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Green—Tao Theorem (arXiv 2004; Annals 2008)

The primes contain arbitrarily long arithmetic progressions.

Examples:
@ 3,57
e 5, 11,17, 23, 29
e 7,37,67,97, 127, 157
@ Longest known: 26 terms



Green—Tao Theorem (2008)

The primes contain arbitrarily long arithmetic progressions (AP).

Szemerédi's Theorem (1975)

Every subset of N with positive density contains arbitrarily long
APs.

AN[N
(upper) density of A C N is lim sup lAnIv
N—oco N
V] = {1,2,.... N}
P = prime numbers
PNI[N 1
Prime number theorem: Ll il ~

N log N



Proof strategy of Green—Tao theorem

P = prime numbers, @ = “almost primes”
[P O[N]

Qnv)

P C Q with relative positive density, i.e.,

Step 1:

Relative Szemerédi theorem (informally)

If S C N satisfies certain pseudorandomness conditions, then every
subset of S of positive density contains long APs.

Step 2: Construct a superset of primes that satisfies the conditions.
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Relative Szemerédi theorem

Relative Szemerédi theorem (informally)

If S C N satisfies certain pseudorandomness conditions, then every
subset of S of positive density contains long APs.

What pseudorandomness conditions?

@ Linear forms condition
Green—Tao:

@ Correlation condition + no longer needed

A natural question (e.g., asked by Green, Gowers, ...

Does relative Szemerédi theorem hold with weaker and more
natural hypotheses?

Our main result
Yes! A weak linear forms condition suffices.




Szemerédi's theorem
Host set: N

Relative Szemerédi theorem

Host set: some sparse subset of integers

Conclusion: relatively dense subsets contain long APs



Szemerédi's theorem
Host set: N

Relative Szemerédi theorem
Host set: some sparse subset of integers
Random host set
e Kohayakawa—tuczak-Rodl '96  3-AP, p > N—1/2

o Conlon—Gowers '10-+
Schacht '10+

Pseudorandom host set

k-AP, p > N—1/(k=1)

@ Green—Tao '08 linear forms + correlation

@ Conlon—-Fox-Z. '13+ linear forms

Conclusion: relatively dense subsets contain long APs



Roth’s theorem

Roth's theorem (1952)
If A C [N]is 3-AP-free, then |A| = o(N).

[N] :.={1,2,...,N}
3-AP = 3-term arithmetic progression

It'll be easier (and equivalent) to work in Zy := Z/NZ.



Proof of Roth's theorem

Roth's theorem (1952)
If AC Zy is 3-AP-free, then |A| = o(N).

X

Given A, construct tripartite Ga
graph Ga with vertex sets

X=Y=2Z=17Zpy.
YQ QZ
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graph G with vertex sets X~y iff
X=Y=7=7pn. 2x+y€EA
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Proof of Roth's theorem

Roth's theorem (1952)

If AC Zy is 3-AP-free, then |A| = o(N).

Given A, construct tripartite
graph Ga with vertex sets
X=Y=7=7pn.

Ga
x ~ y iff x ~ z iff
2x+y€eA x—z€A

Y y ~ z iff Z
—y—2z€ A




Proof of Roth's theorem

Roth's theorem (1952)

If AC Zy is 3-AP-free, then |A| = o(N).

Given A, construct tripartite
graph Ga with vertex sets
X=Y=7=7pn.

Triangle xyz in Gy <—
2x+y, x—z, —y—2z €A

Ga

x ~ y iff x ~ z iff
2x+y€eA x—z€A

Y y ~ z iff Z
—y—2z€ A




Proof of Roth's theorem

Roth's theorem (1952)

If AC Zy is 3-AP-free, then |A| = o(N).

Given A, construct tripartite
graph Ga with vertex sets
X=Y=7=7pn.

Triangle xyz in Gy <—
2x+y, x—z, —y—2z €A
It's a 3-AP with diff —x —y — z
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Y y ~ z iff Z
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Proof of Roth's theorem

Roth's theorem (1952)

If AC Zy is 3-AP-free, then |A| = o(N).

Given A, construct tripartite
graph Ga with vertex sets
X=Y=7=7pn.

Triangle xyz in Gy <—
2x+y, x—z, —y—2z €A
It's a 3-AP with diff —x —y — z

No triangles?

Ga

x ~ y iff x ~ z iff
2x+y€eA x—z€A

Y y ~ z iff Z
—y—2z€ A




Proof of Roth's theorem

Roth's theorem (1952)
If AC Zy is 3-AP-free, then |A| = o(N).

