Classical Verification of Quantum Computations

Urmila Mahadev *UC Berkeley*

September 12, 2018

Classical versus Quantum Computers

- \triangleright Classical output (decision problem)
- Quantum computers compute in superposition
	- \triangleright Classical description is exponentially large!
- Classical access is limited to measurement outcomes
	- \triangleright Only *n* bits of information

 $\alpha_x |x\rangle$

 \boldsymbol{x}

 $x \in \{0,$

Can a classical computer verify the result of a quantum computation through interaction (Gottesman, 2004)?

Verification through Interactive Proofs

- Classical complexity theory: $IP = PSPACE$ [Shamir92]
- BQP ⊆ PSPACE: Quantum computations can be verified, but only through interaction with a much more powerful prover
- Scaled down to an efficient quantum prover?

Error correcting codes [BFK08][ABE08][FK17][ABEM17]

Bell inequalities [RUV12]

Verification with Post Quantum Cryptography

- In this talk: use post quantum classical cryptography to control the BQP prover
- To do this, require a specific primitive: trapdoor claw-free functions

Core Primitive

- Trapdoor claw-free functions *f*:
	- \blacktriangleright Two to one
	- **F** Trapdoor allows for efficient inversion: given *y*, can output x_0 , x_1 such that $f(x_0) = f(x_1) = y$
	- ► Hard to find a claw (x_0, x_1) : $f(x_0) = f(x_1)$
	- \triangleright Approximate version built from learning with errors in [BCMVV18]
- Quantum advantage: sample *y* and create a superposition over a random claw

$$
\frac{1}{\sqrt{2}}(|x_0\rangle+|x_1\rangle)
$$

which allows sampling of a string $d \neq 0$ such that

$$
d\cdot (x_0\oplus x_1)=0
$$

$$
\frac{1}{\sqrt{2}}(|x_0\rangle+|x_1\rangle) \text{ or } d \cdot (x_0 \oplus x_1) = 0
$$

- Classical verifier can challenge quantum prover
	- \triangleright Verifier selects *f* and asks for *y*
	- \triangleright Verifier has leverage through the trapdoor: can compute x_0, x_1
- First challenge: ask for preimage of *y*
- Second challenge: ask for *d*

$$
\frac{1}{\sqrt{2}}(|x_0\rangle+|x_1\rangle)\quad\text{or}\quad d\cdot(x_0\oplus x_1)=0
$$

- In [BCMVV18], used to generate randomness:
	- In Hardcore bit: hard to hold both *d* and either x_0 , x_1 at the same time
	- \triangleright Prover must be probabilistic to pass

$$
\frac{1}{\sqrt{2}}(|x_0\rangle+|x_1\rangle) \text{ or } d \cdot (x_0 \oplus x_1) = 0
$$

- Verification:
	- \triangleright TCFs are used to constrain prover
	- \triangleright Use extension of approximate TCF family built in [BCMVV18]
		- Require [BCMVV18] hardcore bit property: hard to hold both *d* and either (x_0, x_1)
		- Require one more hardcore bit property: there exists *d* such that for all claws (x_0, x_1) , $d \cdot (x_0 \oplus x_1)$ is the same bit and is hard to compute

How to Create a Superposition Over a Claw

$$
\frac{1}{\sqrt{2}}(|x_0\rangle+|x_1\rangle)
$$

1 Begin with a uniform superposition over the domain:

$$
\frac{1}{\sqrt{|\mathcal{X}|}}\sum_{x\in\mathcal{X}}|x\rangle
$$

2 Apply the function *f* in superposition:

$$
\frac{1}{\sqrt{|\mathcal{X}|}}\sum_{x\in\mathcal{X}}|x\rangle\,|f(x)\rangle
$$

3 Measure the last register to obtain *y*

$$
\frac{1}{\sqrt{2}}(|x_0\rangle+|x_1\rangle)
$$

• Performing a Hadamard transform on the above state results in:

$$
\frac{1}{\sqrt{|\mathcal{X}|}}\sum_{d}((-1)^{d\cdot x_0}+(-1)^{d\cdot x_1})\ket{d}
$$

