
Improvements in Quantum

SDP-Solving

András Gilyén

CWI / QuSoft / University of Amsterdam

June 13, 2018

Optimization is cool

Optimization is cool

Optimization is cool

One of the greatest successes in computer science

Optimization is cool

One of the greatest successes in computer science

Important practical applications in

- Route planning

- Scheduling

- Resource allocation

- Power management

- Design

-
...

Quantum optimization?

Quantum optimization?
Quantum algorithms for optimization:

Proven advantage

- Grover search

- Quantum Walks

- Backtracking

- Shortest path

- Minimum weight

spanning tree

Heuristics

- Quantum annealing

- Adiabatic algorithms

- QAOA

- VQE

- Quantum machine

learning

Quantum optimization?
Quantum algorithms for optimization:

Proven advantage

- Grover search

- Quantum Walks

- Backtracking

- Shortest path

- Minimum weight

spanning tree

Heuristics

- Quantum annealing

- Adiabatic algorithms

- QAOA

- VQE

- Quantum machine

learning

What about Linear Programs (LPs) and Semidefinite

Programs (SDPs)?

LPs and SDPs
A generalization of Linear programs (LPs).

LPs and SDPs
A generalization of Linear programs (LPs). Let x ∈ Rn

OPT = min 〈c, x〉

LPs and SDPs
A generalization of Linear programs (LPs). Let x ∈ Rn

OPT = min 〈c , x〉
s.t. 〈aj , x〉 ≤ bj for all j ∈ [m],

x ≥ 0

LPs and SDPs
A generalization of Linear programs (LPs). Let X ∈ Rn×n

OPT = min 〈C ,X 〉
s.t. 〈Aj ,X 〉 ≤ bj for all j ∈ [m],

X ≥ 0

LPs and SDPs
A generalization of Linear programs (LPs). Let X ∈ Rn×n

OPT = min Tr(CX)

s.t. Tr(AjX) ≤ bj for all j ∈ [m],

X � 0

Assumptions ans formalization

LPs and SDPs
A generalization of Linear programs (LPs). Let X ∈ Rn×n

OPT = min Tr(CX)

s.t. Tr(AjX) ≤ bj for all j ∈ [m],

X � 0

Assumptions ans formalization

- n × n variable matrix X , with m constraints.

LPs and SDPs
A generalization of Linear programs (LPs). Let X ∈ Rn×n

OPT = min Tr(CX)

s.t. Tr(AjX) ≤ bj for all j ∈ [m],

X � 0

Assumptions ans formalization

- n × n variable matrix X , with m constraints.

- Assume ‖C‖ , ‖Aj‖ ≤ 1
2

and s-sparse.

LPs and SDPs
A generalization of Linear programs (LPs). Let X ∈ Rn×n

OPT = min Tr(CX)

s.t. Tr(AjX) ≤ bj for all j ∈ [m],

X � 0

Assumptions ans formalization

- n × n variable matrix X , with m constraints.

- Assume ‖C‖ , ‖Aj‖ ≤ 1
2

and s-sparse.

- A priori known bounds Tr (X) ≤ R and
∑m

j=0 yj ≤ r .

LPs and SDPs
A generalization of Linear programs (LPs). Let X ∈ Rn×n

OPT = min Tr(CX)

s.t. Tr(AjX) ≤ bj for all j ∈ [m],

X � 0

Assumptions ans formalization

- n × n variable matrix X , with m constraints.

- Assume ‖C‖ , ‖Aj‖ ≤ 1
2

and s-sparse.

- A priori known bounds Tr (X) ≤ R and
∑m

j=0 yj ≤ r .

- Goal: additive ε-approximation of the optimum.

LPs and SDPs
A generalization of Linear programs (LPs). Let X ∈ Rn×n

OPT = min Tr(CX)

s.t. Tr(AjX) ≤ bj for all j ∈ [m],

X � 0

Assumptions ans formalization

- n × n variable matrix X , with m constraints.

- Assume ‖C‖ , ‖Aj‖ ≤ 1
2

and s-sparse.

- A priori known bounds Tr (X) ≤ R and
∑m

j=0 yj ≤ r .

- Goal: additive ε-approximation of the optimum.

Examples: MAXCUT, Lovász theta number,

Sum-of-Squares, General Adversary bound, . . .

Classical solvers

- Simplex algorithm for linear programs. (Dantzig, 1947)

- Ellipsoid method in polynomial time. (Khachiyan, 1979)

- Also works for SDPs! (Grötschel, Lovász, Schrijver, 1988)

- State of the art methods: (Lee, Sidford, Wong, 2015)

O
(
m(m2 + nω + mns) logO(1)(mnR/ε)

)
,

- Arora and Kale (2008):

Worse error-dependence, better in n and m in certain

cases.

