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Main Theme:

Boolean functions with simple Fourier transform
have small complexity.

There are several

1. ways to measure the complexity of the Fourier
transform

2. relevant computational models



OUTLINE

« Boolean functions with small spectral norm
* Circuit Complexity
* Decision Trees
« Boolean functions with very few non-zero coefficients

« Communication Complexity of XOR functions
 Decision Trees



BOOLEAN FUNCTIONS

» Consider the vector space of functions:
(f | f:23 - R}
* o () = (=1){*¥ for all & € Z¥% is an orthonormal basis
with respect to the inner product

(f,9) = Ex[f(x)g(x)]
*f(x) = Zaf(a))(a(x)-

* We're interested in functions that only take the values
{+1} (aka boolean functions).



SPECTRAL NORM OF BOOLEAN FUNCTIONS

The spectral norm (¢, norm) of f:Z} — {—1,1} is:

I71, = ) If@l.

Parseval and Cauchy-Schwartz imply:
For every boolean function, ||f||, < 2m/2.

For a random boolean function f, ||f||, = 2%™.



FUNCTIONS WITH SMALL SPECTRAL NORM

If f-Z7 - {—1,1}is an indicator function of an affine
subspace V ¢ 73, ||f||, < 3.

(Examples of such functions: AND, OR, XOR)



FUNCTIONS WITH SMALL SPECTRAL NORM

Theorem ([Green-Sanders08]): Suppose f is a boolean
function with |||, < M. Then

L
f — Z ilvi )
=1

4
where V; € Z7 are affine subspaces and L < ZZO(M ).



CIRCUIT COMPLEXITY OF FUNCTIONS WITH SMALL SPECTRAL NORM

ACP[2]: Class of boolean functions computed by circuits
with polynomial size, constant depth, and unbounded
fan-in AND, OR, NOT and “MQOD 2” gates.

An application of [GS08]: Functions with constant
spectral norm are in AC°[2].



CIRCUIT COMPLEXITY OF FUNCTIONS WITH SMALL SPECTRAL NORM

Proof:

Part #1: Every indicator of a subspace (AND of at most n
parities or negation of parities) is in AC°[2]:

AND




CIRCUIT COMPLEXITY OF FUNCTIONS WITH SMALL SPECTRAL NORM

T

Majority of L = 0(1) bits

0O - ®

Number of gates: 220(M4) - poly(n). Depth = 0(1)

Part #2:




DECISION TREES




PARITY DECISION TREES (€D-DT)

Same as decision tree, except that every internal node is
labeled with a linear function over Z%:

DO (f) := minimal depth of a @-DT for f
sizeg (f) = minimal size of a @-DT for f
(minimal number of leaves).



PARITY DECISION TREES (€D-DT)

A function f computed by a parity decision tree of size s
has ||f||, <.

This inequality can be quite loose (e.g. f = AND:
I£]l, < 3, sizeg () = Q).



PARITY DECISION TREES (€D-DT)

Theorem: If f is a boolean function with ||f|| < M then
sizegy (f) < nM".

Key Lemma: Can find a hyperplane such that the
restriction of f to it has significantly smaller spectral
norm.



KEY LEMMA

”f”l =M > 1, f(a), f(B) two largest coefficients.
flyusp=z = restriction of f to { x | xa4p(x) =z}.
Then: |

———————

—|f@)| <M —-1/M

f]

Xa+p=1

| f\ 1)

Xa+B="1]l4

(*or the other way around)



KEY LEMMA

A

171, =

IFll, <M —1/m 77l < M



BACK TO PARITY DECISION TREES (<D-DT)

Set L(n,M) = ”]rérnlax sizeg (f). By Key Lemma:
<M

1

L(n, M)

Lin—1,M—-1/M) L(n—1,M)
>LM M) <Ln—-1,M—-1/M)+ L(n—1,m)

Remark: More careful analysis of Key Lemma gives 2M°n™.



FORMULAS

A formula is a circuit such that every gate has outdegree 1
(the underlying graph is a tree).

(x1 /\ x2 /\ X3) V (x1 /\ x2 /\ _IX4_)



FORMULAS

Let L(f) be the size of a minimal De Morgan formula (gates
allowed: fan-in 2 AND, OR, NOT) which computes f.

Example: L(XOR) = 0(n?).



FORMULAS

Observation: If sizeq(f) = s then L(f) = 0(s - n*).
Proof: Induction on s.

fL fr
L(xy ), L(—xy) = 0(n?).

f — (Xy /\fL) \% (_'Xy /\fR)
= L(f) < L(fy) + L(fzr) + 0(n?).



