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Transverse-field adiabatic optimization
(Farhi, Goldstone, Gutmann, Sipser. 2000)

» Minimize a cost function f : {0,1}" — R by sampling the
ground state of an n-qubit Hamiltonian,

Ho= Y. f(2)2)(z|
ze{0,1}n

> Initialize the qubits in the ground state of a uniform transverse
field Hg = — .71 X; and interpolate from Hg to H,,

H(s)=(1—-s)Hg+sH, , 0<s<1

» Adiabatic theorem: running for time poly(n, A™1), where
A = ming E1(s) — Eo(s) is the minimum spectral gap of H(s),
suffices to prepare the ground state of H,,.



TF-AO C Adiabatic Optimization C Adiabatic Computation

» Adiabatic optimization can also use different paths e.g.

H(s)=(1—-s)Hg +s(1—s)He +sH, , 0<s<1.

» For some example cost functions, a nontrivial Hg can improve
the min gap A from O(27") to Q(1). (FGG, 2002).

» Adiabatic computation: Using more general local
Hamiltonian paths H(s), ground state adiabatic evolution +
measurement + classical post-processing is a universal model
of quantum computation. (Aharanov et al., 2007).

» In universal AQC constructions the final Hamiltonian
H(s = 1) is a Feynman-Kitaev circuit Hamiltonian.



Heuristic reasons for interest in QAO

Implementable as an analog algorithm, with expectations of
inherent robustness to errors. (Childs, Farhi, Preskill, 2004)

Optimization principles are common in nature, and have
inspired valuable classical optimization algorithms (e.g.
Simulated Annealing, Kirkpatrick et al., 1983. +30k citations)

Intuition for quantum tunneling to speed up exploration of
rugged energy landscapes in the classical cost function.

Tunneling intuition led to toy problems in which adiabatic
optimization is exponentially faster than classical SA (FGG
‘02) or any local search algorithm (Reichardt ‘04).



Exponential speedup over classical SA

» Spike cost function: bit-symmetric cost function with a
large energy barrier that creates a local minimum.

Flw) = lw| 4+ n? n/4—nP/2 <|w|<n/4+nb/2
|w| o.w.

f(w)

Hamming Weight |w]|

» Takes time Q(2") to solve with local search algorithms, but
QA takes O(n) time when a+ b < 1/2 (Reichardt '04).



Bad news: No evidence of speedup over best-known classical
optimization algorithms using QAO with local Hamiltonians.

Grover speedup can be obtained using oracle Hamiltonians
resembling QAO. (Roland and Cerf, 2001).

Glued-trees speedup can be obtained using adjacency matrix
Hamiltonian oracle and a nearly-degenerate ground-space.
(Nagaj, Somma, Keiferova, 2012)

QAOA superficially resembles QAQO and briefly achieved the
best-known approximation ratio guarantee for MAX-E3-LIN2.

Inspiring rigorous algorithms: reverse annealing (Smelyanskiy
et al. 2018), short-path optimization (Hastings, 2018)



Why is there no speedup? Is it because H is stoquastic?

» Even empirical benchmarks of TF-AO do not indicate any
speedup over the best classical algorithms.

v

Most commonly cited reason for the lack of a speedup is that
TF-AO Hamiltonian is stoquastic in the computational basis.

v

Hamiltonian H = ), H; is stoquastic if in some local basis B
the terms H; all have matrix entries that are zero or negative,

(x|Hly) <0 , Vx,y € Bwith x # y.

v

Stoquastic = “quantum” + “stochastic”

» H "doesn't have a sign problem”, and its equilibrium states
are on the border of quantum and classical physics.



Transverse Ising Models

» Transverse Ising models are stoquastic in the Z basis,
: 0 1 10
H:_z;x,-—Zz,-zj . X = L 0] , Z= {0 _1}
i= ij

» So are generalized TIM with disordered interactions,

H:—Zr;Xf—i-ZOzijZ;Zj—i-ZbiZ/ , >0
i i i

» Theorem: generalized TIM are universal for stoquastic
adiabatic computation. Proof uses perturbative gadgets.
(Bravyi, Hastings ‘14, Cubitt, Montanaro, Piddock ‘16).



Perron Frobenius theorem: amplitudes in equilibrium

» If H has all real and non-positive matrix entries, then
A = —(H is a non-negative matrix. Expand e” as a series,

A2
eA:1+A+7+...

» Every term in the series is a nonnegative matrix, therefore
e P" is a nonnegative matrix.

» Since limg_,o e P = ) (¢)|, there is a choice of global
phase which gives the ground state nonnegative amplitudes.

» If H is an irreducible matrix, then all of the ground state
amplitudes are positive, 1)(x) > 0 for all x € B. (no nodes)



Euclidean path integrals

» We can expand the partition function as a “path integral”,
—BH _sH\L L _BH
Z=tr (e ) =3 (e ; ) )= > [[eale T Ixisn)
xeB X1,.-, X EB =1
BH

» Since the “propagator’ e~ T is a nonnegative matrix, every
path (xi,...,x.) contributes a positive weight to this sum.

> Define a probability distribution on the space of paths,

NI

L
1 _BH
7T(X1,...,X1_) = H(Xi‘e L |Xi+1>
i=1

> For large 3, this 7 has the ground state distribution as a
marginal, 1(x)? = Do, TXo X2,y X0



Quantum Monte Carlo

» ldea: MCMC for stoquastic path integrals.

