Quantum methods for Optimization and Machine Learning

Iordanis Kerenidis Paris Centre for Quantum Computing PCQC, CNRS Paris

Quantum Algorithms for Optimisation / ML

The HHL algorithm [Harrow, Hassidim, Lloyd 2009]

Quantum computers provide a quantum solution to a system of linear equations in certain cases exponentially faster than classical algorithms, given quantum access to the data.

Quantum Algorithms for Optimisation / ML

The HHL algorithm [Harrow, Hassidim, Lloyd 2009]

Quantum computers provide a quantum solution to a system of linear equations in certain cases exponentially faster than classical algorithms, given quantum access to the data.

Quantum Algorithms for Optimisation / ML

The HHL algorithm [Harrow, Hassidim, Lloyd 2009]

Quantum computers provide a quantum solution to a system of linear equations in certain cases exponentially faster than classical algorithms, given quantum access to the data.

"It\$opens\$the\$possibility\$of\$drama4c\$speedups\$for\$machine\$learning\$tasks,\$richer\$models\$for\$data\$sets\$and\$ more natural settings for learning and inference" Quantum Machine Learning Workshop during NIPS 2015

Remark: "Solving" systems of linear equations is BQP-complete

Three remarks on Quantum Machine Learning PCOC

QML needs a full-scale computer with quantum access to data for "exponential savings"

Three remarks on Quantum Machine Learning PCOC

QML needs a full-scale computer with quantum access to data for "exponential savings"

Most overhyped and underestimated field at the same time

Three remarks on Quantum Machine Learning PCOC

QML needs a full-scale computer with quantum access to data for "exponential savings"

Most overhyped and underestimated field at the same time

(One of) the most convincing reasons to build quantum computers

Quantum Machine Learning: the model

Data storage and quantum access

- Data can be accessed quantumly directly 1.
- Quantum RAM : Efficient storage of classical data allowing quantum access to it $2.$
	- It takes polylogarithmic time to store/update/delete an element (i,j,a_{ii})
	- Query in polylogarithmic time $\sum c_{ij} |i, j, 0\rangle \rightarrow \sum c_{ij} |i, j, a_{ij}\rangle$
- 3. Other access models...

Quantum Machine Learning: the model

Data storage and quantum access

- 1. Data can be accessed quantumly directly
- Quantum RAM : Efficient storage of classical data allowing quantum access to it $2.$
	- It takes polylogarithmic time to store/update/delete an element (i,j, a_{ij})
	- Query in polylogarithmic time $\sum c_{ij} |i, j, 0\rangle \rightarrow \sum c_{ij} |i, j, a_{ij}\rangle$
- 3. Other access models...

Computation on the data

- Given quantum access to data, learn some property of the data
- Running time of quantum algorithm can be more efficient that classical

Use-case: Recommendation Systems

PCOC

General quantum methods for Optimization

Iterative methods (ubiquitous in practice)

- 1. Start with an initial solution.
- 2. Update the solution according to an Update Rule
- 3. Repeat until the solution is satisfactory

Types of Iterative Methods

First order - Gradient Descent Second order - Interior point methods

General quantum methods for Optimization

Iterative methods (ubiquitous in practice)

- 1. Start with an initial solution.
- 2. Update the solution according to an Update Rule
- 3. Repeat until the solution is satisfactory

Types of Iterative Methods

First order - Gradient Descent Second order - Interior point methods

Efficient Quantum Gradient Descent algorithm for Linear Systems and Stochastic Least Squares. [Kerenidis, Prakash 2017]

General quantum methods for Optimization

Iterative methods (ubiquitous in practice)

- 1. Start with an initial solution.
- 2. Update the solution according to an Update Rule
- 3. Repeat until the solution is satisfactory

Types of Iterative Methods

First order - Gradient Descent Second order - Interior point methods

Efficient Quantum Gradient Descent algorithm for Linear Systems and Stochastic Least Squares. [Kerenidis, Prakash 2017]

Remark 1: Improved Linear Algebra

Remark 2: Great savings in QRAM

Problem:

Given matrix A and vector x, output Ax, A⁻¹x, ...

Problem:

Given matrix A and vector x, output Ax, A⁻¹x, ...

Step 1

Map A to some unitary U s.t.

- 1. The spectra of A and U are related
- 2. U is efficient to implement

 $A/\mu(A) = P \circ Q$, $U = (2PP^t - I)(2QQ^t - I)$

Efфiciency via QRAM data structures

Problem:

Given matrix A and vector x, output Ax, A⁻¹x, ...

Step 1

Map A to some unitary U s.t.

- 1. The spectra of A and U are related
- 2. U is efficient to implement

Step 2

Phase Estimation on U

LCU, Qubitization on U

 $A/\mu(A) = P \circ Q$, $U = (2PP^t - I)(2QQ^t - I)$

Eficciency via QRAM data structures

Apply a circuit with $O(log1/\epsilon)$ U's

Problem:

Given matrix A and vector x, output Ax, A⁻¹x, ...

Step 1

Map A to some unitary U s.t.

- 1. The spectra of A and U are related
- 2. U is efficient to implement

Step 2

Phase Estimation on U

LCU, Qubitization on U

Step 3

Amplitude Amplification (VT)

 $A/\mu(A) = P \circ Q$, $U = (2PP^t - I)(2QQ^t - I)$

Eficciency via QRAM data structures

Apply a circuit with $O(log1/\epsilon)$ U's

 $O(K(A))$ iterations

Problem:

Given matrix A and vector x, output Ax, A⁻¹x, ...

Running time: O(K(A)µ(A)log1/ ε)

Given matrix A and vector x, output Ax, A⁻¹x, ...

Running time: O(K(A)µ(A)log1/ ε)

Open Question: What is the optimal $\mu(A)$?

