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Classical versus Quantum Computers

• Can a classical computer verify a
quantum computation?

I Classical output (decision problem)

• Quantum computers compute in
superposition

I Classical description is exponentially
large!

• Classical access is limited to
measurement outcomes

I Only n bits of information
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Verification through Interactive Proofs

Can a classical computer verify the result of a quantum
computation through interaction (Gottesman, 2004)?
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Verification through Interactive Proofs

• Classical complexity theory: IP = PSPACE [Shamir92]

• BQP ⊆ PSPACE: Quantum computations can be verified, but
only through interaction with a much more powerful prover

• Scaled down to an efficient quantum prover?
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Relaxations

Error correcting codes
[BFK08][ABE08][FK17][ABEM17]

Bell inequalities
[RUV12]
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Verification with Post Quantum Cryptography

• In this talk: use post quantum classical cryptography to control
the BQP prover

• To do this, require a specific primitive: trapdoor claw-free
functions
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Core Primitive

• Trapdoor claw-free functions f :
I Two to one

I Trapdoor allows for efficient inversion: given y , can output x0, x1
such that f (x0) = f (x1) = y

I Hard to find a claw (x0, x1): f (x0) = f (x1)

I Approximate version built from learning with errors in
[BCMVV18]

• Quantum advantage: sample y and create a superposition
over a random claw

1√
2
(|x0〉+ |x1〉)

which allows sampling of a string d 6= 0 such that

d · (x0 ⊕ x1) = 0
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Core Primitive

1√
2
(|x0〉+ |x1〉) or d · (x0 ⊕ x1) = 0

• Classical verifier can challenge quantum prover
I Verifier selects f and asks for y

I Verifier has leverage through the trapdoor: can compute x0, x1

• First challenge: ask for preimage of y

• Second challenge: ask for d
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Core Primitive

1√
2
(|x0〉+ |x1〉) or d · (x0 ⊕ x1) = 0

• In [BCMVV18], used to generate randomness:
I Hardcore bit: hard to hold both d and either x0, x1 at the same

time

I Prover must be probabilistic to pass
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Core Primitive

1√
2
(|x0〉+ |x1〉) or d · (x0 ⊕ x1) = 0

• Verification:
I TCFs are used to constrain prover

I Use extension of approximate TCF family built in [BCMVV18]
• Require [BCMVV18] hardcore bit property: hard to hold both d

and either (x0, x1)

• Require one more hardcore bit property: there exists d such that
for all claws (x0, x1), d · (x0 ⊕ x1) is the same bit and is hard to
compute
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How to Create a Superposition Over a Claw

1√
2
(|x0〉+ |x1〉)

1 Begin with a uniform superposition over the domain:

1√
|X |

∑
x∈X
|x〉

2 Apply the function f in superposition:

1√
|X |

∑
x∈X
|x〉 |f (x)〉

3 Measure the last register to obtain y
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Core Primitive

1√
2
(|x0〉+ |x1〉)

• Performing a Hadamard transform on the above state results
in:

1√
|X |

∑
d

((−1)d ·x0 + (−1)d ·x1) |d〉

• By measuring, obtain a string d such that

d · (x0 ⊕ x1) = 0
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Verification Outline

Goal: classical verification of quantum computations through
interaction

• Define a measurement protocol
I The prover constructs an n qubit state ρ of his choice

I The verifier chooses 1 of 2 measurement bases for each qubit

I The prover reports the measurement result of ρ in the chosen
basis

• Link measurement protocol to verifiability

• Construct and describe soundness of the measurement
protocol
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Hadamard and Standard Basis Measurements

|ψ〉 = α0 |0〉+ α1 |1〉

• Standard: obtain b with probability |αb|2

• Hadamard:

H =
1√
2

(
1 1
1 −1

)

H |ψ〉 = 1√
2
(α0 + α1) |0〉+

1√
2
(α0 − α1) |1〉

Obtain b with probability
1
2

∣∣∣α0 + (−1)bα1

∣∣∣2
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Measurement Protocol Definition

Measurement protocol : interactive protocol which forces the prover
to behave as the verifier’s trusted measurement device
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Measurement Protocol Definition

• Key issue: adaptivity; what if ρ changes based on
measurement basis?

