that f (x) ≤ ν(x) ∀x ∈ ZN .
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Sets Functions

Dense
setting

A ⊂ ZN

|A| ≥ δ
f : ZN → [0, 1]

Ef ≥ δ

Sparse
setting

A ⊂ S ⊂ ZN

|A| ≥ δ |S |
f ≤ ν : ZN → [0,∞)

Ef ≥ δ, Eν = 1

(sparse with ν ≡ 1 −→ dense setting)



Relative Roth theorem

Roth’s theorem (weighted version)

∀δ > 0 ∃c > 0 so that every f : ZN → [0, 1] with Ef ≥ δ satisfies

Ex ,d∈ZN
[f (x)f (x + d)f (x + 2d)] ≥ c

provided N is sufficiently large.

Relative Roth theorem (Conlon, Fox, Z.)

∀δ > 0 ∃c > 0 so that if

ν : ZN → [0,∞) satisfies the 3-linear forms condition, and

f : ZN → [0,∞) majorized by ν and Ef ≥ δ, then

Ex ,d∈ZN
[f (x)f (x + d)f (x + 2d)] ≥ c

provided N is sufficiently large.



3-linear forms condition

The density of K2,2,2 in

ZN

ZNZN

x

y
z

ν(2x + y) ν(x − z)

ν(−y − 2z)



Relative Roth theorem (Conlon, Fox, Z.)

∀δ > 0 ∃c > 0 so that if

ν : ZN → [0,∞) satisfies the 3-linear forms condition, and

f : ZN → [0,∞) majorized by ν and Ef ≥ δ, then

Ex ,d∈ZN
[f (x)f (x + d)f (x + 2d)] ≥ c

provided N is sufficiently large.

ν : ZN → [0,∞) satisfies the 3-linear forms condition if

E[ν(2x + y)ν(2x ′ + y)ν(2x + y ′)ν(2x ′ + y ′)·
ν(x − z)ν(x ′ − z)ν(x − z ′)ν(x ′ − z ′)·
ν(−y − 2z)ν(−y ′ − 2z)ν(−y − 2z ′)ν(−y ′ − 2z ′)] = 1 + o(1)

as well as if any subset of the 12 factors were deleted.



Relative Szemerédi theorem (Conlon, Fox, Z.)

∀δ > 0, k ∈ N ∃c(k, δ) > 0 so that if

ν : ZN → [0,∞) satisfies the k-linear forms condition, and

f : ZN → [0,∞) majorized by ν and Ef ≥ δ, then

Ex ,d∈ZN
[f (x)f (x + d)f (x + 2d) · · · f (x + (k − 1)d)] ≥ c(k, δ)

provided N is sufficiently large.

k = 4: build a weighted 4-partite 3-uniform hypergraph

on W ×X ×Y : ν(3w + 2x + y )
on W × X × Z : ν(2w + x − z)
on W × Y × Z : ν(w − y − 2z)
on X ×Y ×Z : ν( −x −2y −3z)

common diff:
−w−x−y−z

4-linear forms condition: correct count of the 2-blow-up of the

simplex K
(3)
4 (as well as its subgraphs)
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Two approaches

Conlon, Fox, Z.
A relative Szemerédi theorem. 20pp

More generalTransfer hypergraph removal lemma

Z.
An arithmetic transference proof of a relative Sz. theorem. 6pp

More directTransfer Szemerédi’s theorem



Transference

Start with f ≤ ν

(sparse) f : ZN → [0,∞) Ef ≥ δ

Dense model theorem: one can approximate f (in cut norm) by

(dense) f̃ : ZN → [0, 1] Ef̃ = Ef

Counting lemma implies

Ex ,d [f (x)f (x + d)f (x + 2d)] ≈ Ex ,d [f̃ (x)f̃ (x + d)f̃ (x + 2d)]

≥ c [By Roth’s Thm (weighted version)]

=⇒ relative Roth theorem
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Cut norm

A B

X Y
Weighted bipartite graphs g , g̃ : X × Y → R

Cut norm (Frieze-Kannan): ‖g − g̃‖� ≤ ε
means that for all A ⊂ X and B ⊂ Y :∣∣∣∣Ex∈X

y∈Y
[(g(x , y)− g̃(x , y))1A(x)1B(y)]

∣∣∣∣ ≤ ε

For ZN : f , f̃ : ZN → R being ε-close in cut norm means:
for all A,B ⊂ ZN∣∣∣Ex ,y∈ZN

[(f (2x + y)− f̃ (2x + y))1A(x)1B(y)]
∣∣∣ ≤ ε.

