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One of the greatest successes in computer science

Important practical applications in

- Route planning

- Scheduling

- Resource allocation

- Power management

- Design

-
...
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What about Linear Programs (LPs) and Semidefinite

Programs (SDPs)?
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A generalization of Linear programs (LPs). Let X ∈ Rn×n

OPT = min Tr(CX )

s.t. Tr(AjX ) ≤ bj for all j ∈ [m],

X � 0

Assumptions ans formalization

- n × n variable matrix X , with m constraints.

- Assume ‖C‖ , ‖Aj‖ ≤ 1
2

and s-sparse.

- A priori known bounds Tr (X ) ≤ R and
∑m

j=0 yj ≤ r .

- Goal: additive ε-approximation of the optimum.

Examples: MAXCUT, Lovász theta number,

Sum-of-Squares, General Adversary bound, . . .



Classical solvers

- Simplex algorithm for linear programs. (Dantzig, 1947)

- Ellipsoid method in polynomial time. (Khachiyan, 1979)

- Also works for SDPs! (Grötschel, Lovász, Schrijver, 1988)

- State of the art methods: (Lee, Sidford, Wong, 2015)

O
(
m(m2 + nω + mns) logO(1)(mnR/ε)

)
,

- Arora and Kale (2008):

Worse error-dependence, better in n and m in certain

cases.
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Quantum solvers
So far quantum algorithms are based on ideas of Arora-Kale.

Nice speed-ups in n,m but heavy dependence on 1/δ := (Rr)/ε.
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(√
m poly

(
B

δ8

))
[in a quantum input model]

- 2018 Apr.: Brandão, Kalev, Li, Lin, Svore, Wu: Õ
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SDP feasibility problem

minTr (CX )

Tr (CX ) ≤ α

Tr (AjX ) ≤ bj for all j ∈ [m]

Tr (X ) = 1

Find X with Tr (X ) = 1 such that

Tr (AjX ) ≤ bj + δ for all j ∈ [m]

or conclude that the problem is infeasible.

[In case the problem is infeasible, but a δ-approximation

exists we allow both solutions.]
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Basic iterative algorithm

Set y (0) := 0 ∈ Rm

For t = 0... log(n)
δ2

- Let H(t) :=
∑m

j=1 y
(t)
j Aj and X := e−H(t)

Tr
(
e−H(t)

)
- Try to find j ∈ [m] : Tr (AjX ) > bj .

Once found j set y (t+1) := y (t) + δej

- If for all j ∈ [m] : Tr (AjX ) ≤ bj + δ
Can simply output “(approximately) feasible”

Conclude that the problem is infeasible

Proof of correctness by Lee, Raghavendra and Steurer ’15.

(Very similar to the algorithm of Arora and Kale ’08.)

Application to quantum SDP-solving Brandão et al. ’16,’17.
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Preparing X
Suppose we can query the position and value of the non-zero

elements of the sparse matrices Aj , then we can implement

USelect =
m∑
j=1

|j〉〈j | ⊗ Uj , such that Uj =

[
Aj .
. .

]
,

using Õ (s) queries and gates.
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Violated constraints

Decide if Tr (AjX ) ≤ bj ± δ

- Can be done using Õ
(

1
δ2

)
copies of X

- with query and gate complexity Õ
(

s
δ2

)
.

Now we use the quantum OR lemma of Harrow et al. ’17

using its fast implementation due to Brandão et al. ’17.

- Find j ∈ [m] such that Tr (AjX ) ≥ bj
- or conclude that for all j ∈ [m] we have Tr (AjX ) ≤ bj + δ

The above problem can be solved with Õ
(
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(

1
δ2

)
copies of X

- with query and gate complexity Õ
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Applications

Shadow tomography

- Given samples of ρ ∈ Cn×n, and m meas. operators Mj

- find y ∈ Rm such that H :=
∑m

j=1 yjMj satisfies

for all j ∈ [m] that

∣∣∣∣Tr (Mjρ)− Tr
(
Mj

e−H

Tr (e−H)

)∣∣∣∣ ≤ δ.
Aaronson showed how to solve using O

(
log4(m) log(n)

δ4

)
samples.

Our SDP solver recovers it in a gate efficient way

incurring Õ
(√

m
)

gate and query complexity overhead.

Further applications

- Quantum state discrimination with maximal total

success probability.

- Optimal measurement design.
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(√

m
)

gate and query complexity overhead.

Further applications

- Quantum state discrimination with maximal total

success probability.

- Optimal measurement design.



Applications

Shadow tomography

- Given samples of ρ ∈ Cn×n, and m meas. operators Mj

- find y ∈ Rm such that H :=
∑m

j=1 yjMj satisfies

for all j ∈ [m] that

∣∣∣∣Tr (Mjρ)− Tr
(
Mj

e−H

Tr (e−H)

)∣∣∣∣ ≤ δ.
Aaronson showed how to solve using O

(
log4(m) log(n)

δ4

)
samples.

Our SDP solver recovers it in a gate efficient way

incurring Õ
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Summary

Quantum SDP solver

- Query and gate complexity Õ
((√

m +
√
n
δ

)
s
δ4

)
.

Matching lower bounds for LPs (and hence SDPs)

- Ω
(√

m +
√
n
)

in sparse matrix access input model.

- Ω
(√

m/δ
)

in block-encoding input model.

Open questions/future research

- Problem specific fine-tuned algorithms?

- Tight quantum bounds for the δ dependence?

- Speed-ups using other, e.g., interior point methods?
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