THE STRUCTURE OF THE FOURIER SPECTRUM OF BOOLEAN FUNCTIONS, AND THEIR COMPLEXITY

Ben Lee Volk (Technion)

Based on joint work with Amir Shpilka and Avishay Tal

Main Theme:

Boolean functions with **simple** Fourier transform have **small** complexity.

There are several

- ways to measure the complexity of the Fourier transform
- 2. relevant computational models

OUTLINE

- Boolean functions with small spectral norm
 - Circuit Complexity
 - Decision Trees
- Boolean functions with very few non-zero coefficients
 - Communication Complexity of XOR functions
 - Decision Trees

BOOLEAN FUNCTIONS

Consider the vector space of functions:

$$\{f \mid f \colon \mathbb{Z}_2^n \to \mathbb{R}\}.$$

• $\chi_{\alpha}(x)=(-1)^{\langle \alpha,x\rangle}$ for all $\alpha\in\mathbb{Z}_2^n$ is an orthonormal basis with respect to the inner product

$$\langle f, g \rangle = \mathbb{E}_{x}[f(x)g(x)]$$

- $f(x) = \sum_{\alpha} \hat{f}(\alpha) \chi_{\alpha}(x)$.
- We're interested in functions that only take the values $\{\pm 1\}$ (aka boolean functions).

SPECTRAL NORM OF BOOLEAN FUNCTIONS

The spectral norm
$$(\ell_1 \text{ norm})$$
 of $f: \mathbb{Z}_2^n \to \{-1,1\}$ is: $\|\hat{f}\|_1 = \sum_{\alpha} |\hat{f}(\alpha)|$.

Parseval and Cauchy-Schwartz imply: For every boolean function, $\|\hat{f}\|_1 \le 2^{n/2}$.

For a random boolean function f, $\|\hat{f}\|_1 = 2^{\Omega(n)}$.

FUNCTIONS WITH SMALL SPECTRAL NORM

If $f: \mathbb{Z}_2^n \to \{-1,1\}$ is an indicator function of an affine subspace $V \subseteq \mathbb{Z}_2^n$, $\|\hat{f}\|_1 \leq 3$.

(Examples of such functions: AND, OR, XOR)

FUNCTIONS WITH SMALL SPECTRAL NORM

Theorem ([Green-Sanders08]): Suppose f is a boolean function with $\|\hat{f}\|_1 \leq M$. Then

$$f = \sum_{i=1}^L \pm \mathbf{1}_{V_i},$$

where $V_i \subseteq \mathbb{Z}_2^n$ are affine subspaces and $L \leq 2^{2^{O(M^4)}}$.

CIRCUIT COMPLEXITY OF FUNCTIONS WITH SMALL SPECTRAL NORM

AC⁰[2]: Class of boolean functions computed by circuits with polynomial size, constant depth, and unbounded fan-in AND, OR, NOT and "MOD 2" gates.

An application of **[GS08]**: Functions with constant spectral norm are in AC⁰[2].

CIRCUIT COMPLEXITY OF FUNCTIONS WITH SMALL SPECTRAL NORM

Proof:

Part #1: Every indicator of a subspace (AND of at most n parities or negation of parities) is in $AC^0[2]$:

CIRCUIT COMPLEXITY OF FUNCTIONS WITH SMALL SPECTRAL NORM

Part #2:

Number of gates: $2^{2^{O(M^4)}} \cdot poly(n)$. Depth = O(1)

DECISION TREES

PARITY DECISION TREES $(\oplus$ -DT)

Same as decision tree, except that every internal node is labeled with a linear function over \mathbb{Z}_2^n :

 $D^{\oplus}(f) \coloneqq \text{minimal } depth \text{ of a } \oplus \text{-DT for } f$ $\text{size}_{\oplus}(f) \coloneqq \text{minimal } size \text{ of a } \oplus \text{-DT for } f$ (minimal number of leaves).

PARITY DECISION TREES $(\oplus$ -DT)

A function f computed by a parity decision tree of size s has $\|\hat{f}\|_1 \leq s$.

This inequality can be quite loose (e.g. f = AND: $\|\hat{f}\|_1 \leq 3$, $\text{size}_{\oplus}(f) = \Omega(n)$.