I Maybe the prover never constructs a quantum state, and
constructs classical distributions instead
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Measurement Protocol Soundness

• Soundness: if the verifier accepts, there exists a quantum
state independent of the verifier’s measurement choice
underlying the measurement results
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Measurement Protocol Soundness

• Soundness: if P is accepted with high probability, there exists
a state ρ such that for all h, Dρ,h and DP,h are computationally
indistinguishable.
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Using the Measurement Protocol for Verification

• The measurement protocol implements the following model:

• Prover sends qubits of state ρ and verifier measures

• Next: show that quantum computations can be verified in the
above model
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Quantum Analogue of NP

• To verify an efficient classical computation, reduce to a 3-SAT
instance, ask for satisfying assignment and verify that it is
satisfied

3-SAT ⇐⇒ Local Hamiltonian

n bit variable assignment x ⇐⇒ n qubit quantum state

Number of unsatisfied clauses ⇐⇒ Energy

• To verify an efficient quantum computation, reduce to a local
Hamiltonian instance H, ask for ground state and verify that it
has low energy

I If the instance is in the language, there exists a state with low
energy
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Quantum Analogue of NP

3 SAT ⇐⇒ Local Hamiltonian

Assignment ⇐⇒ Quantum state

Number of unsatisfied clauses ⇐⇒ Energy

To verify that a state has low energy with respect to H =
∑

i

Hi :

• Each Hi acts on at most 2 qubits

• To measure with respect to Hi , only Hadamard/ standard basis
measurements are required [BL08]
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Verification with a Quantum Verifier

• Prover sends each qubit of ρ to the quantum verifier

• The quantum verifier chooses Hi at random and measures,
using only Hadamard/ standard basis measurements
[MF2016]

• Measurement protocol can be used in place of the
measurement device to achieve verifiability
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Measurement Protocol Construction

• Use a TCF with more structure: pair f0, f1 which are injective
with the same image

• Given f0, f1, the honest quantum prover entangles a single
qubit of his choice with a claw (x0, x1) (y = f0(x0) = f1(x1)).

|ψ〉 →
∑

b∈{0,1}

αb |b〉 |xb〉 = Enc(|ψ〉)

• Once y is sent to the verifier, the verifier now has leverage
over the prover’s state: he knows x0, x1 but the prover does not
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Measurement Protocol Construction

• The verifier generates a TCF f0, f1 and the trapdoor

• Given f0, f1, the honest quantum prover entangles a single
qubit of his choice with a claw (x0, x1) (y = f0(x0) = f1(x1)).

|ψ〉 =
∑

b∈{0,1}

αb |b〉 →
∑
x∈X

∑
b∈{0,1}

αb |b〉 |x〉 |fb(x)〉

fb(x) = y−−−−−→
∑

b∈{0,1}

αb |b〉 |xb〉 = Enc(|ψ〉)

• Given y , the verifier uses the trapdoor to extract x0, x1
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Measurement Protocol Testing

• Upon receiving y , the verifier chooses either to test or to
delegate measurements

• If a test round is chosen, the verifier requests a preimage
(b, xb) of y

• The honest prover measures his encrypted state in the
standard basis:

Enc(|ψ〉) =
∑

b∈{0,1}

αb |b〉 |xb〉

• Point: the verifier now knows the prover’s state must be in a
superposition over preimages
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Delegating Hadamard Basis Measurements

• Prover needs to apply a Hadamard transform:

Enc(|ψ〉) =
∑

b∈{0,1}

αb |b〉 |xb〉 −→ H(
∑

b∈{0,1}

αb |b〉) = H |ψ〉

• Issue: x0, x1 prevent interference, and prevent the application
of a Hadamard transform

• Solution: apply the Hadamard transform to the entire encoded
state, and measure the second register to obtain d
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Delegating Hadamard Basis Measurements

• This results in a different encoding (X is the bit flip operator):

Enc(|ψ〉) H−→ X d ·(x0⊕x1)H |ψ〉

• Verifier decodes measurement result b by XORing d · (x0 ⊕ x1)

• Protocol with honest prover:
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Measurement Protocol So Far

• Soundness: there exists a quantum state independent of the
verifier’s measurement choice underlying the measurement
results

• Necessary condition: messages required to delegate standard
basis must be computationally indistinguishable