Could QML work on real data? Represent a novel quantum Frobenius Could QML work on real data? We will estimate *Fk*(*x*(0)) efficiently using the algorithm below. From our QRAM construction $\mathsf{D}\mathsf{f}\mathsf{K}$ on real data for running time is logarithmic in the dimension and number of $\mathsf{F}\mathsf{K}$

Frobenius Distance Classification
To the total number of points and norm of the cluster (see also Appendix A). **Frobenius Distance Classification**

QFE 4 Frobenius Distance Estimator

Require:

QRAM access to the matrix X_k of cluster k and to a test vector $x(0)$. Error parameter $\eta \geq 0$. Ensure: An estimate $F_k(x(0))$ such that $|F_k(x(0)) - F_k(x(0))| < \eta$. *^X*(0) ² ^R*|Tk|*⇥*^d* which just repeats the row *^x*(0) *[|]Tk[|]* times. Then, we define $F_k(x(0)) = \frac{\left\|X_k - X(0)\right\|_F^2}{2\left(\left\|X_k\right\|_F^2 + \left\|X_k(x)\right\|_F^2\right)}$ *F* $2(\left\|X_k\right\|_F^2 + \left\|X(0)\right\|_F^2)$

we can create a superposition of all vectors in the cluster as α and α as α

 $709 / 8543$ 7019

Could QML work on real data? ^p*|Tk[|] i*2*T^k* k*Xk*k*^F i*2*T^k k*2[*K*] In this section we provide a novel quantum classification algorithm, called Quantum Frobenius We will estimate *Fk*(*x*(0)) efficiently using the algorithm below. From our QRAM construction $\mathsf{D}\mathsf{f}\mathsf{K}$ on real data for running time is logarithmic in the dimension and number of $\mathsf{F}\mathsf{K}$

Frobenius Distance Classification ^p*N^k* ⇣ **Frobenius Distance Classification Frobenius Distance Classification**

*i*2*T^k* QFE 4 Frobenius Distance Estimator

 $\overline{\text{Required}}$

9: Output *^s*

QRAM access to the matrix X_k of cluster k and to a test vector $x(0)$. Error parameter $\eta \geq 0$. *P*_{*I***}** *I*^{*/*}*i***_{***i***}/***n*^{*/*}*ij*^{*/i*}/*z*(*i*^{*/Q*)</sub>*ij*_{*z*}(*x*(*Q*)*i*)*zx*(*x*(*d*)*i*)*zx*(*x*(*x*)*i*)*zx*(*x*(*x*)*i*)*zx*(*x*(*x*))*i*)*zx*(*x*)*ii*)*zx*(*x*)*iii*)*xx*(*x*)*ii</sub>}* Ensure: *^X*(0) ² ^R*|Tk|*⇥*^d* which just repeats the row *^x*(0) *[|]Tk[|]* times. Then, we define $F_k(x(0)) = \frac{\left\|X_k - X(0)\right\|_F^2}{2\left(\left\|X_k\right\|_F^2 + \left\|X_k(x)\right\|_F^2\right)}$ *F* $2(\left\|X_k\right\|_F^2 + \left\|X(0)\right\|_F^2)$

*i*2*T^k*

An estimate $F_k(x(0))$ such that $|F_k(x(0)) - F_k(x(0))| < \eta$.

1. Create the state \mathbf{r} : \mathbf{r}

$$
\frac{1}{\sqrt{N_k}}\Big(\left|0\right\rangle \sum_{i\in T_k} \left| \left|x(0)\right|\right| \left|i\right\rangle \left|x(0)\right\rangle + \left|1\right\rangle \sum_{i\in T_k} \left| \left|x(i)\right|\right| \left|i\right\rangle \left|x(i)\right\rangle \Big)
$$
\n9 3 1 9 5 8 0 8 9
\n5 2 6 8 5 8 8 9 9
\n3 7 0 9 4 8 5 4 3

Could QML work on real data? and QML work on real data? We will estimate *Fk*(*x*(0)) efficiently using the algorithm below. From our QRAM construction $\mathsf{D}\mathsf{f}\mathsf{K}$ on real data for running time is logarithmic in the dimension and number of $\mathsf{F}\mathsf{K}$

1

⇣

Frobenius Distance Classification ^p*N^k* ⇣ *|*0i X k*x*(0)k *|i*i + *|*1i X ^p*N^k |*0i *i*2*T^k* $t = t$ norms and to the total number of points and number of points and norm of the cluster (see also Appendix A). **Frobenius Distance Classification**

*i*2*T^k* 5: Apply the unitary that maps QFE 4 Frobenius Distance Estimator

 $\overline{\text{Required}}$

QRAM access to the matrix X_k of cluster k and to a test vector $x(0)$. Error parameter $\eta > 0$. *^X*(0) ² ^R*|Tk|*⇥*^d* which just repeats the row *^x*(0) *[|]Tk[|]* times. Then, we define $F_k(x(0)) = \frac{\left\|X_k - X(0)\right\|_F^2}{2\left(\left\|X_k\right\|_F^2 + \left\|X_k(x)\right\|_F^2\right)}$

*i*2*T^k*

 \mathcal{L}

we can create a superposition of all vectors in the cluster as α and α as α

Ensure:

9: Output *^s*

*P*_{*I***}** *I*^{*/*}*i***_{***i***}/***n*^{*/*}*ij*^{*/i*}/*z*(*i*^{*/Q*)</sub>*ij*_{*z*}(*x*(*Q*)*i*)*zx*(*x*(*d*)*i*)*zx*(*x*(*x*)*i*)*zx*(*x*(*x*)*i*)*zx*(*x*(*x*))*i*)*zx*(*x*)*ii*)*zx*(*x*)*iii*)*xx*(*x*)*ii</sub>}* An estimate $F_k(x(0))$ such that $|F_k(x(0)) - F_k(x(0))| < \eta$.