Given A, construct tripartite Ga
graph G with vertex sets X~y iff o 2 iff
X=Y=7=7pn. 2x+y €A xX—z€A

Triangle xyz in Gy <—
2x+y, x—z, —y—2z €A
It's a 3-AP with diff —x —y — z y

y ~ z iff
—y—2z€ A
Ne-triangles? Only triangles «— trivial 3-APs with diff 0.



Proof of Roth's theorem

Roth's theorem (1952)
If AC Zy is 3-AP-free, then |A| = o(N).

X
Given A, construct tripartite Ga
graph G with vertex sets X~y iff o 2 iff
X=Y=2=7Zn. 2x+y €A x—z€A

Triangle xyz in Gy <—
2x+y, x—z, —y—2z €A
It's a 3-AP with diff —x —y — z y

y ~ z iff
—y—2z€ A

Ne-triangles? Only triangles «— trivial 3-APs with diff 0.

Every edge of the graph is contained in exactly one triangle

(the one with x + y +z = 0).



Proof of Roth's theorem

Roth's theorem (1952)
If AC Zy is 3-AP-free, then |A| = o(N).

Constructed a graph with
@ 3N vertices
e 3N|A| edges

@ every edge in exactly one triangle



Proof of Roth's theorem

Roth's theorem (1952)
If AC Zy is 3-AP-free, then |A| = o(N).

Constructed a graph with
@ 3N vertices
e 3N|A| edges

@ every edge in exactly one triangle

Theorem (Ruzsa & Szemerédi '76)

If every edge in a graph G = (V/, E) is contained in exactly one
triangle, then |E| = o(|V|?).

(a consequence of the triangle removal lemma)

So 3N|A| = o(N?). Thus |A| = o(N).



Relative Roth theorem

Roth's theorem (1952)
If AC Zy is 3-AP-free, then |A| = o(N).

Relative Roth theorem (Conlon, Fox, Z.)

If S C Zy satisfies some pseudorandomness conditions,
and A C S is 3-AP-free, then |A| = o(|S]).
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Relative Roth theorem

Roth's theorem (1952)
If AC Zy is 3-AP-free, then |A| = o(N).

Relative Roth theorem (Conlon, Fox, Z.)

If S C Zy satisfies some pseudorandomness conditions,
and A C S is 3-AP-free, then |A| = o(|S]).

Pseudorandomness condition for S:

Gs has asymp. the expected number of
embeddings of K>»» & its subgraphs
(compared to random graph of same density)

Ka,2,2 & subgraphs,
eg.,




Analogy with quasirandom graphs

Chung-Graham-Wilson ’89 showed that in constant edge-density
graphs, many quasirandomness conditions are equivalent, one of
which is having the correct (4 count

2-blow-up
E—
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graphs, many quasirandomness conditions are equivalent, one of
which is having the correct (4 count

2-blow-up
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In sparse graphs, the CGW equivalences do not hold.



Analogy with quasirandom graphs

Chung-Graham-Wilson ’89 showed that in constant edge-density
graphs, many quasirandomness conditions are equivalent, one of
which is having the correct (4 count

2-blow-up
° ° E—

In sparse graphs, the CGW equivalences do not hold.

Our results can be viewed as saying that:

Many extremal and Ramsey results about H (e.g., H = K3) in
sparse graphs hold if there is a host graph that behaves
pseudorandomly with respect to counts of the 2-blow-up of H.

—

u]
o)
I
i
it




Roth's theorem: from one 3-AP to many 3-APs

Roth's theorem

V§ > 0. Every A C Zy with |A| > dN contains a 3-AP, provided N
is sufficiently large.




Roth's theorem: from one 3-AP to many 3-APs

Roth's theorem

V§ > 0. Every A C Zy with |A| > dN contains a 3-AP, provided N
is sufficiently large.

By an averaging argument (Varnavides), we get many 3-APs:

Roth’s theorem (counting version)

V6 > 0 dc > 0 so that every A C Zy with |A| > N contains at
least cN? 3-APs, provided N is sufficiently large.