Classical solvers

- Simplex algorithm for linear programs. (Dantzig, 1947)

- Ellipsoid method in polynomial time. (Khachiyan, 1979)

- Also works for SDPs! (Grötschel, Lovász, Schrijver, 1988)

- State of the art methods: (Lee, Sidford, Wong, 2015)

O
(
m(m2 + nω + mns) logO(1)(mnR/ε)

)
,

- Arora and Kale (2008):

Worse error-dependence, better in n and m in certain

cases.

Classical solvers

- Simplex algorithm for linear programs. (Dantzig, 1947)

- Ellipsoid method in polynomial time. (Khachiyan, 1979)

- Also works for SDPs! (Grötschel, Lovász, Schrijver, 1988)

- State of the art methods: (Lee, Sidford, Wong, 2015)

O
(
m(m2 + nω + mns) logO(1)(mnR/ε)

)
,

- Arora and Kale (2008):

Worse error-dependence, better in n and m in certain

cases.

Classical solvers

- Simplex algorithm for linear programs. (Dantzig, 1947)

- Ellipsoid method in polynomial time. (Khachiyan, 1979)

- Also works for SDPs! (Grötschel, Lovász, Schrijver, 1988)

- State of the art methods: (Lee, Sidford, Wong, 2015)

O
(
m(m2 + nω + mns) logO(1)(mnR/ε)

)
,

- Arora and Kale (2008):

Worse error-dependence, better in n and m in certain

cases.

Classical solvers

- Simplex algorithm for linear programs. (Dantzig, 1947)

- Ellipsoid method in polynomial time. (Khachiyan, 1979)

- Also works for SDPs! (Grötschel, Lovász, Schrijver, 1988)

- State of the art methods: (Lee, Sidford, Wong, 2015)

O
(
m(m2 + nω + mns) logO(1)(mnR/ε)

)
,

- Arora and Kale (2008):

Worse error-dependence, better in n and m in certain

cases.

Quantum solvers
So far quantum algorithms are based on ideas of Arora-Kale.

Nice speed-ups in n,m but heavy dependence on 1/δ := (Rr)/ε.

- 2016 Sep.: Brandão and Svore: Õ
(√

mn
s2

δ18

)

- 2017 May.: van Apeldoorn, G., Gribling, de Wolf: Õ
(√

mn
s2

δ8

)
- 2017 Oct.: Brandão, Kalev, Li, Lin, Svore, Wu: Õ

(√
m poly

(
B

δ8

))
[in a quantum input model]

- 2018 Apr.: Brandão, Kalev, Li, Lin, Svore, Wu: Õ
((√

m +
√
n
) s2
δ12

)
- 2018 Apr.: van Apeldoorn and G.: Õ

((√
m +

√
n
) s

δ5

)

Quantum solvers
So far quantum algorithms are based on ideas of Arora-Kale.

Nice speed-ups in n,m but heavy dependence on 1/δ := (Rr)/ε.

- 2016 Sep.: Brandão and Svore: Õ
(√

mn
s2

δ18

)
- 2017 May.: van Apeldoorn, G., Gribling, de Wolf: Õ

(√
mn

s2

δ8

)

- 2017 Oct.: Brandão, Kalev, Li, Lin, Svore, Wu: Õ
(√

m poly

(
B

δ8

))
[in a quantum input model]

- 2018 Apr.: Brandão, Kalev, Li, Lin, Svore, Wu: Õ
((√

m +
√
n
) s2
δ12

)
- 2018 Apr.: van Apeldoorn and G.: Õ

((√
m +

√
n
) s

δ5

)

Quantum solvers
So far quantum algorithms are based on ideas of Arora-Kale.

Nice speed-ups in n,m but heavy dependence on 1/δ := (Rr)/ε.

- 2016 Sep.: Brandão and Svore: Õ
(√

mn
s2

δ18

)
- 2017 May.: van Apeldoorn, G., Gribling, de Wolf: Õ

(√
mn

s2

δ8

)
- 2017 Oct.: Brandão, Kalev, Li, Lin, Svore, Wu: Õ

(√
m poly

(
B

δ8

))
[in a quantum input model]

- 2018 Apr.: Brandão, Kalev, Li, Lin, Svore, Wu: Õ
((√

m +
√
n
) s2
δ12

)
- 2018 Apr.: van Apeldoorn and G.: Õ

((√
m +

√
n
) s

δ5

)

Quantum solvers
So far quantum algorithms are based on ideas of Arora-Kale.

Nice speed-ups in n,m but heavy dependence on 1/δ := (Rr)/ε.