1. Create the state \mathbf{r} : \mathbf{r}

$$
\frac{1}{\sqrt{N_k}}\Big(\left|0\right\rangle \sum_{i\in T_k} \left\|x(0)\right\|\left|i\right\rangle\left|x(0)\right\rangle + \left|1\right\rangle \sum_{i\in T_k} \left\|x(i)\right\|\left|i\right\rangle\left|x(i)\right\rangle \Big)
$$
\n9 3 1 9 5 6 0 8 4
\n $\mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S}$ \n9 8 8 9 9
\n $\mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S}$ \n19 5 6 0 8 4

\n20 8 5 8 8 9 9

\n3 7 0 9 4 8 5 4 3

2. Apply a Hadamard to the first register to the first register to get $\overline{6}$ Apply a Hadamard to the first register to get :. Apply a Hadamard i

$$
\frac{1}{\sqrt{2N_k}}\left|0\right\rangle\sum_{i\in T_k}\Big(\left\|x(0)\right\|\left|i\right\rangle\left|x(0)\right\rangle+\left\|x(i)\right\|\left|i\right\rangle\left|x(i)\right\rangle\Big) + \frac{1}{\sqrt{2N_k}}\left|1\right\rangle\sum_{i\in T_k}\Big(\left\|x(0)\right\|\left|i\right\rangle\left|x(0)\right\rangle-\left\|x(i)\right\|\left|i\right\rangle\left|x(i)\right\rangle\Big)\\
$$

 \mathcal{L}

⌘

F

 $7709 / 8543$ 6470492

1

⇣

Frobenius Distance Classification ^p*N^k* ⇣ *|*0i X k*x*(0)k *|i*i + *|*1i X ^p*N^k |*0i *i*2*T^k* $t = t$ norms and to the total number of points and number of points and norm of the cluster (see also Appendix A). **Frobenius Distance Classification** Classifica@on\$\$ process. The classification algorithm assigns a test point *x*(0) to the cluster *k* whose points have

*i*2*T^k* 5: Apply the unitary that maps QFE 4 Frobenius Distance Estimator Let *X^k* be defined as the matrix whose rows are the vectors corresponding to the *k*-th cluster, **between 1980 is the number of electron in the cluster of electron in the cluster. 5 4 7 1 9 5 6 2 / 8**

 $\overline{\text{Required}}$

9: Output *^s*

QRAM access to the matrix X_k of cluster k and to a test vector $x(0)$. Error parameter $\eta > 0$. *^X*(0) ² ^R*|Tk|*⇥*^d* which just repeats the row *^x*(0) *[|]Tk[|]* times. Then, we define $F_k(x(0)) = \frac{\left\|X_k - X(0)\right\|_F^2}{2\left(\left\|X_k\right\|_F^2 + \left\|X_k(x)\right\|_F^2\right)}$

*i*2*T^k*

 \mathcal{L}

we can create a superposition of all vectors in the cluster as α and α as α

*P*_{*I***}** *I*^{*/*}*i***_{***i***}/***n*^{*/*}*ij*^{*/i*}/*z*(*i*^{*/Q*)</sub>*ij*_{*z*}(*x*(*Q*))*i*_{*z*} *zf_{<i>x*}(*x*(*d*))*i*_{*z*} *zf_{<i>x*}(*x*(*d*))*i*_{*z*} *zf*_{*x*}(*x*)</sub>} An estimate $F_k(x(0))$ such that $|F_k(x(0)) - F_k(x(0))| < \eta$. Ensure:

1. Create the state \mathbf{r} : \mathbf{r}

$$
\frac{1}{\sqrt{N_k}}\Big(\left|0\right\rangle \sum_{i\in T_k} \left\|x(0)\right\|\left|i\right\rangle\left|x(0)\right\rangle + \left|1\right\rangle \sum_{i\in T_k} \left\|x(i)\right\|\left|i\right\rangle\left|x(i)\right\rangle \Big)
$$
\n9 3 1 9 5 6 0 8 4
\n $\mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S}$ \n9 8 8 9 9
\n $\mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S}$ \n19 5 6 0 8 4

\n20 8 5 8 8 9 9

\n3 7 0 9 4 8 5 4 3

2. Apply a Hadamard to the first register to the first register to get $\overline{6}$ Apply a Hadamard to the first register to get :. Apply a Hadamard i

$$
\frac{1}{\sqrt{2N_k}}\left|0\right\rangle \sum_{i\in T_k}\left(\left\|x(0)\right\|\left|i\right\rangle\left|x(0)\right\rangle+\left\|x(i)\right\|\left|i\right\rangle\left|x(i)\right\rangle\right)+\frac{1}{\sqrt{2N_k}}\left|1\right\rangle \sum_{i\in T_k}\left(\left\|x(0)\right\|\left|i\right\rangle\left|x(0)\right\rangle-\left\|x(i)\right\|\left|i\right\rangle\left|x(i)\right\rangle\right)
$$

 \mathcal{L}

⌘

 $2(\left\|X_k\right\|_F^2 + \left\|X(0)\right\|_F^2)$

F

,

it is either stored in $\mathcal{L}_{\mathbf{A}}$ or comes directly from some quantum some quantum some $\mathcal{L}_{\mathbf{A}}$

which corresponds to the average normalized squared distance between *x*(0) and the cluster *k*. Let

[KL 18]

3

 $7709 / 8543$ 6470492

 37

3. Repeat and Estimate Prob[outcome 1]=F_k(x(0)) *i*2*T^k* 7: Measure the first register and if the outcome is *|*1i then s:=s+1 3. Repeat and Estimate Prob[outcome 1]=F_k(x(0))

Could QML work on real data? and QML work on real data? We will estimate *Fk*(*x*(0)) efficiently using the algorithm below. From our QRAM construction $\mathsf{D}\mathsf{f}\mathsf{K}$ on real data for running time is logarithmic in the dimension and number of $\mathsf{F}\mathsf{K}$