Transference
Start with
(SparSe)

ACSCZn,

|A| > 0§ S|
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Transference
Start with

(sparse) ACS CZy, |A] > 65|
One can find a dense model A for A:
~ A A
(dense) A C Zn, % R % >4
Counting lemma will tell us that

(1

3
) |[{3-APs in A}| ~ |[{3-APs in A}|



Transference
Start with

N

(sparse) ACS CZpy, |A| > 0§ S|
One can find a dense model A for A
(dense) A C Zy, Gl | :2: >0
Counting lemma will tell us that

(3

)3 1{3-APs in A}| ~ |{3-APs in A}|

> cN? [By Roth’s Theorem]
—> relative Roth theorem



Roth's theorem: weighted version

Roth’s theorem (counting version)

V6 > 0 dc > 0 so that every A C Zy with |A| > N contains at
least cN? 3-APs, provided N is sufficiently large.




Roth's theorem: weighted version

Roth’s theorem (counting version)

V6 > 0 dc > 0 so that every A C Zy with |A| > N contains at
least cN? 3-APs, provided N is sufficiently large.

Roth's theorem (weighted version)
V6 > 0 Jc > 0 so that every f: Zy — [0, 1] with Ef > § satisfies

Ex dgezy[f(x)f(x + d)f(x +2d)] > ¢

provided N is sufficiently large.
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Vo > 0 dc > 0 so that every f: Zy — [0, 1] with E[f] > § satisfies

Exdezy[f()f(x + d)f (x +2d)] > ¢

provided N is sufficiently large.

Sparse setting: some sparse host set S C Zp. More generally, use
a normalized measure:

v: Zy — [0, 00) with Ev =1.

Eg,v= %15 normalized indicator function.



Roth’s theorem (weighted version)
Vo > 0 dc > 0 so that every f: Zy — [0, 1] with E[f] > § satisfies

Exdezy[f()f(x + d)f (x +2d)] > ¢

provided N is sufficiently large.

Sparse setting: some sparse host set S C Zp. More generally, use
a normalized measure:

v: Zy — [0, 00) with Ev =1.
Eg,v= %15 normalized indicator function.
The subset A C S with |A| > 4|S| corresponds to
f:Zyn — [0, 00), Ef >0

and f majorized by v, meaning that f(x) < v(x) Vx € Zy.



Sets Functions

Dense ACZy f:Zyn— [0, 1]
Sparse ACSCZy f<v:Zy—[0,00)
setting 4| > 515 Ef >6 Ev=1

(sparse with v =1 — dense setting)



Relative Roth theorem

Roth's theorem (weighted version)

V§ > 0 Jc > 0 so that every : Zy — [0, 1] with Ef > § satisfies

Eyx gezy[f(x)f(x + d)f(x +2d)] > ¢

provided N is sufficiently large.

Relative Roth theorem (Conlon, Fox, Z.)
Vo > 0 dc > 0 so that if
e v: Zy — [0, 00) satisfies the 3-linear forms condition, and
e f:Zy — [0,00) majorized by v and Ef > §, then
Exdezy[f(x)f(x + d)f(x +2d)] > ¢

provided N is sufficiently large.




3-linear forms condition
The density of Koo /4 ‘ i




Relative Roth theorem (Conlon, Fox, Z.)
V6 > 0 Jc > 0 so that if
e v: Zy — [0, 00) satisfies the 3-linear forms condition, and
e f: Zn — [0,00) majorized by v and Ef > 4, then
Ex gezy[f(x)f(x + d)f(x +2d)] > ¢

provided N is sufficiently large.

v: Zn — [0, 00) satisfies the 3-linear forms condition if

Ev(2x + y)v(2x + y)v(2x + y')v(2x' + y'):
v(x — z2)v(xX' — z)v(x — 2 )v(x' — 2
v(—y —22)v(—y —2z)v(—y — 2Z)v(—y' —2Z')] = 1+ o(1)

as well as if any subset of the 12 factors were deleted.



Relative Szemerédi theorem (Conlon, Fox, Z.)

Vo > 0,k € N 3c(k,d) > 0 so that if
e v: Zy — [0,00) satisfies the k-linear forms condition, and
e f: Zn — [0,00) majorized by v and Ef > ¢, then
Ex gezy [F(X)f(x + d)f(x +2d)--- f(x + (k — 1)d)] > c(k, )

provided N is sufficiently large.

k = 4: build a weighted 4-partite 3-uniform hypergraph
on WxXxY:v(Bw+2x+y )
on Wx X xZ: v(2w + x z) common diff:
on WxYxZ viw -y - 22) —W—X—y—2Z
on X xYxZ: v —x—2y—32z)



Relative Szemerédi theorem (Conlon, Fox, Z.)