- 2016 Sep.: Brandão and Svore: Õ
(√

mn
s2

δ18

)
- 2017 May.: van Apeldoorn, G., Gribling, de Wolf: Õ

(√
mn

s2

δ8

)
- 2017 Oct.: Brandão, Kalev, Li, Lin, Svore, Wu: Õ

(√
m poly

(
B

δ8

))
[in a quantum input model]

- 2018 Apr.: Brandão, Kalev, Li, Lin, Svore, Wu: Õ
((√

m +
√
n
) s2
δ12

)

- 2018 Apr.: van Apeldoorn and G.: Õ
((√

m +
√
n
) s

δ5

)

Quantum solvers
So far quantum algorithms are based on ideas of Arora-Kale.

Nice speed-ups in n,m but heavy dependence on 1/δ := (Rr)/ε.

- 2016 Sep.: Brandão and Svore: Õ
(√

mn
s2

δ18

)
- 2017 May.: van Apeldoorn, G., Gribling, de Wolf: Õ

(√
mn

s2

δ8

)
- 2017 Oct.: Brandão, Kalev, Li, Lin, Svore, Wu: Õ

(√
m poly

(
B

δ8

))
[in a quantum input model]

- 2018 Apr.: Brandão, Kalev, Li, Lin, Svore, Wu: Õ
((√

m +
√
n
) s2
δ12

)
- 2018 Apr.: van Apeldoorn and G.: Õ

((√
m +

√
n
) s

δ5

)

SDP feasibility problem

minTr (CX)

Tr (CX) ≤ α

Tr (AjX) ≤ bj for all j ∈ [m]

Tr (X) = 1

Find X with Tr (X) = 1 such that

Tr (AjX) ≤ bj + δ for all j ∈ [m]

or conclude that the problem is infeasible.

[In case the problem is infeasible, but a δ-approximation

exists we allow both solutions.]

SDP feasibility problem

minTr (CX)

Tr (CX) ≤ α

Tr (AjX) ≤ bj for all j ∈ [m]

Tr (X) = 1

Find X with Tr (X) = 1 such that

Tr (AjX) ≤ bj + δ for all j ∈ [m]

or conclude that the problem is infeasible.

[In case the problem is infeasible, but a δ-approximation

exists we allow both solutions.]

SDP feasibility problem

minTr (CX)Tr (CX) ≤ α

Tr (AjX) ≤ bj for all j ∈ [m]

Tr (X) = 1

Find X with Tr (X) = 1 such that

Tr (AjX) ≤ bj + δ for all j ∈ [m]

or conclude that the problem is infeasible.

[In case the problem is infeasible, but a δ-approximation

exists we allow both solutions.]

SDP feasibility problem

minTr (CX)Tr (CX) ≤ α

Tr (AjX) ≤ bj for all j ∈ [m]

Tr (X) = 1

Find X with Tr (X) = 1 such that

Tr (AjX) ≤ bj + δ for all j ∈ [m]

or conclude that the problem is infeasible.

[In case the problem is infeasible, but a δ-approximation

exists we allow both solutions.]

SDP feasibility problem

minTr (CX)Tr (CX) ≤ α

Tr (AjX) ≤ bj for all j ∈ [m]

Tr (X) = 1

Find X with Tr (X) = 1 such that

Tr (AjX) ≤ bj + δ for all j ∈ [m]

or conclude that the problem is infeasible.

[In case the problem is infeasible, but a δ-approximation

exists we allow both solutions.]

SDP feasibility problem

minTr (CX)Tr (CX) ≤ α

Tr (AjX) ≤ bj for all j ∈ [m]

Tr (X) = 1

Find X with Tr (X) = 1 such that

Tr (AjX) ≤ bj + δ for all j ∈ [m]

or conclude that the problem is infeasible.

[In case the problem is infeasible, but a δ-approximation

exists we allow both solutions.]

Basic iterative algorithm

Set y (0) := 0 ∈ Rm

For t = 0... log(n)
δ2

- Let H(t) :=
∑m

j=1 y
(t)
j Aj and X := e−H(t)

Tr
(
e−H(t)

)
- Try to find j ∈ [m] : Tr (AjX) > bj .

Once found j set y (t+1) := y (t) + δej

- If for all j ∈ [m] : Tr (AjX) ≤ bj + δ
Can simply output “(approximately) feasible”

Conclude that the problem is infeasible

Proof of correctness by Lee, Raghavendra and Steurer ’15.

(Very similar to the algorithm of Arora and Kale ’08.)

Application to quantum SDP-solving Brandão et al. ’16,’17.

Basic iterative algorithm
Set y (0) := 0 ∈ Rm

For t = 0... log(n)
δ2

- Let H(t) :=
∑m

j=1 y
(t)
j Aj and X := e−H(t)

Tr
(
e−H(t)

)
- Try to find j ∈ [m] : Tr (AjX) > bj .