1

⇣

Frobenius Distance Classification ^p*N^k* ⇣ *|*0i X k*x*(0)k *|i*i + *|*1i X ^p*N^k |*0i *i*2*T^k* $t = t$ norms and to the total number of points and number of points and norm of the cluster (see also Appendix A). **Frobenius Distance Classification**

*i*2*T^k* 5: Apply the unitary that maps QFE 4 Frobenius Distance Estimator

 $\overline{\text{Required}}$

QRAM access to the matrix X_k of cluster k and to a test vector $x(0)$. Error parameter $\eta > 0$. *^X*(0) ² ^R*|Tk|*⇥*^d* which just repeats the row *^x*(0) *[|]Tk[|]* times. Then, we define $F_k(x(0)) = \frac{\left\|X_k - X(0)\right\|_F^2}{2\left(\left\|X_k\right\|_F^2 + \left\|X_k(x)\right\|_F^2\right)}$

*i*2*T^k*

 \mathcal{L}

Ensure:

9: Output *^s*

*P*_{*I***}** *I*^{*/*}*i***_{***i***}/***n*^{*/*}*ij*^{*/i*}/*z*(*i*^{*/Q*)</sub>*ij*_{*z*}(*x*(*Q*))*i*_{*z*} *zf_{<i>x*}(*x*(*d*))*i*_{*z*} *zf_{<i>x*}(*x*(*d*))*i*_{*z*} *zf*_{*x*}(*x*)</sub>} An estimate $F_k(x(0))$ such that $|F_k(x(0)) - F_k(x(0))| < \eta$.

1. Create the state \mathbf{r} : \mathbf{r}

$$
\frac{1}{\sqrt{N_k}}\Big(\left|0\right\rangle \sum_{i\in T_k} \left\|x(0)\right\|\left|i\right\rangle\left|x(0)\right\rangle + \left|1\right\rangle \sum_{i\in T_k} \left\|x(i)\right\|\left|i\right\rangle\left|x(i)\right\rangle \Big)
$$
\n9 3 1 9 5 6 0 8 4
\n $\mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S}$ \n9 8 8 9 9
\n $\mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S}$ \n19 5 6 0 8 4

\n20 8 5 8 8 9 9

\n3 7 0 9 4 8 5 4 3

2. Apply a Hadamard to the first register to the first register to get $\overline{6}$ Apply a Hadamard to the first register to get :. Apply a Hadamard i

$$
\frac{1}{\sqrt{2N_k}}\left|0\right\rangle \sum_{i\in T_k}\left(\left\|x(0)\right\|\left|i\right\rangle\left|x(0)\right\rangle+\left\|x(i)\right\|\left|i\right\rangle\left|x(i)\right\rangle\right)+\frac{1}{\sqrt{2N_k}}\left|1\right\rangle \sum_{i\in T_k}\left(\left\|x(0)\right\|\left|i\right\rangle\left|x(0)\right\rangle-\left\|x(i)\right\|\left|i\right\rangle\left|x(i)\right\rangle\right)
$$

 \mathcal{L}

⌘

F

- 3. Repeat and Estimate Prob[outcome $1]=F_k(x(0))$ *i*2*T^k* 3. Repeat and Estimate Prob[outcome 1]=F_k(x(0))
- external and if the closest cluster and if the closest register and if the outcome is $\frac{1}{\sqrt{1+\epsilon}}$ 9: Output *^s* ٠Ì ^p*N^k* ⇣ *|*0i X k*x*(0)k *|i*i + *|*1i

1

⇣

Frobenius Distance Classification ^p*N^k* ⇣ *|*0i X k*x*(0)k *|i*i + *|*1i X ^p*N^k |*0i *i*2*T^k* $t = t$ norms and to the total number of points and number of points and norm of the cluster (see also Appendix A). **Frobenius Distance Classification** Classifica@on\$\$ process. The classification algorithm assigns a test point *x*(0) to the cluster *k* whose points have

*i*2*T^k* 5: Apply the unitary that maps QFE 4 Frobenius Distance Estimator Let *X^k* be defined as the matrix whose rows are the vectors corresponding to the *k*-th cluster, **between 1980 is the number of electron in the cluster of electron in the cluster. 5 4 7 1 9 5 6 2 / 8**

 $\overline{\text{Required}}$

QRAM access to the matrix X_k of cluster k and to a test vector $x(0)$. Error parameter $\eta > 0$. *^X*(0) ² ^R*|Tk|*⇥*^d* which just repeats the row *^x*(0) *[|]Tk[|]* times. Then, we define $F_k(x(0)) = \frac{\left\|X_k - X(0)\right\|_F^2}{2\left(\left\|X_k\right\|_F^2 + \left\|X_k(x)\right\|_F^2\right)}$

*i*2*T^k*

 \mathcal{L}

we can create a superposition of all vectors in the cluster as α and α as α

Ensure:

9: Output *^s*

*P*_{*I***}** *I*^{*/*}*i***_{***i***}/***n*^{*/*}*ij*^{*/i*}/*z*(*i*^{*/Q*)</sub>*ij*_{*z*}(*x*(*Q*))*i*_{*z*} *zf_{<i>x*}(*x*(*d*))*i*_{*z*} *zf_{<i>x*}(*x*(*d*))*i*_{*z*} *zf*_{*x*}(*x*)</sub>} An estimate $F_k(x(0))$ such that $|F_k(x(0)) - F_k(x(0))| < \eta$.

