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Main Theme:

Boolean functions with simple Fourier transform 
have small complexity.

There are several

1. ways to measure the complexity of the Fourier 
transform

2. relevant computational models



OUTLINE

• Boolean functions with small spectral norm
• Circuit Complexity

• Decision Trees

• Boolean functions with very few non-zero coefficients
• Communication Complexity of XOR functions

• Decision Trees



BOOLEAN FUNCTIONS

•Consider the vector space of functions:
� �: ℤ�� → ℝ .

• 	
 � = −1 
,� for all � ∈ ℤ�� is an orthonormal basis 
with respect to the inner product

�, � = �� � � � �
• � � = ∑ �� � 	
 �
 .
•We’re interested in functions that only take the values 

±1 (aka boolean functions).



SPECTRAL NORM OF BOOLEAN FUNCTIONS

The spectral norm (ℓ� norm) of �: ℤ�� → −1,1 is:

�� � = � �� �



.

Parseval and Cauchy-Schwartz imply:
For every boolean function, �� � ≤ 2�/�.

For a random boolean function �, �� � = 2� � .



FUNCTIONS WITH SMALL SPECTRAL NORM

If �: ℤ�� → −1,1 is an indicator function of an affine 
subspace � ⊆ ℤ��, �� � ≤ 3.

(Examples of such functions: AND, OR, XOR)



FUNCTIONS WITH SMALL SPECTRAL NORM

Theorem ([Green-Sanders08]): Suppose � is a boolean
function with �� � ≤ ". Then

� = � ±#$%

&

'(�
,

where �' ⊆ ℤ�� are affine subspaces and ) ≤ 2�* +,
.



CIRCUIT COMPLEXITY OF FUNCTIONS WITH SMALL SPECTRAL NORM

AC/[2]: Class of boolean functions computed by circuits 
with polynomial size, constant depth, and unbounded
fan-in AND, OR, NOT and “MOD 2” gates.

An application of [GS08]: Functions with constant 
spectral norm are in AC/[2].



CIRCUIT COMPLEXITY OF FUNCTIONS WITH SMALL SPECTRAL NORM

Proof:

Part #1: Every indicator of a subspace (AND of at most 2
parities or negation of parities) is in AC/[2]:

AND

	
3 � 	
4 � 	
5 �…



CIRCUIT COMPLEXITY OF FUNCTIONS WITH SMALL SPECTRAL NORM

Part #2:

Majority of ) = 6 1 bits

1$3 −1$4 1$7…

Number of gates: 2�* +, ⋅ poly 2 . Depth = 6 1



DECISION TREES
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PARITY DECISION TREES (⊕-DT)

Same as decision tree, except that every internal node is 
labeled with a linear function over ℤ��:

	
 �

<⊕ � ≔ minimal depth of a ⊕-DT for �
size⊕ � ≔ minimal size of a ⊕-DT for �
(minimal number of leaves).



PARITY DECISION TREES (⊕-DT)

A function � computed by a parity decision tree of size >
has �� � ≤ >.

This inequality can be quite loose (e.g. � = AND:
�� � ≤ 3, size⊕ � = Ω 2 .



PARITY DECISION TREES (⊕-DT)

Theorem: If � is a boolean function with �� � ≤ " then 

size⊕ � ≤ 2F4
.

Key Lemma: Can find a hyperplane such that the 
restriction of � to it has significantly smaller spectral 
norm.



KEY LEMMA

�� � = " > 1, �� � , �� H two largest coefficients.

�|JKLM(N ≔ restriction of � to � 	
OP � = Q .

Then:

� RJKLM(�
S

�
≤ " − �� � ≤ " − 1/"

� RJKLM(T�
S

�
≤ " − �� H

(*or the other way around)



KEY LEMMA

	
OP �

�� � = "

�′V
� ≤ " − 1/" �WWX

� ≤ "



BACK TO PARITY DECISION TREES (⊕-DT)

Set ) 2, " = max
\� 3]F

size⊕ � . By Key Lemma:

⇒ ) 2, " ≤ ) 2 − 1, " − 1/" + ) 2 − 1, `
Remark: More careful analysis of Key Lemma gives 2F42F.

	
OP �

)(2, ")

) 2 − 1, " − 1/" ) 2 − 1, "



FORMULAS

A formula is a circuit such that every gate has outdegree 1 
(the underlying graph is a tree).

�� ∧ �� ∧ �: ∨ �� ∧ �� ∧ ¬�f

�� �� �: �� �� �f

∧
∧

∨

∧ ¬
∧



FORMULAS

Let )(�) be the size of a minimal De Morgan formula (gates 
allowed: fan-in 2 AND, OR, NOT) which computes �.

Example: ) XOR = 6 2� .



FORMULAS

Observation: If size⊕ � = > then ) � = 6 > ⋅ 2� .

Proof: Induction on >.