(weaker than being close in Gowers uniformity norm)
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Dense model theorem

Theorem (Dense model)

If ν : ZN → [0,∞) is close to 1 in cut norm then

∀ f : ZN → [0,∞) majorized by ν

∃ f̃ : ZN → [0, 1] s.t. f is close to f̃ in cut norm and Ef = Ef̃

Proof approaches

1. Regularity-type energy-increment argument
(Green–Tao, Tao–Ziegler)

2. Separating hyperplane theorem / LP duality
+ Weierstrass polynomial approximation theorem

(Gowers & Reingold–Trevisan–Tulsiani–Vadhan)
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Counting lemma

Weighted graphs g , g̃ : (X × Y ) ∪ (X × Z ) ∪ (Y × Z )→ R

Triangle counting lemma (dense setting)

Assume 0 ≤ g , g̃ ≤ 1. If ‖g − g̃‖� ≤ ε, then

E[g(x , y)g(x , z)g(y , z)]

= E[g̃(x , y)g̃(x , z)g̃(y , z)] + O(ε).

x

y z

|E[(g(x , y)− g̃(x , y))a(x)b(y)]| ≤ ε ∀a : X → [0, 1], b : Y → [0, 1]

E[g(x , y)g(x , z)g(y , z)] = E[g̃(x , y)g(x , z)g(y , z)] + O(ε)

= E[g̃(x , y)g̃(x , z)g(y , z)] + O(ε)

= E[g̃(x , y)g̃(x , z)g̃(y , z)] + O(ε)

This argument doesn’t work in the sparse setting (g unbounded)
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Sparse counting lemma

Sparse triangle counting lemma (Conlon, Fox, Z.)

Assume that ν satisfies the 3-linear forms condition.
If 0 ≤ g ≤ ν, 0 ≤ g̃ ≤ 1 and ‖g − g̃‖� = o(1), then

E[g(x , y)g(x , z)g(y , z)] = E[g̃(x , y)g̃(x , z)g̃(y , z)] + o(1).

Proof ingredients

1 Cauchy-Schwarz

2 Densification

3 Apply cut norm/discrepancy (as in dense case)
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Densification

x

y zz ′

E[g(x , z)g(y , z)g(x , z ′)g(y , z ′)]

= E[g ′(x , y)g(x , z)g(y , z)]

Set g ′(x , y) := Ez ′ [g(x , z ′)g(y , z ′)],
i.e., codegrees

g ′(x , y) . 1 for almost all (x , y)

Made X × Y dense. Now repeat for X × Z & Y × Z .
Reduce to dense setting.
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Transference

Start with f ≤ ν

(sparse) f : ZN → [0,∞) Ef ≥ δ

Dense model theorem: one can approximate f (in cut norm) by

(dense) f̃ : ZN → [0, 1] Ef̃ = Ef

Counting lemma implies

Ex ,d [f (x)f (x + d)f (x + 2d)] ≈ Ex ,d [f̃ (x)f̃ (x + d)f̃ (x + 2d)]

≥ c [By Roth’s Thm (weighted version)]

=⇒ relative Roth theorem



Coming Soon

The Green-Tao theorem: an exposition

A gentle exposition giving a complete & self-contained proof
of the Green-Tao theorem (other than a black-box application of

Szemerédi’s theorem)

∼ 25 pages
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Relative Szemerédi theorem (Conlon, Fox, Z.)

If ν : ZN → [0,∞) satisfies the k-linear forms condition, then any
f with 0 ≤ f ≤ ν and

Ex ,d∈ZN
[f (x)f (x + d)f (x + 2d) · · · f (x + (k − 1)d)] = o(1)

must satisfy Ef = o(1).

3-linear forms condition: (x , x ′, y , y ′, z , z ′ ∼ Unif(ZN))

E[ν(2x + y)ν(2x ′ + y)ν(2x + y ′)ν(2x ′ + y ′)·
ν(x − z)ν(x ′ − z)ν(x − z ′)ν(x ′ − z ′)·
ν(−y − 2z)ν(−y ′ − 2z)ν(−y − 2z ′)ν(−y ′ − 2z ′)] = 1 + o(1)

as well as if any subset of the 12 factors were deleted.

4-linear forms condition: E[ν(3w + 2x + y) · · · ] = 1 + o(1)

THANK YOU!