1. Create the state \mathbf{r} : \mathbf{r}

$$
\frac{1}{\sqrt{N_k}}\Big(\left|0\right\rangle \sum_{i\in T_k} \left\|x(0)\right\|\left|i\right\rangle\left|x(0)\right\rangle + \left|1\right\rangle \sum_{i\in T_k} \left\|x(i)\right\|\left|i\right\rangle\left|x(i)\right\rangle \Big)
$$
\n9 3 1 9 5 6 0 8 4
\n $\mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S}$ \n9 8 8 9 9
\n $\mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S}$ \n19 5 6 0 8 4

\n20 8 5 8 8 9 9

\n3 7 0 9 4 8 5 4 3

2. Apply a Hadamard to the first register to the first register to get $\overline{6}$ Apply a Hadamard to the first register to get :. Apply a Hadamard i

$$
\frac{1}{\sqrt{2N_k}}\left|0\right\rangle \sum_{i\in T_k}\left(\left\|x(0)\right\|\left|i\right\rangle\left|x(0)\right\rangle+\left\|x(i)\right\|\left|i\right\rangle\left|x(i)\right\rangle\right)+\frac{1}{\sqrt{2N_k}}\left|1\right\rangle \sum_{i\in T_k}\left(\left\|x(0)\right\|\left|i\right\rangle\left|x(0)\right\rangle-\left\|x(i)\right\|\left|i\right\rangle\left|x(i)\right\rangle\right)
$$

 \mathcal{L}

⌘

 $2(\left\|X_k\right\|_F^2 + \left\|X(0)\right\|_F^2)$

F

,

it is either stored in $\mathcal{L}_{\mathbf{A}}$ or comes directly from some quantum some quantum some $\mathcal{L}_{\mathbf{A}}$

which corresponds to the average normalized squared distance between *x*(0) and the cluster *k*. Let

- 3. Repeat and Estimate Prob[outcome 1]=F_k(x(0)) *i*2*T^k* 3. Repeat and Estimate Prob[outcome 1]=F_k(x(0)) | Remark 1
- external and if the closest cluster and if the closest register and if the outcome is $\frac{1}{\sqrt{1+\epsilon}}$ 9: Output *^s* ٠Ì ^p*N^k* ⇣ *|*0i X k*x*(0)k *|i*i + *|*1i

Remark 1:

Classification as easy as creating the states

[KL 18]

 ω

 $709!/8543$ 6470692

 37

1

⇣

Frobenius Distance Classification ^p*N^k* ⇣ *|*0i X k*x*(0)k *|i*i + *|*1i X ^p*N^k |*0i *i*2*T^k* $t = t$ norms and to the total number of points and number of points and norm of the cluster (see also Appendix A). **Frobenius Distance Classification** Classifica@on\$\$ process. The classification algorithm assigns a test point *x*(0) to the cluster *k* whose points have

*i*2*T^k* 5: Apply the unitary that maps QFE 4 Frobenius Distance Estimator Let *X^k* be defined as the matrix whose rows are the vectors corresponding to the *k*-th cluster, **between 1980 is the number of electron in the cluster of electron in the cluster. 5 4 7 1 9 5 6 2 / 8**

 $\overline{\text{Required}}$

9: Output *^s*

QRAM access to the matrix X_k of cluster k and to a test vector $x(0)$. Error parameter $\eta > 0$. *^X*(0) ² ^R*|Tk|*⇥*^d* which just repeats the row *^x*(0) *[|]Tk[|]* times. Then, we define $F_k(x(0)) = \frac{\left\|X_k - X(0)\right\|_F^2}{2\left(\left\|X_k\right\|_F^2 + \left\|X_k(x)\right\|_F^2\right)}$

*i*2*T^k*

 \mathcal{L}

we can create a superposition of all vectors in the cluster as α and α as α

*P*_{*I***}** *I*^{*/*}*i***_{***i***}/***n*^{*/*}*ij*^{*/i*}/*z*(*i*^{*/Q*)</sub>*ij*_{*z*}(*x*(*Q*))*i*_{*z*} *zf_{<i>x*}(*x*(*d*))*i*_{*z*} *zf_{<i>x*}(*x*(*d*))*i*_{*z*} *zf*_{*x*}(*x*)</sub>} An estimate $F_k(x(0))$ such that $|F_k(x(0)) - F_k(x(0))| < \eta$. Ensure:

1. Create the state 1_z

$$
\frac{1}{\sqrt{N_k}}\Big(\left|0\right\rangle \sum_{i\in T_k} \left\|x(0)\right\|\left|i\right\rangle\left|x(0)\right\rangle + \left|1\right\rangle \sum_{i\in T_k} \left\|x(i)\right\|\left|i\right\rangle\left|x(i)\right\rangle \Big)
$$
\n9 3 1 9 5 6 0 8 4
\n $\mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S}$ \n9 8 8 9 9
\n $\mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S}$ \n19 5 6 0 8 4

\n20 8 5 8 8 9 9

\n3 7 0 9 4 8 5 4 3

2. Apply a Hadamard to the first register to the first register to get $\overline{6}$ Apply a Hadamard to the first register to get :. Apply a Hadamard i

$$
\frac{1}{\sqrt{2N_k}}\left|0\right\rangle \sum_{i\in T_k}\left(\left\|x(0)\right\|\left|i\right\rangle\left|x(0)\right\rangle+\left\|x(i)\right\|\left|i\right\rangle\left|x(i)\right\rangle\right)+\frac{1}{\sqrt{2N_k}}\left|1\right\rangle \sum_{i\in T_k}\left(\left\|x(0)\right\|\left|i\right\rangle\left|x(0)\right\rangle-\left\|x(i)\right\|\left|i\right\rangle\left|x(i)\right\rangle\right)
$$

 \mathcal{L}

⌘

 $2(\left\|X_k\right\|_F^2 + \left\|X(0)\right\|_F^2)$

F

,

it is either stored in $\mathcal{L}_{\mathbf{A}}$ or comes directly from some quantum some quantum some $\mathcal{L}_{\mathbf{A}}$

which corresponds to the average normalized squared distance between *x*(0) and the cluster *k*. Let