Once found j set y (t+1) := y (t) + δej

- If for all j ∈ [m] : Tr (AjX) ≤ bj + δ
Can simply output “(approximately) feasible”

Conclude that the problem is infeasible

Proof of correctness by Lee, Raghavendra and Steurer ’15.

(Very similar to the algorithm of Arora and Kale ’08.)

Application to quantum SDP-solving Brandão et al. ’16,’17.

Basic iterative algorithm
Set y (0) := 0 ∈ Rm

For t = 0... log(n)
δ2

- Let H(t) :=
∑m

j=1 y
(t)
j Aj and X := e−H(t)

Tr
(
e−H(t)

)
- Try to find j ∈ [m] : Tr (AjX) > bj .

Once found j set y (t+1) := y (t) + δej

- If for all j ∈ [m] : Tr (AjX) ≤ bj + δ
Can simply output “(approximately) feasible”

Conclude that the problem is infeasible

Proof of correctness by Lee, Raghavendra and Steurer ’15.

(Very similar to the algorithm of Arora and Kale ’08.)

Application to quantum SDP-solving Brandão et al. ’16,’17.

Basic iterative algorithm
Set y (0) := 0 ∈ Rm

For t = 0... log(n)
δ2

- Let H(t) :=
∑m

j=1 y
(t)
j Aj and X := e−H(t)

Tr
(
e−H(t)

)

- Try to find j ∈ [m] : Tr (AjX) > bj .
Once found j set y (t+1) := y (t) + δej

- If for all j ∈ [m] : Tr (AjX) ≤ bj + δ
Can simply output “(approximately) feasible”

Conclude that the problem is infeasible

Proof of correctness by Lee, Raghavendra and Steurer ’15.

(Very similar to the algorithm of Arora and Kale ’08.)

Application to quantum SDP-solving Brandão et al. ’16,’17.

Basic iterative algorithm
Set y (0) := 0 ∈ Rm

For t = 0... log(n)
δ2

- Let H(t) :=
∑m

j=1 y
(t)
j Aj and X := e−H(t)

Tr
(
e−H(t)

)
- Try to find j ∈ [m] : Tr (AjX) > bj .

Once found j set y (t+1) := y (t) + δej

- If for all j ∈ [m] : Tr (AjX) ≤ bj + δ
Can simply output “(approximately) feasible”

Conclude that the problem is infeasible

Proof of correctness by Lee, Raghavendra and Steurer ’15.

(Very similar to the algorithm of Arora and Kale ’08.)

Application to quantum SDP-solving Brandão et al. ’16,’17.

Basic iterative algorithm
Set y (0) := 0 ∈ Rm

For t = 0... log(n)
δ2

- Let H(t) :=
∑m

j=1 y
(t)
j Aj and X := e−H(t)

Tr
(
e−H(t)

)
- Try to find j ∈ [m] : Tr (AjX) > bj .

Once found j set y (t+1) := y (t) + δej

- If for all j ∈ [m] : Tr (AjX) ≤ bj + δ
Can simply output “(approximately) feasible”

Conclude that the problem is infeasible

Proof of correctness by Lee, Raghavendra and Steurer ’15.

(Very similar to the algorithm of Arora and Kale ’08.)

Application to quantum SDP-solving Brandão et al. ’16,’17.

Basic iterative algorithm
Set y (0) := 0 ∈ Rm

For t = 0... log(n)
δ2

- Let H(t) :=
∑m

j=1 y
(t)
j Aj and X := e−H(t)

Tr
(
e−H(t)

)
- Try to find j ∈ [m] : Tr (AjX) > bj .

Once found j set y (t+1) := y (t) + δej

- If for all j ∈ [m] : Tr (AjX) ≤ bj + δ
Can simply output “(approximately) feasible”

Conclude that the problem is infeasible

Proof of correctness by Lee, Raghavendra and Steurer ’15.

(Very similar to the algorithm of Arora and Kale ’08.)

Application to quantum SDP-solving Brandão et al. ’16,’17.

Basic iterative algorithm
Set y (0) := 0 ∈ Rm

For t = 0... log(n)
δ2

- Let H(t) :=
∑m

j=1 y
(t)
j Aj and X := e−H(t)

Tr
(
e−H(t)

)
- Try to find j ∈ [m] : Tr (AjX) > bj .

Once found j set y (t+1) := y (t) + δej

- If for all j ∈ [m] : Tr (AjX) ≤ bj + δ
Can simply output “(approximately) feasible”

Conclude that the problem is infeasible

Proof of correctness by Lee, Raghavendra and Steurer ’15.

(Very similar to the algorithm of Arora and Kale ’08.)

Application to quantum SDP-solving Brandão et al. ’16,’17.