FORMULAS

Corollary: Functions with small spectral norm not only
have small AC°[2] circuits but also small formulas (of

size O(ZMZnM -n?)).
Furthermore: formulas, unlike trees, can be balanced.

So f also has a formula of depth O(M logn + M#).



SPARSITY OF BOOLEAN FUNCTIONS

The sparsity of f:Z} — {—1,1} is the number of its non-
zero Fourier coefficients:

I£lly = #{e | fa) =0},

For a random function f, ||f]| = (1 —o(1))2".



SPARSE FUNCTIONS: EXAMPLES

If £ is computed tziy a @-DT of depth d and size s, then
17l <'s-2¢ < 4

Example: “Address function.’
Input:

X1 *** Xlogn YViY2 = Yn-1n

Output: Va1 -X1og n*

Sparsity: n?.



SPARSE FUNCTIONS

Conjecture ([Zhang-Shi10],[Montanaro-Osborne09]):
3¢ > 0 such that for every boolean function f,

C

p®(f) < (log|If]|,)



BBMMUN_IBATIUN COMPLEXITY

Alice has x € {0,1}" Bob has y € {0,1}"
Want to compute F(x,y).

ccdet gy = minimal number of bits needed to
communicate in order to compute F deterministically.



COMMUNICATION COMPLEXITY

Observation: A parity decision tree of depth d for F =
a protocol with at most 2d bits of communication.




COMMUNICATION COMPLEXITY: LOG-RANK CONJECTURE

Associate with every function F a real 2™ x 2™ matrix My
such that Mz (x,y) = F(x,y).

Fact [Mehlhorn-Schmidt82]: CC4€t(F) > log rank(M5).

Log-Rank Conjecture [Lovasz-Saks88]: 3¢ such that
CCYet(F) < (log rank(My))°.



COMMUNICATION COMPLEXITY: SPARSITY

Suppose now F(x,y) = f(x @ y), for f: Z; - {—1,1}.
(Such functions are referred to as “XOR functions.”)

The eigenvectors of M are the Fourier characters, and
the eigenvalues are (up to normalization) the Fourier
coefficients of f.

So rank(My) = Hf”o



SPARSE FUNCTIONS AND &D-DTs

If follows that if )
D®(f) = polylog||f||,
Then the log-rank conjecture holds for XOR functions.

Best separation known:
a function f such that D®(f) = Q (longuol'63"')
[Nisan-Szegedy92, Nisan-Wigderson95, Kushilevitz94]



SPARSE FUNCTIONS: WHAT IT TAKES

When we look at f restrictedto { x | y,(x) = +1}:

BEFORE f(By) fBy +a) f(B2) f(B2+a)

AFTER FB) + F(By + ) fB2) £ (B + )

We want to find a with many pairs f(B), f (8 + «) in the
support of f.



SPARSE FUNCTIONS WITH SMALL SPECTRAL NORM

Whatis f has ||f|, <M and ||f]| = s?

Theorem: D®(f) < M?logs
([Tsang-Wong-Xie-Zhang13]: M log s).



SPARSE FUNCTIONS WITH SMALL SPECTRAL NORM

Proof:

Recall Key Lemma: Can find restriction with reduces the
spectral normby M — 1/M.

Apply Key Lemma M? times to obtain:

Theorem: For all f, 3 affine subspace V of co-dimension
< M? such that f|, is constant.



There exists M? linear functions xg,, ..., x,, _ which can

2

be fixed in a way which makes f constant.MConsider the

tree: @




Because |, =b;} is constant, for any non-zero f(8)

there is a non-zero f(B +y) with
y € span{a;}.

Hence: f(B) and f (B + y) collapse to the same
coefficient under any settings of the y,.'s:

0

f\
|| al_b

lterate at most log||f|| = steps.



The same argument shows that in order to prove
D®(f) = polylog||f]| , it's enough to prove:

Conjecture: For every boolean function f there is a
subspace of co-dimension poly log||f|| - on which f is
constant.

(since the reverse implication is immediate, this
conjecture is in fact equivalent)



SUMMARY

Functions with small spectral norm have:

e Small circuits
 Small formulas
« Small @-DTs

* (They also have small randomized [Grolmusz97] and deterministic
[Gavinsky-Lovett13] communication complexity)

Sparse Functions:
* Open problem