Vo > 0,k € N 3c(k,d) > 0 so that if
e v: Zy — [0,00) satisfies the k-linear forms condition, and
e f: Zn — [0,00) majorized by v and Ef > ¢, then
Ex gezy [F(X)f(x + d)f(x +2d)--- f(x + (k — 1)d)] > c(k, )

provided N is sufficiently large.

k = 4: build a weighted 4-partite 3-uniform hypergraph
on WxXxY:v(Bw+2x+y )

on W x X xZ: v(2w + x —z) common diff:
on WxYxZ viw —y —2z) —W—X—y—2Z
on X xYxZ: v —x—2y—32z)

4-linear forms condition: correct count of the 2-blow-up of the
simplex Kia) (as well as its subgraphs)



Two approaches
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A relative Szemerédi theorem. 20pp
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An arithmetic transference proof of a relative Sz. theorem. 6pp
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An arithmetic transference proof of a relative Sz. theorem. 6pp
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Two approaches

Conlon, Fox, Z.

A relative Szemerédi theorem. 20pp

@ Transfer hypergraph removal lemma

z

More general

An arithmetic transference proof of a relative Sz. theorem. 6pp
@ Transfer Szemerédi's theorem
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Dense model theorem: one can approximate f (in cut norm) by
(dense)  f:Zy—1[0,1]  Ef =Ef
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Transference
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Dense model theorem: one can approximate f (in cut norm) by
(dense)  f:Zy—1[0,1]  Ef =Ef
Counting lemma implies

By a[f(x)f(x + d)f (x + 2d)] &~ By 4[f (x)F(x + d)F(x + 2d)]
>c

=— relative Roth theorem

[By Roth’s Thm (weighted version)]
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In what sense does 0 < f < 1 approximate 0 < f < 7?7

@ Previous approach (Green—Tao): Gowers uniformity norm

@ Our approach: cut norm (aka discrepancy)

Using cut norm:

@ Cheaper dense model theorem

@ Trickier counting lemma



Cut norm

Weighted bipartite graphs g,g: X x Y = R

X
Cut norm (Frieze-Kannan): ||g — gl|5 < €

Y
means that forall AC X and BC Y:

B l(elxy) - E(x,y»lA(x)lB(y)]\ <e



Cut norm

Weighted bipartite graphs g,g: X x Y = R

X
Cut norm (Frieze-Kannan): ||g — gl|5 < €

Y
means that forall AC X and BC Y:

B l(elxy) - g(x,y»lA(x)lB(y)]\ <e

For Zy: f,?: Zpyn — R being e-close in cut norm means:
forall A/B C Zp

Exyezal(F(2x+y) = F2x + y)1a()16()]| < e

(weaker than being close in Gowers uniformity norm)



Dense model theorem

Theorem (Dense model)

Ifv: Zy — [0,00) is close to 1 in cut norm then
V f: Zn — [0,00) majorized by v

3F: Zy— [0,1] s.t. f is close to f in cut norm and Ef = Ef




Dense model theorem

Theorem (Dense model)

Ifv: Zy — [0,00) is close to 1 in cut norm then
V f: Zn — [0,00) majorized by v

3F: Zy— [0,1] s.t. f is close to f in cut norm and Ef = Ef

Proof approaches
1. Regularity-type energy-increment argument
(Green—Tao, Tao—Ziegler)

2. Separating hyperplane theorem / LP duality
+ Weierstrass polynomial approximation theorem
(Gowers & Reingold—Trevisan—Tulsiani-Vadhan)
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Transference
Start with f < v

(sparse) f:Zn — [0,00) Ef >§
Dense model theorem: one can approximate f (in cut norm) by
(dense) f:Zy —[0,1] Ef = Ef
Counting lemma implies

By a[f(x)f(x + d)f (x + 2d)] & By 4[f (x)F(x + d)F(x + 2d)]
> cC

=— relative Roth theorem

[By Roth’s Thm (weighted version)]



Counting lemma

Weighted graphs g,g: (X x Y)U(X x Z2)U(Y x Z) = R

Triangle counting lemma (dense setting)

Assume 0 < g,g < 1. If |g — g||5 < €, then

Elg(x,y)g(x,2)g(y; z)]
= E[g(x,y)g(x,2)g(y, z)] + O(e).
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Weighted graphs g,g: (X x Y)U(X x Z2)U(Y x Z) = R
Triangle counting lemma (dense setting)

Assume 0 < g,g < 1. If |g — g||5 < €, then
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Va: X —[0,1], b: Y — [0,1]
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Weighted graphs g,g: (X x Y)U(X x Z2)U(Y x Z) = R

Triangle counting lemma (dense setting)

Assume 0 < g,g < 1. If |g — g||5 < €, then

Elg(x,y)g(x,2)g(y; z)]
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Counting lemma

Weighted graphs g,g: (X x Y)U(X x Z2)U(Y x Z) = R

Triangle counting lemma (dense setting)

Assume 0 < g,g < 1. If |g — g||5 < €, then

Elg(x,y)g(x,2)g(y; z)]
= E[g(x,y)&(x,2)g(y, z)] + O(e).