Basic iterative algorithm
Set y (0) := 0 ∈ Rm

For t = 0... log(n)
δ2

- Let H(t) :=
∑m

j=1 y
(t)
j Aj and X := e−H(t)

Tr
(
e−H(t)

)
- Try to find j ∈ [m] : Tr (AjX) > bj .

Once found j set y (t+1) := y (t) + δej

- If for all j ∈ [m] : Tr (AjX) ≤ bj + δ
Can simply output “(approximately) feasible”

Conclude that the problem is infeasible

Proof of correctness by Lee, Raghavendra and Steurer ’15.

(Very similar to the algorithm of Arora and Kale ’08.)

Application to quantum SDP-solving Brandão et al. ’16,’17.

Preparing X
Suppose we can query the position and value of the non-zero

elements of the sparse matrices Aj , then we can implement

USelect =
m∑
j=1

|j〉〈j | ⊗ Uj , such that Uj =

[
Aj .
. .

]
,

using Õ (s) queries and gates.

Preparing X
Suppose we can query the position and value of the non-zero

elements of the sparse matrices Aj , then we can implement

USelect =
m∑
j=1

|j〉〈j | ⊗ Uj , such that Uj =

[
Aj .
. .

]
,

using Õ (s) queries and gates.

Let us store y (t) in QRAM using the data structure of

Kerenidis and Prakash. (y (t) is sparse ⇒ QRAM is small.)

Preparing X
Suppose we can query the position and value of the non-zero

elements of the sparse matrices Aj , then we can implement

USelect =
m∑
j=1

|j〉〈j | ⊗ Uj , such that Uj =

[
Aj .
. .

]
,

using Õ (s) queries and gates.

Let us store y (t) in QRAM using the data structure of

Kerenidis and Prakash. (y (t) is sparse ⇒ QRAM is small.)

USelect
LCU
=⇒
Õ(1)

[
δ
∑m

j=1
y
(t)
j Aj .

. .

]

Preparing X
Suppose we can query the position and value of the non-zero

elements of the sparse matrices Aj , then we can implement

USelect =
m∑
j=1

|j〉〈j | ⊗ Uj , such that Uj =

[
Aj .
. .

]
,

using Õ (s) queries and gates.

Let us store y (t) in QRAM using the data structure of

Kerenidis and Prakash. (y (t) is sparse ⇒ QRAM is small.)

USelect
LCU
=⇒
Õ(1)

[
δH(t) .
. .

]

Preparing X
Suppose we can query the position and value of the non-zero

elements of the sparse matrices Aj , then we can implement

USelect =
m∑
j=1

|j〉〈j | ⊗ Uj , such that Uj =

[
Aj .
. .

]
,

using Õ (s) queries and gates.

Let us store y (t) in QRAM using the data structure of

Kerenidis and Prakash. (y (t) is sparse ⇒ QRAM is small.)

USelect
LCU
=⇒
Õ(1)

[
δH(t) .
. .

]
SVT
=⇒
Õ(1/δ)

[
e−H

(t)

.
. .

]

Preparing X
Suppose we can query the position and value of the non-zero

elements of the sparse matrices Aj , then we can implement

USelect =
m∑
j=1

|j〉〈j | ⊗ Uj , such that Uj =

[
Aj .
. .

]
,

using Õ (s) queries and gates.

Let us store y (t) in QRAM using the data structure of

Kerenidis and Prakash. (y (t) is sparse ⇒ QRAM is small.)

USelect
LCU
=⇒
Õ(1)

[
δH(t) .
. .

]
SVT
=⇒
Õ(1/δ)

[
e−H

(t)

.
. .

]
Amp.
=⇒
Õ(
√
n)

X

Preparing X
Suppose we can query the position and value of the non-zero

elements of the sparse matrices Aj , then we can implement

USelect =
m∑
j=1

|j〉〈j | ⊗ Uj , such that Uj =

[
Aj .
. .

]
,

using Õ (s) queries and gates.

Let us store y (t) in QRAM using the data structure of

Kerenidis and Prakash. (y (t) is sparse ⇒ QRAM is small.)

USelect
LCU
=⇒
Õ(1)

[
δH(t) .
. .

]
SVT
=⇒
Õ(1/δ)

[
e−H

(t)

.
. .

]
Amp.
=⇒
Õ(
√
n)

X

Preparation of X has Õ
(√

ns
δ

)
query and time complexity.

Violated constraints

Decide if Tr (AjX) ≤ bj ± δ

- Can be done using Õ
(

1
δ2

)
copies of X

- with query and gate complexity Õ
(

s
δ2

)
.

Now we use the quantum OR lemma of Harrow et al. ’17

using its fast implementation due to Brandão et al. ’17.

- Find j ∈ [m] such that Tr (AjX) ≥ bj
- or conclude that for all j ∈ [m] we have Tr (AjX) ≤ bj + δ

The above problem can be solved with Õ
(

1
δ2

)
copies of X

with query and gate complexity Õ
(√

ms
δ2

)
.