• By measuring, obtain a string *d* such that

$$
d\cdot (x_0\oplus x_1)=0
$$

Goal: classical verification of quantum computations through interaction

- Define a *measurement protocol*
	- **I** The prover constructs an *n* qubit state ρ of his choice
	- \triangleright The verifier chooses 1 of 2 measurement bases for each qubit
	- In The prover reports the measurement result of ρ in the chosen basis
- Link measurement protocol to verifiability
- Construct and describe soundness of the measurement protocol

Hadamard and Standard Basis Measurements

$$
\left|\psi\right\rangle =\alpha_{0}\left|0\right\rangle +\alpha_{1}\left|1\right\rangle
$$

- Standard: obtain *b* with probability $|\alpha_{\bm{b}}|^2$
- Hadamard:

$$
H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
$$

$$
H|\psi\rangle = \frac{1}{\sqrt{2}} (\alpha_0 + \alpha_1) |0\rangle + \frac{1}{\sqrt{2}} (\alpha_0 - \alpha_1) |1\rangle
$$
Obtain *b* with probability $\frac{1}{2} |\alpha_0 + (-1)^b \alpha_1|^2$

Measurement protocol: interactive protocol which forces the prover to behave as the verifier's trusted measurement device

Urmila Mahadev (UC Berkeley) [Verification of Quantum Computations](#page-0-0) September 12, 2018 15/41

Measurement Protocol Definition

- Key issue: adaptivity; what if ρ changes based on measurement basis?
	- \blacktriangleright Maybe the prover never constructs a quantum state, and constructs classical distributions instead

Measurement Protocol Soundness

• Soundness: if the verifier accepts, there exists a quantum state *independent of the verifier's measurement choice* underlying the measurement results

Measurement Protocol Soundness

• Soundness: if $\mathbb P$ is accepted with high probability, there exists a state ρ such that for all *h*, $D_{o,h}$ and $D_{\mathbb{P},h}$ are computationally indistinguishable.

Using the Measurement Protocol for Verification

• The measurement protocol implements the following model:

- Prover sends qubits of state ρ and verifier measures
- Next: show that quantum computations can be verified in the above model

Quantum Analogue of NP

• To verify an efficient classical computation, reduce to a 3-SAT instance, ask for satisfying assignment and verify that it is satisfied

$3-SAT \iff$ Local Hamiltonian *n* bit variable assignment $x \iff n$ qubit quantum state Number of unsatisfied clauses \iff Energy

- To verify an efficient quantum computation, reduce to a local Hamiltonian instance *H*, ask for ground state and verify that it has low energy
	- If the instance is in the language, there exists a state with low energy

 $3 SAT \iff Local Hamiltonian$ Assignment \iff Quantum state Number of unsatisfied clauses \iff Energy

To verify that a state has low energy with respect to $H = \sum H_i$: *i*

- Each *Hⁱ* acts on at most 2 qubits
- \bullet To measure with respect to H_i , only Hadamard/ standard basis measurements are required [BL08]

Verification with a Quantum Verifier

- Prover sends each qubit of ρ to the quantum verifier
- The quantum verifier chooses *Hⁱ* at random and measures, using only Hadamard/ standard basis measurements [MF2016]
- Measurement protocol can be used in place of the measurement device to achieve verifiability
- Use a TCF with more structure: pair f_0, f_1 which are injective with the same image
- Given f_0, f_1 , the honest quantum prover entangles a single qubit of his choice with a claw (x_0, x_1) $(y = f_0(x_0) = f_1(x_1)$.

$$
|\psi\rangle \rightarrow \sum_{b \in \{0,1\}} \alpha_b |b\rangle |x_b\rangle = \text{Enc}(|\psi\rangle)
$$

• Once *y* is sent to the verifier, the verifier now has leverage over the prover's state: he knows x_0 , x_1 but the prover does not