- 3. Repeat and Estimate Prob[outcome $1]=F_k(x(0))$ *i*2*T^k* 3. Repeat and Estimate Prob[outcome 1]=F_k(x(0)) | Remark 2
- external and if the closest cluster and if the closest register and if the outcome is $\frac{1}{\sqrt{1+\epsilon}}$ 9: Output *^s* ٠Ì ^p*N^k* ⇣ *|*0i X k*x*(0)k *|i*i + *|*1i

Remark 2:

Comparable accuracy to classical classifiers

[KL 18]

 ω

 $7Q9 \neq 8543$ 647069

 37

1

⇣

Frobenius Distance Classification ^p*N^k* ⇣ *|*0i X k*x*(0)k *|i*i + *|*1i X ^p*N^k |*0i *i*2*T^k* $t = t$ norms and to the total number of points and number of points and norm of the cluster (see also Appendix A). **Frobenius Distance Classification** Classifica@on\$\$ process. The classification algorithm assigns a test point *x*(0) to the cluster *k* whose points have

*i*2*T^k* 5: Apply the unitary that maps QFE 4 Frobenius Distance Estimator Let *X^k* be defined as the matrix whose rows are the vectors corresponding to the *k*-th cluster,

 $\overline{\text{Required}}$

9: Output *^s*

QRAM access to the matrix X_k of cluster k and to a test vector $x(0)$. Error parameter $\eta > 0$. *^X*(0) ² ^R*|Tk|*⇥*^d* which just repeats the row *^x*(0) *[|]Tk[|]* times. Then, we define $F_k(x(0)) = \frac{\left\|X_k - X(0)\right\|_F^2}{2\left(\left\|X_k\right\|_F^2 + \left\|X_k(x)\right\|_F^2\right)}$

*i*2*T^k*

 \mathcal{L}

we can create a superposition of all vectors in the cluster as α and α as α

*P*_{*I***}** *I*^{*/*}*i***_{***i***}/***n*^{*/*}*ij*^{*/i*}/*z*(*i*^{*/Q*)</sub>*ij*_{*z*}(*x*(*Q*))*i*_{*z*} *zf_{<i>x*}(*x*(*d*))*i*_{*z*} *zf_{<i>x*}(*x*(*d*))*i*_{*z*} *zf*_{*x*}(*x*)</sub>} An estimate $F_k(x(0))$ such that $|F_k(x(0)) - F_k(x(0))| < \eta$. Ensure:

1. Create the state 1_z

$$
\frac{1}{\sqrt{N_k}}\Big(\left|0\right\rangle \sum_{i\in T_k}\left\|x(0)\right\|\left|i\right\rangle\left|x(0)\right\rangle +\left|1\right\rangle \sum_{i\in T_k}\left\|x(i)\right\|\left|i\right\rangle\left|x(i)\right\rangle \Big)
$$

2. Apply a Hadamard to the first register to the first register to get $\overline{6}$ Apply a Hadamard to the first register to get :. Apply a Hadamard i

$$
\frac{1}{\sqrt{2N_k}}\left|0\right>\sum_{i\in T_k}\Big(\left\|x(0)\right\|\left|i\right>\left|x(0)\right>+ \left\|x(i)\right\|\left|i\right>\left|x(i)\right>\Big)+\frac{1}{\sqrt{2N_k}}\left|1\right>\sum_{i\in T_k}\Big(\left\|x(0)\right\|\left|i\right>\left|x(0)\right>- \left\|x(i)\right\|\left|i\right>\left|x(i)\right>\Big)\Big)
$$

 \mathcal{L}

⌘

 $2(\left\|X_k\right\|_F^2 + \left\|X(0)\right\|_F^2)$

F

,

 $\frac{3}{2}$

it is either stored in $\mathcal{L}_{\mathbf{A}}$ or comes directly from some quantum some quantum some $\mathcal{L}_{\mathbf{A}}$

which corresponds to the average normalized squared distance between *x*(0) and the cluster *k*. Let

- 3. Repeat and Estimate Prob[outcome $1]=F_k(x(0))$ *i*2*T^k* 3. Repeat and Estimate Prob[outcome 1]=F_k(x(0)) | Remark 2
- external and if the closest cluster and if the closest register and if the outcome is $\frac{1}{\sqrt{1+\epsilon}}$ 9: Output *^s* ٠Ì ^p*N^k* ⇣ *|*0i X k*x*(0)k *|i*i + *|*1i

Remark 2:

Comparable accuracy to classical classifiers

Accuracy

[KL 18]

and *|Tk|* is the number of elements in the cluster. For the test point *x*(0), define the matrix

67.5%\$

 $7709 / 8$

Dimensionality Reduction: Slow Feature Analysis Classification

Dimensionality Reduction: Slow Feature Analysis *A* is usually approximated with a small fraction of all the possible derivatives, roughly linear (and derivative matrix to be just double the number of data points without compromising the accuracy.

 \ddotsc \ddotsc \ddotsc \ddotsc SFA - Algorithm 1 (Classical) Slow Feature Analysis

Require:

Input $X \in \mathbb{R}^{n \times d}$ (normalized and polynomially expanded), and $K < d \in \mathbb{N}$ Ensure:

 $\dot{Y} = ZW$, where $Z = AB^{-2}$ is the whitehed input signal, and $W \in \mathbb{R}^{m \times m}$
eigenvectors of the matrix $A = \dot{Z}^T \dot{Z}$ corresponding to the smallest eigenvalues *Y* = *ZW*, where $Z = XB^{-1/2}$ is the whitened input signal, and $W \in \mathbb{R}^{d \times (K-1)}$ are the $K-1$

This will include the data will infact allow us to which a quantum procedure. In procedure, the matrix \mathcal{L}

1: Whiten the signal: $Z := XB^{-1/2}$, and create \dot{Z} from Z .

2: Perform PCA on the derivative covariance matrix $A = \dot{Z}^T \dot{Z}$ of the whitened data.