» Ground state probability distribution of H becomes a marginal
of a Gibbs distribution in a larger state space,

e—E(Xl,...,XL)
7T(X1,...,XL):7 , X € {0,1}”
V4
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» The path integral is a faithful approximation, as long as we
approximately sample from 7.

» QMC works works well in practice, but convergence of the
MCMC is not theoretically explained in general.



D-Wave: the original NISQ device

D-Wave implements a noisy version of transverse-field
adiabatic optimization called quantum annealing.

Single qubit coherence times ~1ns , annealing times ~1us,
substantial open system effects, calibration errors

Successfully solves 2000 bit optimization instances, works
better than theory might predict (confirming some sense of
inherent robustness).

For instances designed to give D-Wave every advantage over
its classical competitors, it matches the performace of the
best implementations of the best algorithms on a modern
single-core CPU.



QMC and SA single-core annealing time (;1s)
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The stoquastic simulation conjecture

Conjecture: stoquastic adiabatic computation can be
classically simulated in time poly(n, A™1), in the sense of
sampling the ground state probability distribution (GSPD) in
the computational basis.

Crucial that A := mins A(s) for a sensible conjecture, since
NP-hard instances with a unique ground state retain a
constant gap when perturbed by a transverse field.

Markov chains are designed to forget where they came from,
so making essential use of the adiabatic path in a simulation
attempt is quite difficult.

It turns out that “warm starts” are not really enough, because
(x]1) is Q(n~") for generalized TIM ground states |¢) and all
x € {0,1}".



Status of the stoquastic simulation conjecture

» Most general result to date is poly-time simulation of
frustration-free stoquastic AQC (Bravyi, Terhal, 2008).

> All other rigorous progress is on “easy” cases: ferromagnetic
models on any graph and any temperature (Bravyi and
Gosset), spike Hamiltonians and 1D models at 5 = O(log n)
temperature (EC and Harrow).

> All existing QMC algorithms are inadequate for the most
general form of the conjecture, due to topological obstructions
and Lj vs Ly obstructions. (Hastings 2013).



Quantum supremacy with stoquastic ground states

» Stoquastic adiabatic computation cannot be universal (unless
PH collapses to 3rd level) because approximating stoquastic
path integrals is in PostBPP. (Bravyi et al. 2005)

» However, Bravyi et al. define H to be stoquastic if there is
any choice of local basis in which the condition on the matrix
entries of H is satisfied.

> Therefore theoretical QS could potentially be obtained by
sampling a stoquastic Hamiltonian in a rotated basis.

> Indeed, output of an IQP circuit is the ground state of local
Hamiltonian UHUT where H = — )", X; and U is depth 3.



Quantum supremacy with stoquastic ground states

» More directly, 1-local rotations suffice to make the 2D cluster
state Hamiltonian used in MBQC explicitly stoquastic.

» Similar observation in “Quantum speedup in stoquastic
adiabatic quantum computation” (Fujii 2018).



How can we evaluate nonstoquastic QAO?

Isoperimetric inequality: relates the geometry of the ground
state probability distribution (GSPD) to the spectral gap.

Generalizes a known result for Markov chains and stoquastic
Hamiltonians to nonstoquastic Hamiltonians.

Furthers our understanding of the probability distributions
that arise from nonstoquastic ground states.

Quantum ground state isoperimetric inequalities for the
energy spectrum of local Hamiltonians.
(EC & J. Bowen, arXiv:1703.10133).



Ground states and weighted graphs

» Think of the labels of a basis B as vertices of a graph, and the
ground state [¢)) as a probability distribution on 5,

xeB = 7(x)=|v(x)>

» Connect two vertices x, y € B by an unweighted edge if the
corresponding Hamiltonian matrix entry is nonzero,

x, y connected by an edge < (x|H|y) # 0.

» Define the interior boundary of a set of vertices S C B as the
vertices in S connected to vertices outside of S,

0S ={xe€S:3y ¢S with (x|H|y) # 0}.



Isoperimetric Inequality for Quantum Ground States

> Notation: let H have ground state energy E > 0 and operator
norm ||H||, and let Ay := E; — E be the spectral gap of H.

» Theorem: if B is an arbitrary basis and 7 is the GSPD of H in
the basis B, then any subset S C B with 7(S) < 1/2 satisfies

7(0S)
7(S)

Ap <2(|H|l - E)
» Depends on the range of k-local terms in H (through 05),
but not on the details of the Hamiltonian couplings.

» For a given 7 the inequality constrains the spectral gap of any
k-local H having 7 as its GSPD in any choice of local basis.



Conclusion

Simulated quantum annealing works well for stoquastic QAO,
so nonstoquastic H seem necessary for quantum speedup.

Sampling a stoquastic H in a locally rotated basis can yield
theoretical and practical quantum supremacy.

Adiabatic computation with nonstoquastic H is universal, but
this doesn’t mean that nonstoquastic H will improve the
performance of adiabatic optimization.

Some explicit distributions inevitably take a long time to
precisely sample using purely adiabatic evolution = spectral
gap condition is too pessimistic, leaving the ground state is
advantageous (and so are measurements and ancillas).

Thank you for your attention!