PARITY DECISION TREES $(\oplus$ -DT)

Theorem: If f is a boolean function with $\|\hat{f}\|_1 \leq M$ then $\operatorname{size}_{\bigoplus}(f) \leq n^{M^2}$.

Key Lemma: Can find a hyperplane such that the restriction of f to it has significantly smaller spectral norm.

KEY LEMMA

 $\|\hat{f}\|_1 = M > 1$, $\hat{f}(\alpha)$, $\hat{f}(\beta)$ two largest coefficients. $f|_{\chi_{\alpha+\beta}=z} \coloneqq \text{restriction of } f \text{ to } \{x \mid \chi_{\alpha+\beta}(x)=z\}.$

Then:

$$\left\| f \right\|_{\chi_{\alpha+\beta}=1} \left\| \le M - \left| \hat{f}(\alpha) \right| \le M - 1/M$$

$$\left\| f \right\|_{\chi_{\alpha+\beta}=-1} \left\| \le M - \left| \hat{f}(\beta) \right|$$

(*or the other way around)

KEY LEMMA

BACK TO PARITY DECISION TREES $(\oplus$ -DT)

Set
$$L(n, M) = \max_{\|\hat{f}\|_1 \le M} \operatorname{size}_{\bigoplus}(f)$$
. By Key Lemma:

Remark: More careful analysis of Key Lemma gives $2^{M^2}n^M$.

A **formula** is a **circuit** such that every gate has outdegree 1 (the underlying graph is a tree).

Let L(f) be the size of a minimal De Morgan formula (gates allowed: fan-in 2 AND, OR, NOT) which computes f.

Example: $L(XOR) = O(n^2)$.

Observation: If $size_{\oplus}(f) = s$ then $L(f) = O(s \cdot n^2)$.

Proof: Induction on s.

$$f_L$$
 $\chi_{\gamma}(x)$ f_R

$$L(\chi_{\gamma}), L(\neg \chi_{\gamma}) = O(n^2).$$

$$f = (\chi_{\gamma} \wedge f_L) \vee (\neg \chi_{\gamma} \wedge f_R)$$

$$\Rightarrow L(f) \leq L(f_L) + L(f_R) + O(n^2).$$

Corollary: Functions with small spectral norm not only have small $AC^0[2]$ **circuits** but also small **formulas** (of size $O(2^{M^2}n^M \cdot n^2)$).

Furthermore: formulas, unlike trees, can be balanced.

So f also has a formula of depth $O(M \log n + M^2)$.

SPARSITY OF BOOLEAN FUNCTIONS

The **sparsity** of $f: \mathbb{Z}_2^n \to \{-1,1\}$ is the number of its non-zero Fourier coefficients:

$$\left\|\hat{f}\right\|_{0} = \#\left\{\alpha \mid \hat{f}(\alpha) \neq 0\right\}.$$

For a random function f, $\|\hat{f}\|_0 = (1 - o(1))2^n$.

SPARSE FUNCTIONS: EXAMPLES

If f is computed by a \oplus -DT of depth d and size s, then $\|f\|_0 \le s \cdot 2^d \le 4^d$.

Example: "Address function."

Input:

$$x_1 \cdots x_{\log n}$$

$$y_1y_2 \quad \cdots \quad y_{n-1}y_n$$

Output: $y_{x_1 \cdots x_{\log n}}$.

Sparsity: n^2 .

SPARSE FUNCTIONS

Conjecture ([Zhang-Shi10],[Montanaro-Osborne09]):

 $\exists c > 0$ such that for every boolean function f,

$$D^{\oplus}(f) \le \left(\log \|\hat{f}\|_{0}\right)^{c}.$$

COMMUNICATION COMPLEXITY

Want to compute F(x,y).

 $CC^{det}(F)$ = minimal number of bits needed to communicate in order to compute F deterministically.

COMMUNICATION COMPLEXITY

Observation: A parity decision tree of depth d for $F \Rightarrow$ a protocol with at most 2d bits of communication.

COMMUNICATION COMPLEXITY: LOG-RANK CONJECTURE

Associate with every function F a real $2^n \times 2^n$ matrix M_F such that $M_F(x,y) = F(x,y)$.