The overall query and gate complexity is Õ
(√

ms
δ2

+
√
ns
δ3

)
.

Violated constraints

Decide if Tr (AjX) ≤ bj ± δ

- Can be done using Õ
(

1
δ2

)
copies of X

- with query and gate complexity Õ
(

s
δ2

)
.

Now we use the quantum OR lemma of Harrow et al. ’17

using its fast implementation due to Brandão et al. ’17.

- Find j ∈ [m] such that Tr (AjX) ≥ bj
- or conclude that for all j ∈ [m] we have Tr (AjX) ≤ bj + δ

The above problem can be solved with Õ
(

1
δ2

)
copies of X

with query and gate complexity Õ
(√

ms
δ2

)
.

The overall query and gate complexity is Õ
(√

ms
δ2

+
√
ns
δ3

)
.

Violated constraints

Decide if Tr (AjX) ≤ bj ± δ

- Can be done using Õ
(

1
δ2

)
copies of X

- with query and gate complexity Õ
(

s
δ2

)
.

Now we use the quantum OR lemma of Harrow et al. ’17

using its fast implementation due to Brandão et al. ’17.

- Find j ∈ [m] such that Tr (AjX) ≥ bj
- or conclude that for all j ∈ [m] we have Tr (AjX) ≤ bj + δ

The above problem can be solved with Õ
(

1
δ2

)
copies of X

with query and gate complexity Õ
(√

ms
δ2

)
.

The overall query and gate complexity is Õ
(√

ms
δ2

+
√
ns
δ3

)
.

Violated constraints

Decide if Tr (AjX) ≤ bj ± δ

- Can be done using Õ
(

1
δ2

)
copies of X

- with query and gate complexity Õ
(

s
δ2

)
.

Now we use the quantum OR lemma of Harrow et al. ’17

using its fast implementation due to Brandão et al. ’17.

- Find j ∈ [m] such that Tr (AjX) ≥ bj
- or conclude that for all j ∈ [m] we have Tr (AjX) ≤ bj + δ

The above problem can be solved with Õ
(

1
δ2

)
copies of X

with query and gate complexity Õ
(√

ms
δ2

)
.

The overall query and gate complexity is Õ
(√

ms
δ2

+
√
ns
δ3

)
.

Violated constraints

Decide if Tr (AjX) ≤ bj ± δ

- Can be done using Õ
(

1
δ2

)
copies of X

- with query and gate complexity Õ
(

s
δ2

)
.

Now we use the quantum OR lemma of Harrow et al. ’17

using its fast implementation due to Brandão et al. ’17.

- Find j ∈ [m] such that Tr (AjX) ≥ bj

- or conclude that for all j ∈ [m] we have Tr (AjX) ≤ bj + δ

The above problem can be solved with Õ
(

1
δ2

)
copies of X

with query and gate complexity Õ
(√

ms
δ2

)
.

The overall query and gate complexity is Õ
(√

ms
δ2

+
√
ns
δ3

)
.

Violated constraints

Decide if Tr (AjX) ≤ bj ± δ

- Can be done using Õ
(

1
δ2

)
copies of X

- with query and gate complexity Õ
(

s
δ2

)
.

Now we use the quantum OR lemma of Harrow et al. ’17

using its fast implementation due to Brandão et al. ’17.

- Find j ∈ [m] such that Tr (AjX) ≥ bj
- or conclude that for all j ∈ [m] we have Tr (AjX) ≤ bj + δ

The above problem can be solved with Õ
(

1
δ2

)
copies of X

with query and gate complexity Õ
(√

ms
δ2

)
.

The overall query and gate complexity is Õ
(√

ms
δ2

+
√
ns
δ3

)
.

Violated constraints

Decide if Tr (AjX) ≤ bj ± δ

- Can be done using Õ
(

1
δ2

)
copies of X

- with query and gate complexity Õ
(

s
δ2

)
.

Now we use the quantum OR lemma of Harrow et al. ’17

using its fast implementation due to Brandão et al. ’17.

- Find j ∈ [m] such that Tr (AjX) ≥ bj
- or conclude that for all j ∈ [m] we have Tr (AjX) ≤ bj + δ

The above problem can be solved with Õ
(

1
δ2

)
copies of X

with query and gate complexity Õ
(√

ms
δ2

)
.

The overall query and gate complexity is Õ
(√

ms
δ2

+
√
ns
δ3

)
.

Violated constraints

Decide if Tr (AjX) ≤ bj ± δ

- Can be done using Õ
(

1
δ2

)
copies of X

- with query and gate complexity Õ
(

s
δ2

)
.

Now we use the quantum OR lemma of Harrow et al. ’17

using its fast implementation due to Brandão et al. ’17.