3: Return $Y = ZW$, the projection of whitened data onto *W*, the $K-1$ slowest eigenvectors of *A*

 \mathbf{r} 5 6 0661 3 3 9 59 8365 9158084 $\overline{\mathbf{3}}$ 5626858899 3770948543 \bm{O}

Could QML work on real data? This will include the data will infact allow us to which a quantum procedure. In procedure, the matrix \mathcal{L} Classification *A* is usually approximated with a small fraction of all the possible derivatives, roughly linear (and **Dimensionality Reduction: Slow Feature Analysis** [KL 18] derivative matrix to be just double the number of data points without compromising the accuracy. 562 $SFA - Algorithm$ Dist 2 9 0664 \mathcal{O} 5 $\overline{}$ Require: 637 3 $\text{Input } X \in \mathbb{R}^{n}$ **Feat Vec 1 Feat Vec 2 Feat Vec 3** ৩ Ensure: *^Y* ⁼ *ZW*, where *^Z* ⁼ *XB*1*/*² is the whitened input signal, and *^W* ² ^R*^d*⇥(*K*1) are the *^K* ¹ 3 $\dot{x} = ZW$, where the matrix $\dot{x} = \dot{z}W$ and $\dot{z} = \dot{z}W$ corresponding to the smallest eigenvectors of $\mathbf Q$ \mathcal{S} 3 5 6 9158 $\overline{\mathcal{E}}$ \mathcal{O} ىتى 1: Whiten the sig 56 6858899 $\mathbf{2}$ \mathbf{a} \rightarrow \mathbf{b} 2: Perform PCA **on the derivative covariance matrix** *A* \overline{Z} **^{***Z***}***ZZZZZ***^{***Z***}***ZZZZ******ZZ***** $7709!/8543$ 3: Return $Y = Z$ **W**, the projection of A 64706 ∙ \$\$\$\$ 3 Quantum algorithms for machine learning

Dimensionality Reduction: Slow Feature Analysis *A* is usually approximated with a small fraction of all the possible derivatives, roughly linear (and derivative matrix to be just double the number of data points without compromising the accuracy.

 \ddotsc \ddotsc \ddotsc \ddotsc SFA - Algorithm 1 (Classical) Slow Feature Analysis

Require:

Input $X \in \mathbb{R}^{n \times d}$ (normalized and polynomially expanded), and $K < d \in \mathbb{N}$ Ensure:

 $\dot{Y} = ZW$, where $Z = AB^{-2}$ is the whitehed input signal, and $W \in \mathbb{R}^{m \times m}$
eigenvectors of the matrix $A = \dot{Z}^T \dot{Z}$ corresponding to the smallest eigenvalues *Y* = *ZW*, where $Z = XB^{-1/2}$ is the whitened input signal, and $W \in \mathbb{R}^{d \times (K-1)}$ are the $K-1$

This will include the data will include the data with a quantum procedure. In procedure, the matrix \mathcal{L}

1: Whiten the signal: $Z := XB^{-1/2}$, and create \dot{Z} from Z .

2: Perform PCA on the derivative covariance matrix $A = \dot{Z}^T \dot{Z}$ of the whitened data.

3: Return $Y = ZW$, the projection of whitened data onto *W*, the $K-1$ slowest eigenvectors of *A*

 \mathbf{r} 5 6 0661 3 3 9 59 8365 9158084 $\overline{\mathbf{3}}$ 5626858899 3770948543 \bm{O}

Dimensionality Reduction: Slow Feature Analysis *A* is usually approximated with a small fraction of all the possible derivatives, roughly linear (and derivative matrix to be just double the number of data points without compromising the accuracy.

 \ddotsc \ddotsc \ddotsc \ddotsc SFA - Algorithm 1 (Classical) Slow Feature Analysis

Require:

Input $X \in \mathbb{R}^{n \times d}$ (normalized and polynomially expanded), and $K < d \in \mathbb{N}$ Ensure:

 $\dot{Y} = ZW$, where $Z = AB^{-2}$ is the whitehed input signal, and $W \in \mathbb{R}^{m \times m}$
eigenvectors of the matrix $A = \dot{Z}^T \dot{Z}$ corresponding to the smallest eigenvalues $Y = ZW$, where $Z = XB^{-1/2}$ is the whitened input signal, and $W \in \mathbb{R}^{d \times (K-1)}$ are the $K-1$

*ⁱ*2[*n*] *^xⁱ [|]i*i*.*

This will include the data will include the data with a quantum procedure. In procedure, the matrix \mathcal{L}

2: Perform PCA on the derivative covariance matrix $A = \dot{Z}^T \dot{Z}$ of the whitened data. 3: Return $Y = ZW$, the projection of whitened data onto *W*, the $K-1$ slowest eigenvectors of *A* 1: Whiten the signal: $Z := XB^{-1/2}$, and create \dot{Z} from Z .

a Guantum Slow Feature Analysis For Machine learning

Definition 1. *The vector state [|]x*ⁱ *for ^x* ² ^R*ⁿ is defined as* ¹ *(Matrix Multiplication, Inversion, Projection)* Proposition 1. *(Phase estimation [Kit96]) Let U be a unitary operator, with eigenvectors |v^j* i Efficient Quantum Linear Algebra

We start by stating some known results that we will use in the following sections.

[KL 18]

Dimensionality Reduction: Slow Feature Analysis *A* is usually approximated with a small fraction of all the possible derivatives, roughly linear (and derivative matrix to be just double the number of data points without compromising the accuracy.