E[(g(x,y) —g(x.¥))a(x)b(y)]| <€ Va: X —[0,1], b: Y —[0,1]

Elg(x,y)g(x,2)g(y, 2)] = E[g(x, y)g(x,z)g(y, z)] + O(e)
= E[g(x,y)g(x,2)g(y, 2)] + O(e)
=E[g(x,y)g(x,2)g(y,z)]| + O(e) O

This argument doesn’t work in the sparse setting (g unbounded)



Sparse counting lemma

Sparse triangle counting lemma (Conlon, Fox, Z.)

Assume that v satisfies the 3-linear forms condition.
f0o<g<v, 0<g<1land|g—g|g=o(1) then

Elg(x,y)g(x,2)g(y,z)] = Elg(x,y)g(x, 2)g(y, z)] + o(1).




Sparse counting lemma

Sparse triangle counting lemma (Conlon, Fox, Z.)

Assume that v satisfies the 3-linear forms condition.
f0o<g<v, 0<g<1land|g—g|g=o(1) then

Elg(x,y)g(x,2)g(y,z)] = Elg(x,y)g(x, 2)g(y, z)] + o(1).

Proof ingredients
@ Cauchy-Schwarz
@ Densification

© Apply cut norm/discrepancy (as in dense case)



Elg(x,2)g(y, z)g(x,2")g(y, 2)]

=] F = = £ DA



Elg(x,2)g(y, z)g(x,2")g(y, 2)]

Set g'(x. y) == Ez[g(x,2')g(y,Z)],
i.e., codegrees

g'(x,y) <1 for almost all (x,y)

o & = = £ DA



Elg(x,2)g(y, z)g(x,2")g(y, 2)]
=E[g'(x,y)e(x,2)g(y, 2)]

Set g'(x. y) == Ez[g(x,2')g(y,Z)],
i.e., codegrees

g'(x,y) <1 for almost all (x,y)

o & = = £ DA



Elg(x,2)g(y, z)g(x,2")g(y, 2)]
=E[g'(x,y)e(x,2)g(y, 2)]

Set g'(x. y) == Ez[g(x,2')g(y,Z)],
i.e., codegrees

g'(x,y) <1 for almost all (x,y)
Made X x Y dense. Now repeat for X x Z & Y x Z.
Reduce to dense setting.



Transference
Start with f < v

(sparse) f:Zn — [0,00) Ef >§
Dense model theorem: one can approximate f (in cut norm) by
(dense)  f:Zy —1[0,1] Ef =Ef
Counting lemma implies

By a[f(x)f(x + d)f (x + 2d)] &~ By 4[f(x)F(x + d)F(x + 2d)]
>c

=— relative Roth theorem

[By Roth’s Thm (weighted version)]



COMING SOON

The Green-Tao theorem: an exposition




COMING SOON

The Green-Tao theorem: an exposition

@ A gentle exposition giving a complete & self-contained proof
of the Green-Tao theorem (other than a black-box application of
Szemerédi's theorem)

@ ~ 25 pages



Relative Szemerédi theorem (Conlon, Fox, Z.)

If v: Zn — [0, 00) satisfies the k-linear forms condition, then any
f with 0 < f <v and

Ey dgezy[f(x)f(x + d)f(x +2d)--- f(x + (k — 1)d)] = o(1)

must satisfy Ef = o(1).

3-linear forms condition: (x,x’,y,y’, z,z' ~ Unif(Zy))

E[u(2x 4y (2X + y)(2x +y W(2x + ')
v(x —z)v(x' — 2)v(x = 2 )w(x' - )
v(—y = 22)v(~y' = 2z)v(~y = 2Z')v(~y' = 2Z')| = 1 + o(1)

as well as if any subset of the 12 factors were deleted.

4-linear forms condition: E[v(3w +2x+y)---] =1+ o(1)

THANK YOU!