- Find j ∈ [m] such that Tr (AjX) ≥ bj
- or conclude that for all j ∈ [m] we have Tr (AjX) ≤ bj + δ

The above problem can be solved with Õ
(

1
δ2

)
copies of X

with query and gate complexity Õ
(√

ms
δ2

)
.

The overall query and gate complexity is Õ
(√

ms
δ2

+
√
ns
δ3

)
.

Applications

Shadow tomography

- Given samples of ρ ∈ Cn×n, and m meas. operators Mj

- find y ∈ Rm such that H :=
∑m

j=1 yjMj satisfies

for all j ∈ [m] that

∣∣∣∣Tr (Mjρ)− Tr
(
Mj

e−H

Tr (e−H)

)∣∣∣∣ ≤ δ.
Aaronson showed how to solve using O

(
log4(m) log(n)

δ4

)
samples.

Our SDP solver recovers it in a gate efficient way

incurring Õ
(√

m
)

gate and query complexity overhead.

Further applications

- Quantum state discrimination with maximal total

success probability.

- Optimal measurement design.

Applications

Shadow tomography

- Given samples of ρ ∈ Cn×n, and m meas. operators Mj

- find y ∈ Rm such that H :=
∑m

j=1 yjMj satisfies

for all j ∈ [m] that

∣∣∣∣Tr (Mjρ)− Tr
(
Mj

e−H

Tr (e−H)

)∣∣∣∣ ≤ δ.
Aaronson showed how to solve using O

(
log4(m) log(n)

δ4

)
samples.

Our SDP solver recovers it in a gate efficient way

incurring Õ
(√

m
)

gate and query complexity overhead.

Further applications

- Quantum state discrimination with maximal total

success probability.

- Optimal measurement design.

Applications

Shadow tomography

- Given samples of ρ ∈ Cn×n, and m meas. operators Mj

- find y ∈ Rm such that H :=
∑m

j=1 yjMj satisfies

for all j ∈ [m] that

∣∣∣∣Tr (Mjρ)− Tr
(
Mj

e−H

Tr (e−H)

)∣∣∣∣ ≤ δ.

Aaronson showed how to solve using O
(
log4(m) log(n)

δ4

)
samples.

Our SDP solver recovers it in a gate efficient way

incurring Õ
(√

m
)

gate and query complexity overhead.

Further applications

- Quantum state discrimination with maximal total

success probability.

- Optimal measurement design.

Applications

Shadow tomography

- Given samples of ρ ∈ Cn×n, and m meas. operators Mj

- find y ∈ Rm such that H :=
∑m

j=1 yjMj satisfies

for all j ∈ [m] that

∣∣∣∣Tr (Mjρ)− Tr
(
Mj

e−H

Tr (e−H)

)∣∣∣∣ ≤ δ.
Aaronson showed how to solve using O

(
log4(m) log(n)

δ4

)
samples.

Our SDP solver recovers it in a gate efficient way

incurring Õ
(√

m
)

gate and query complexity overhead.

Further applications

- Quantum state discrimination with maximal total

success probability.

- Optimal measurement design.

Applications

Shadow tomography

- Given samples of ρ ∈ Cn×n, and m meas. operators Mj

- find y ∈ Rm such that H :=
∑m

j=1 yjMj satisfies

for all j ∈ [m] that

∣∣∣∣Tr (Mjρ)− Tr
(
Mj

e−H

Tr (e−H)

)∣∣∣∣ ≤ δ.
Aaronson showed how to solve using O

(
log4(m) log(n)

δ4

)
samples.

Our SDP solver recovers it in a gate efficient way

incurring Õ
(√

m
)

gate and query complexity overhead.

Further applications

- Quantum state discrimination with maximal total

success probability.

- Optimal measurement design.

Applications

Shadow tomography

- Given samples of ρ ∈ Cn×n, and m meas. operators Mj

- find y ∈ Rm such that H :=
∑m

j=1 yjMj satisfies

for all j ∈ [m] that

∣∣∣∣Tr (Mjρ)− Tr
(
Mj

e−H

Tr (e−H)

)∣∣∣∣ ≤ δ.
Aaronson showed how to solve using O

(
log4(m) log(n)

δ4

)
samples.

Our SDP solver recovers it in a gate efficient way

incurring Õ
(√

m
)

gate and query complexity overhead.

Further applications

- Quantum state discrimination with maximal total

success probability.

- Optimal measurement design.

Applications

Shadow tomography

- Given samples of ρ ∈ Cn×n, and m meas. operators Mj

- find y ∈ Rm such that H :=
∑m

j=1 yjMj satisfies

for all j ∈ [m] that

∣∣∣∣Tr (Mjρ)− Tr
(
Mj

e−H

Tr (e−H)

)∣∣∣∣ ≤ δ.
Aaronson showed how to solve using O

(
log4(m) log(n)

δ4

)
samples.