• To delegate standard basis measurements: only need to
change the first message
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Delegating Standard Basis Measurements

• Let g0,g1 be trapdoor injective functions: the images of g0,g1
do not overlap

I The functions (f0, f1) and (g0,g1) are computationally
indistinguishable

• If prover encodes with g0,g1 rather than f0, f1, this acts as a
standard basis measurement:∑

b∈{0,1}

αb |b〉 →
∑

b∈{0,1},x

αb |b〉 |x〉 |gb(x)〉

• With use of trapdoor, standard basis measurement b can be
obtained from y = gb(x)
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Delegating Standard Basis Measurements

• Protocol is almost the same, except f0, f1 is replaced with g0,g1

• Verifier ignores Hadamard measurement results; only uses y
to recover standard basis measurement
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Measurement Protocol Recap

• Goal: use the prover as a blind, verifiable measurement device

• Verifier selects basis choice; sends claw free function for
Hadamard basis and injective functions for standard basis

• Verifier either tests the structure of the state or requests
measurement results
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Soundness Intuition: Example of Cheating Prover

• Recall adaptive cheating strategy: prover fixes two bits, bH
and bS, which he would like the verifier to stores as his
Hadamard/ standard basis measurement results

• Assume there is a claw (x0, x1) and a string d for which the
prover knows both xbS and d · (x0 ⊕ x1)

• How to cheat:
I To compute y : prover evaluates received function on xbS

(y = gbS (xbS ) or y = fbS (xbS )).

I When asked for a Hadamard measurement: prover reports d
and bH ⊕ d · (x0 ⊕ x1)
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Hardcore Bit Properties

Soundness rests on two hardcore bit property of TCFs:

1 For all d 6= 0 and all claws (x0, x1), it is computationally difficult
to compute both d · (x0 ⊕ x1) and either x0 or x1.

2 There exists a string d such that for all claws (x0, x1), the bit
d · (x0 ⊕ x1) is the same and computationally indistinguishable
from uniform.
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How to Prove Soundness

[BFK08][ABE08][FK17][ABEM17] [RUV12]

Key step: enforcing structure in prover’s state

Urmila Mahadev (UC Berkeley) Verification of Quantum Computations September 12, 2018 34 / 41



How to Prove Soundness: Quasi Classical Verifier

Verifier sends qubits encoded with secret error correcting code to
the prover.
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How to Prove Soundness: Two Provers

Verifier plays CHSH with the provers and checks for a Bell
inequality violation. If prover passes, he must be holding Bell pairs.
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How to Prove Soundness: Measurement Protocol

Enforcing structure?

• No way of using previous techniques

• Use test round of measurement protocol as starting point

At some point in time, prover’s state must be of the form:∑
b∈{0,1}

αb |b〉 |xb〉
∣∣ψb,xb

〉
or |b〉 |xb〉

∣∣ψb,xb

〉
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How to Prove Soundness: Measurement Protocol

Why is this format useful in proving the existence of an underlying
quantum state?∑

b∈{0,1}

αb |b〉 |xb〉
∣∣ψb,xb

〉
or |b〉 |xb〉

∣∣ψb,xb

〉

• Can be used as starting point for prover, followed by deviation
from the protocol, measurement and decoding by the verifier

I Deviation is an arbitrary unitary operator U

I Verifier’s decoding is d · (x0 ⊕ x1)

• The part of the unitary U acting on the first qubit is therefore
computationally randomized, by both the initial state and the
verifier’s decoding

I Pauli twirl technique?
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How to Prove Soundness: Measurement Protocol

Why is this format useful in proving the existence of an underlying
quantum state?∑

b∈{0,1}

αb |b〉 |xb〉
∣∣ψb,xb

〉
or |b〉 |xb〉

∣∣ψb,xb

〉

• Difficulty in using Pauli twirl: converting this computational
randomness into a form which can be used to simplify the
prover’s deviation

I Rely on hardcore bit properties regarding d · (x0 ⊕ x1)
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Conclusion

• Verifiable, secure delegation of quantum computations is
possible with a classical machine

• Rely on quantum secure trapdoor claw-free functions (from
learning with errors)

I Use TCF to characterize the intial space of the prover

I Strengthen the claw-free property to complete the
characterization and prove the existence of a quantum state
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Thanks!
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