Measurement Protocol Construction

- The verifier generates a TCF f_0 , f_1 and the trapdoor
- Given f_0, f_1 , the honest quantum prover entangles a single qubit of his choice with a claw (x_0, x_1) $(y = f_0(x_0) = f_1(x_1)$.

$$
|\psi\rangle = \sum_{b \in \{0,1\}} \alpha_b |b\rangle \longrightarrow \sum_{x \in \mathcal{X}} \sum_{b \in \{0,1\}} \alpha_b |b\rangle |x\rangle |f_b(x)\rangle
$$

$$
\xrightarrow{f_b(x) = y} \sum_{b \in \{0,1\}} \alpha_b |b\rangle |x_b\rangle = \text{Enc}(|\psi\rangle)
$$

• Given *y*, the verifier uses the trapdoor to extract x_0, x_1

Measurement Protocol Testing

- Upon receiving *y*, the verifier chooses either to test or to delegate measurements
- If a test round is chosen, the verifier requests a preimage (b, x_b) of *y*
- The honest prover measures his encrypted state in the standard basis:

$$
Enc(|\psi\rangle) = \sum_{b \in \{0,1\}} \alpha_b |b\rangle |x_b\rangle
$$

• Point: the verifier now knows the prover's state must be in a superposition over preimages

• Prover needs to apply a Hadamard transform:

$$
\text{Enc}(|\psi\rangle) = \sum_{b \in \{0,1\}} \alpha_b |b\rangle |x_b\rangle \longrightarrow H(\sum_{b \in \{0,1\}} \alpha_b |b\rangle) = H |\psi\rangle
$$

- Issue: x_0 , x_1 prevent interference, and prevent the application of a Hadamard transform
- Solution: apply the Hadamard transform to the entire encoded state, and measure the second register to obtain *d*

Delegating Hadamard Basis Measurements

• This results in a different encoding (*X* is the bit flip operator):

$$
\text{Enc}(|\psi\rangle) \xrightarrow{H} X^{d\cdot (x_0 \oplus x_1)} H |\psi\rangle
$$

- Verifier decodes measurement result *b* by XORing $d \cdot (x_0 \oplus x_1)$
- Protocol with honest prover:

$$
\text{Enc}(|\psi\rangle) \longrightarrow \boxed{\underset{H}{\bigcap_{\longrightarrow}^{A}} \longrightarrow \boxed{\longrightarrow}} \qquad \qquad \xrightarrow{\oplus d \cdot (x_0 \oplus x_1)} \quad m
$$

Measurement Protocol So Far

- Soundness: there exists a quantum state *independent of the verifier's measurement choice* underlying the measurement results
- Necessary condition: messages required to delegate standard basis must be computationally indistinguishable
- To delegate standard basis measurements: only need to change the first message

Delegating Standard Basis Measurements

- Let g_0, g_1 be trapdoor injective functions: the images of g_0, g_1 do not overlap
	- \triangleright The functions (f_0, f_1) and (g_0, g_1) are computationally indistinguishable
- If prover encodes with q_0, q_1 rather than f_0, f_1 , this acts as a standard basis measurement:

$$
\sum_{b\in\{0,1\}}\alpha_b\ket{b}\rightarrow\sum_{b\in\{0,1\},\textcolor{black}{x}}\alpha_b\ket{b}\ket{x}\ket{g_b(x)}
$$

• With use of trapdoor, standard basis measurement *b* can be obtained from $y = g_b(x)$

Delegating Standard Basis Measurements

• Protocol is almost the same, except f_0, f_1 is replaced with g_0, g_1

• Verifier ignores Hadamard measurement results; only uses *y* to recover standard basis measurement

Measurement Protocol Recap

- Goal: use the prover as a blind, verifiable measurement device
- Verifier selects basis choice; sends claw free function for Hadamard basis and injective functions for standard basis
- Verifier either tests the structure of the state or requests measurement results