Fact [Mehlhorn-Schmidt82]: $CC^{det}(F) \ge \log \operatorname{rank}(M_F)$.

Log-Rank Conjecture [Lovász-Saks88]: $\exists c$ such that $CC^{\det}(F) \leq (\log \operatorname{rank}(M_F))^c$.

COMMUNICATION COMPLEXITY: SPARSITY

Suppose now $F(x,y) = f(x \oplus y)$, for $f: \mathbb{Z}_2^n \to \{-1,1\}$. (Such functions are referred to as "**XOR functions.**")

The eigenvectors of M_F are the Fourier characters, and the eigenvalues are (up to normalization) the Fourier coefficients of f.

So rank
$$(M_F) = \|\hat{f}\|_0$$
.

SPARSE FUNCTIONS AND ⊕-DTs

If follows that if

$$D^{\oplus}(f) = \text{poly}\log \|\hat{f}\|_{0}$$

Then the log-rank conjecture holds for XOR functions.

Best separation known:

a function
$$f$$
 such that $D^{\oplus}(f) = \Omega\left(\log \|\hat{f}\|_0^{1.63...}\right)$

[Nisan-Szegedy92, Nisan-Wigderson95, Kushilevitz94]

SPARSE FUNCTIONS: WHAT IT TAKES

When we look at f restricted to $\{x \mid \chi_{\alpha}(x) = \pm 1\}$:

BEFORE
$$\hat{f}(\beta_1)$$
 $\hat{f}(\beta_1 + \alpha)$ $\hat{f}(\beta_2)$ $\hat{f}(\beta_2 + \alpha)$...

AFTER $\hat{f}(\beta_1) \pm \hat{f}(\beta_1 + \alpha)$ $\hat{f}(\beta_2) \pm \hat{f}(\beta_2 + \alpha)$...

We want to find α with many pairs $\hat{f}(\beta)$, $\hat{f}(\beta + \alpha)$ in the support of \hat{f} .

SPARSE FUNCTIONS WITH SMALL SPECTRAL NORM

What is f has $\|\hat{f}\|_1 \le M$ and $\|\hat{f}\|_0 = s$?

Theorem: $D^{\oplus}(f) \leq M^2 \log s$

([Tsang-Wong-Xie-Zhang13]: $M \log s$).

SPARSE FUNCTIONS WITH SMALL SPECTRAL NORM

Proof:

Recall Key Lemma: Can find restriction with reduces the spectral norm by M - 1/M.

Apply Key Lemma M^2 times to obtain:

Theorem: For all f, \exists affine subspace V of co-dimension $\leq M^2$ such that $f|_V$ is constant.

There exists M^2 linear functions $\chi_{\alpha_1}, \dots, \chi_{\alpha_{M^2}}$ which can be fixed in a way which makes f constant. Consider the

tree:

Because $f|_{\{\chi_{\alpha_i}=b_i\}}$ is constant, for any non-zero $\hat{f}(\beta)$ there is a non-zero $\hat{f}(\beta+\gamma)$ with $\gamma\in\mathrm{span}\{\alpha_i\}$.

Hence: $\hat{f}(\beta)$ and $\hat{f}(\beta + \gamma)$ collapse to the same coefficient under any settings of the χ_{α_i} 's:

$$\left\| f \left| \widehat{f} \right\|_{\left\{ \chi_{\alpha_i} = b_i' \right\}} \right\|_0 \le \left\| \widehat{f} \right\|_0 / 2.$$

Iterate at most $\log \|\hat{f}\|_0$ steps.

The same argument shows that in order to prove $D^{\oplus}(f) = \text{poly} \log \|\hat{f}\|_{0}$, it's enough to prove:

Conjecture: For every boolean function f there is a subspace of co-dimension poly $\log \|\hat{f}\|_0$ on which f is constant.

(since the reverse implication is immediate, this conjecture is in fact equivalent)

SUMMARY

Functions with small spectral norm have:

- Small circuits
- Small formulas
- Small ⊕-DTs
- (They also have small randomized [Grolmusz97] and deterministic [Gavinsky-Lovett13] communication complexity)

Sparse Functions:

Open problem