) 	j , ) ¬	j = 6 2� .

� = 	j ∧ �& ∨ ¬	j ∧ �k
⇒ ) � ≤ ) �& + ) �k + 6 2� .

	j �
�k�&



FORMULAS

Corollary: Functions with small spectral norm not only 
have small AC/[2] circuits but also small formulas (of 

size 6 2F42F ⋅ 2� ).

Furthermore: formulas, unlike trees, can be balanced.

So � also has a formula of depth 6 " log 2 + "� .



SPARSITY OF BOOLEAN FUNCTIONS

The sparsity of �: ℤ�� → −1,1 is the number of its non-
zero Fourier coefficients:

�� / = # � �� � ≠ 0 .

For a random function �, �� / = 1 − r 1 2�.



SPARSE FUNCTIONS: EXAMPLES

If � is computed by a ⊕-DT of depth s and size >, then 
�� / ≤ > ⋅ 2t ≤ 4t.

Example: “Address function.”

Input:  

Output: v�3⋯�xyz {.

Sparsity: 2�.

�� ⋯ �|}~ � v�v�    ⋯   v�T�v�



SPARSE FUNCTIONS

Conjecture ([Zhang-Shi10],[Montanaro-Osborne09]): 
∃� > 0 such that for every boolean function �,

<⊕ � ≤ log �� /
� .



COMMUNICATION COMPLEXITY

Alice has � ∈ 0,1 � Bob has v ∈ 0,1 �

�: 0,1 � × 0,1 � → {0,1}

Want to compute �(�, v).

CCdet � = minimal number of bits needed to 

communicate in order to compute � deterministically.



COMMUNICATION COMPLEXITY

Observation: A parity decision tree of depth s for � ⇒
a protocol with at most 2s bits of communication.

� �'
'∈�

+ � v�
�∈�



COMMUNICATION COMPLEXITY: LOG-RANK CONJECTURE

Associate with every function � a real 2� × 2� matrix "�
such that "� �, v = � �, v .

Fact [Mehlhorn-Schmidt82]: CCdet � ≥ log rank "� .

Log-Rank Conjecture [Lovász-Saks88]: ∃� such that 

CCdet � ≤ log rank "� �.



COMMUNICATION COMPLEXITY: SPARSITY

Suppose now � �, v = � � ⊕ v , for �: ℤ�� → −1,1 .

(Such functions are referred to as “XOR functions.”)

The eigenvectors of "� are the Fourier characters, and 
the eigenvalues are (up to normalization) the Fourier 
coefficients of �.

So rank "� = �� /.



SPARSE FUNCTIONS AND ⊕-DTs

If follows that if
<⊕ � = poly log �� /

Then the log-rank conjecture holds for XOR functions.

Best separation known:

a function � such that <⊕ � = Ω log �� /
�.�:…

[Nisan-Szegedy92, Nisan-Wigderson95, Kushilevitz94]



SPARSE FUNCTIONS: WHAT IT TAKES

When we look at � restricted to � 	
 � = ±1 :

�� H� + ��� H� �� H� �� H� + � ⋯BEFORE

�� H� ± �� H� + � �� H� ± �� H� + � ⋯AFTER

We want to find � with many pairs �� H , ��(H + �) in the 
support of ��.



SPARSE FUNCTIONS WITH SMALL SPECTRAL NORM

What is � has �� � ≤ " and �� / = >?

Theorem: <⊕ � ≤ "� log >
([Tsang-Wong-Xie-Zhang13]: " log >).



SPARSE FUNCTIONS WITH SMALL SPECTRAL NORM

Proof:

Recall Key Lemma: Can find restriction with reduces the 
spectral norm by " − 1/".

Apply Key Lemma "� times to obtain:

Theorem: For all �, ∃ affine subspace � of co-dimension 
≤ "� such that �|$ is constant.



There exists "� linear functions 	
3 , … , 	
+4 which can 

be fixed in a way which makes � constant. Consider the 
tree:

	
3

1

…

	
4 	
4

…

	
+4 	
+4

?



Because �|{JK%(�%} is constant, for any non-zero �� H
there is a non-zero �� H + � with 
� ∈ span �' .

Hence: �� H and �� H + � collapse to the same 
coefficient under any settings of the 	
% ’s:

� R JK%(�%�
S

/
≤ �� // 2.

Iterate at most log �� / steps.



The same argument shows that in order to prove
<⊕ � = poly log �� /, it’s enough to prove:

Conjecture: For every boolean function � there is a 
subspace of co-dimension poly log �� / on which � is 

constant.

(since the reverse implication is immediate, this 
conjecture is in fact equivalent)



SUMMARY

Functions with small spectral norm have:
• Small circuits

• Small formulas

• Small ⊕-DTs

• (They also have small randomized [Grolmusz97] and deterministic 
[Gavinsky-Lovett13] communication complexity)

Sparse Functions:
• Open problem