 \ddotsc \ddotsc \ddotsc \ddotsc SFA - Algorithm 1 (Classical) Slow Feature Analysis

Require:

Input $X \in \mathbb{R}^{n \times d}$ (normalized and polynomially expanded), and $K < d \in \mathbb{N}$ Ensure:

 $\dot{Y} = ZW$, where $Z = AB^{-2}$ is the whitehed input signal, and $W \in \mathbb{R}^{m \times m}$
eigenvectors of the matrix $A = \dot{Z}^T \dot{Z}$ corresponding to the smallest eigenvalues $Y = ZW$, where $Z = XB^{-1/2}$ is the whitened input signal, and $W \in \mathbb{R}^{d \times (K-1)}$ are the $K-1$

This will include the data will include the data with a quantum procedure. In procedure, the matrix \mathcal{L}

2: Perform PCA on the derivative covariance matrix $A = \dot{Z}^T \dot{Z}$ of the whitened data. 3: Return $Y = ZW$, the projection of whitened data onto *W*, the $K-1$ slowest eigenvectors of *A* 1: Whiten the signal: $Z := XB^{-1/2}$, and create \dot{Z} from Z .

Proposition 1. *(Phase estimation [Kit96]) Let U be a unitary operator, with eigenvectors |v^j* i

a Guantum Slow Feature Analysis For Machine learning

E

(Matrix Multiplication, Inversion, Projection) Efficient Quantum Linear Algebra

We start by stating some known results that we will use in the following sections. The following sections. Remark:

*ⁱ*2[*n*] *^xⁱ [|]i*i*.* Classification only needs quantum states

Quantum Classifier

Input: X , a new vector $x(0)$

- 1. Do QSFA to quantumly project X and $x(0)$ to Y and $y(0)$
- 2. Use Frobenius Distance Classification on Y, $y(0)$

Quantum Classifier

Input: X , a new vector $x(0)$

- 1. Do QSFA to quantumly project X and $x(0)$ to Y and $y(0)$
- 2. Use Frobenius Distance Classification on Y, $y(0)$

Accuracy **Accuracy**

 $\frac{3}{5}$ and $\frac{3}{5}$ a \$\$\$\$ We simulate the quantum procedures including errors in an HPC machine and test it on the 10000 test digits of MNIST for different parameters

Quantum Classifier

Input: X , a new vector $x(0)$

- 1. Do QSFA to quantumly project X and $x(0)$ to Y and $y(0)$
- 2. Use Frobenius Distance Classification on Y, y(0)

Accuracy

We simulate the quantum procedures including errors in an HPC machine and test it on the 10000 test digits of MNIST for different parameters

Running time

Classical: O(n d^2) \approx = 10¹³ (1 hour on 6Tb RAM HPC)

Quantum Classifier

Input: X , a new vector $x(0)$

- 1. Do QSFA to quantumly project X and $x(0)$ to Y and $y(0)$
- 2. Use Frobenius Distance Classification on Y, y(0)

Accuracy

We simulate the quantum procedures including errors in an HPC machine and test it on the 10000 test digits of MNIST for different parameters

Running time

Classical: $O(n d^2) \approx 10^{13}$ (1 hour on 6Tb RAM HPC) Quantum: O(κ , μ , 1/ θ , 1/ δ , 1/ η , K, polylog(n, d, 1/ ϵ),...)

Quantum Classifier

Input: X , a new vector $x(0)$

- 1. Do QSFA to quantumly project X and $x(0)$ to Y and $y(0)$
- 2. Use Frobenius Distance Classification on Y, y(0)

Accuracy

We simulate the quantum procedures including errors in an HPC machine and test it on the 10000 test digits of MNIST for different parameters

Running time

Classical: $O(n d^2) \approx 10^{13}$ (1 hour on 6Tb RAM HPC) Quantum: Ο(κ, μ, 1/θ, 1/δ, 1/η, Κ, polylog(n, d, 1/ε),...) ~= 10⁷

Main question:

Better accuracy by increasing the dimension, keeping efficient time? Quantum time: O(κ , μ , 1/ θ , 1/ δ , 1/ η , K, polylog(n, d, 1/ ϵ),...)

Main question:

Better accuracy by increasing the dimension, keeping efficient time? Quantum time: Ο(κ , μ, 1/θ, 1/δ, 1/η, K, polylog(n, d, 1/ε),...)

Main question:

Better accuracy by increasing the dimension, keeping efficient time? Quantum time: Ο(κ , μ, 1/θ, 1/δ, 1/η, Κ, polylog(n, d, 1/ε),...)

Main question:

Better accuracy by increasing the dimension, keeping efficient time? Quantum time: O(κ , μ , 1/ θ , 1/ δ , 1/ η , K, polylog(n, d, 1/ ϵ),...)

Hope (and some evidence):

Quantum classification algorithms can handle bigger dimensions (hence be more accurate), since their running time scales much more favourably with the dimension.

Unsupervised Classification: Q-means [KLLP 18]

K-means

Input: M N-dimensional points, K clusters

Start with some random points as centroids $1.$

Repeat until convergence

- 2. For each point compute distances to the centroids and assign to closest cluster O(KMN)
- 3. Recompute the centroids O(MN)

Unsupervised Classification: Q-means [KLLP 18]

Input: M N-dimensional points, K clusters

 $\frac{3}{5}$ with some random points a 1. Start with some random points as centroids

Repeat until convergence

- 2. For each point compute distances to the centroids and assign to closest cluster O(KMN)
- 3. Recompute the centroids O(MN)

Q-means

 $\frac{1}{2}$ $\frac{1}{2}$ Input: M N-dimensional points with quantum access, K clusters

1. Start with some random points as centroids

Repeat until convergence

- 2. For all points in superposition compute distances to centroids and assign to closest cluster $O(K \log(MN))$
- 2. Use Matrix Multiplication and tomography to recompute the centroids $O(KN \log(MN))$

Summary and open questions

Summary

QML is (one of) the best reason to build quantum computers

- Use case: Quantum recommendation systems
- General Methods: Quantum gradient descent for linear gradients
- Benchmarking: Classification of MNIST dataset
- ML data has some hidden structure (e.g. low rank approximations)
- ML is very robust to errors

Open Questions

Build quantum computers and QRAMs

Find new quantum methods (Interior point methods, fully quantum methods,...)

Find more real-world applications

Benchmark hardware via applications