Soundness Intuition: Example of Cheating Prover

- Recall adaptive cheating strategy: prover fixes two bits, b_H and *b_s*, which he would like the verifier to stores as his Hadamard/ standard basis measurement results
- Assume there is a claw (x_0, x_1) and a string d for which the prover knows both x_{b_S} and $d \cdot (x_0 \oplus x_1)$

$$
\text{Enc}(|\psi\rangle) \longrightarrow \boxed{\underset{H}{\bigcap_{\longrightarrow}^{A}} \longrightarrow \boxed{\longrightarrow}} \qquad \xrightarrow{\oplus d \cdot (x_0 \oplus x_1)} \quad m
$$

- How to cheat:
	- \triangleright To compute *y*: prover evaluates received function on x_{bc} $(y = g_{b_S}(x_{b_S})$ or $y = f_{b_S}(x_{b_S})$).
	- ► When asked for a Hadamard measurement: prover reports d and $b_H \oplus d \cdot (x_0 \oplus x_1)$

Soundness rests on two hardcore bit property of TCFs:

- **1** For all $d \neq 0$ and all claws (x_0, x_1) , it is computationally difficult to compute both $d \cdot (x_0 \oplus x_1)$ and either x_0 or x_1 .
- **2** There exists a string d such that for all claws (x_0, x_1) , the bit $d \cdot (x_0 \oplus x_1)$ is the same and computationally indistinguishable from uniform.

How to Prove Soundness

[BFK08][ABE08][FK17][ABEM17] [RUV12]

Key step: enforcing structure in prover's state

Urmila Mahadev (UC Berkeley) [Verification of Quantum Computations](#page-0-0) September 12, 2018 34 / 41

How to Prove Soundness: Quasi Classical Verifier

Verifier sends qubits encoded with secret error correcting code to the prover.

How to Prove Soundness: Two Provers

Verifier plays CHSH with the provers and checks for a Bell inequality violation. If prover passes, he must be holding Bell pairs.

How to Prove Soundness: Measurement Protocol

Enforcing structure?

- No way of using previous techniques
- Use test round of measurement protocol as starting point

At some point in time, prover's state must be of the form:

$$
\sum_{b\in\{0,1\}}\alpha_{b}\ket{b}\ket{x_{b}}\ket{\psi_{b,x_{b}}}\quad\text{or}\quad\ket{b}\ket{x_{b}}\ket{\psi_{b,x_{b}}}
$$

Why is this format useful in proving the existence of an underlying quantum state?

$$
\sum_{b\in\{0,1\}}\alpha_{b}\ket{b}\ket{x_{b}}\ket{\psi_{b,x_{b}}}\quad\text{or}\quad\ket{b}\ket{x_{b}}\ket{\psi_{b,x_{b}}}
$$

- Can be used as starting point for prover, followed by deviation from the protocol, measurement and decoding by the verifier
	- Deviation is an arbitrary unitary operator *U*
	- ► Verifier's decoding is $d \cdot (x_0 \oplus x_1)$
- The part of the unitary *U* acting on the first qubit is therefore *computationally randomized*, by both the initial state and the verifier's decoding
	- \blacktriangleright Pauli twirl technique?

Why is this format useful in proving the existence of an underlying quantum state?

$$
\sum_{b\in\{0,1\}}\alpha_{b}\ket{b}\ket{x_{b}}\ket{\psi_{b,x_{b}}}\quad\text{or}\quad\ket{b}\ket{x_{b}}\ket{\psi_{b,x_{b}}}
$$

- Difficulty in using Pauli twirl: converting this computational randomness into a form which can be used to simplify the prover's deviation
	- ► Rely on hardcore bit properties regarding $d \cdot (x_0 \oplus x_1)$
- Verifiable, secure delegation of quantum computations is possible with a classical machine
- Rely on quantum secure trapdoor claw-free functions (from learning with errors)
	- \triangleright Use TCF to characterize the intial space of the prover
	- \triangleright Strengthen the claw-free property to complete the characterization and prove the existence of a quantum state

Thanks!