Our SDP solver recovers it in a gate efficient way

incurring Õ
(√

m
)

gate and query complexity overhead.

Further applications

- Quantum state discrimination with maximal total

success probability.

- Optimal measurement design.

Applications

Shadow tomography

- Given samples of ρ ∈ Cn×n, and m meas. operators Mj

- find y ∈ Rm such that H :=
∑m

j=1 yjMj satisfies

for all j ∈ [m] that

∣∣∣∣Tr (Mjρ)− Tr
(
Mj

e−H

Tr (e−H)

)∣∣∣∣ ≤ δ.
Aaronson showed how to solve using O

(
log4(m) log(n)

δ4

)
samples.

Our SDP solver recovers it in a gate efficient way

incurring Õ
(√

m
)

gate and query complexity overhead.

Further applications

- Quantum state discrimination with maximal total

success probability.

- Optimal measurement design.

Summary

Quantum SDP solver

- Query and gate complexity Õ
((√

m +
√
n
δ

)
s
δ4

)
.

Matching lower bounds for LPs (and hence SDPs)

- Ω
(√

m +
√
n
)

in sparse matrix access input model.

- Ω
(√

m/δ
)

in block-encoding input model.

Open questions/future research

- Problem specific fine-tuned algorithms?

- Tight quantum bounds for the δ dependence?

- Speed-ups using other, e.g., interior point methods?

Summary

Quantum SDP solver

- Query and gate complexity Õ
((√

m +
√
n
δ

)
s
δ4

)
.

Matching lower bounds for LPs (and hence SDPs)

- Ω
(√

m +
√
n
)

in sparse matrix access input model.

- Ω
(√

m/δ
)

in block-encoding input model.

Open questions/future research

- Problem specific fine-tuned algorithms?

- Tight quantum bounds for the δ dependence?

- Speed-ups using other, e.g., interior point methods?

Summary

Quantum SDP solver

- Query and gate complexity Õ
((√

m +
√
n
δ

)
s
δ4

)
.

Matching lower bounds for LPs (and hence SDPs)

- Ω
(√

m +
√
n
)

in sparse matrix access input model.

- Ω
(√

m/δ
)

in block-encoding input model.

Open questions/future research

- Problem specific fine-tuned algorithms?

- Tight quantum bounds for the δ dependence?

- Speed-ups using other, e.g., interior point methods?

Summary

Quantum SDP solver

- Query and gate complexity Õ
((√

m +
√
n
δ

)
s
δ4

)
.

Matching lower bounds for LPs (and hence SDPs)

- Ω
(√

m +
√
n
)

in sparse matrix access input model.

- Ω
(√

m/δ
)

in block-encoding input model.

Open questions/future research

- Problem specific fine-tuned algorithms?

- Tight quantum bounds for the δ dependence?

- Speed-ups using other, e.g., interior point methods?

Summary

Quantum SDP solver

- Query and gate complexity Õ
((√

m +
√
n
δ

)
s
δ4

)
.

Matching lower bounds for LPs (and hence SDPs)

- Ω
(√

m +
√
n
)

in sparse matrix access input model.

- Ω
(√

m/δ
)

in block-encoding input model.

Open questions/future research

- Problem specific fine-tuned algorithms?

- Tight quantum bounds for the δ dependence?

- Speed-ups using other, e.g., interior point methods?

Summary

Quantum SDP solver

- Query and gate complexity Õ
((√

m +
√
n
δ

)
s
δ4

)
.

Matching lower bounds for LPs (and hence SDPs)

- Ω
(√

m +
√
n
)

in sparse matrix access input model.

- Ω
(√

m/δ
)

in block-encoding input model.

Open questions/future research

- Problem specific fine-tuned algorithms?

- Tight quantum bounds for the δ dependence?

- Speed-ups using other, e.g., interior point methods?

Summary

Quantum SDP solver

- Query and gate complexity Õ
((√

m +
√
n
δ

)
s
δ4

)
.

Matching lower bounds for LPs (and hence SDPs)

- Ω
(√

m +
√
n
)

in sparse matrix access input model.

- Ω
(√

m/δ
)

in block-encoding input model.

Open questions/future research

- Problem specific fine-tuned algorithms?

- Tight quantum bounds for the δ dependence?

- Speed-ups using other, e.g., interior point methods?

Summary

Quantum SDP solver

- Query and gate complexity Õ
((√

m +
√
n
δ

)
s
δ4

)
.

Matching lower bounds for LPs (and hence SDPs)

- Ω
(√

m +
√
n
)

in sparse matrix access input model.

- Ω
(√

m/δ
)

in block-encoding input model.

Open questions/future research

- Problem specific fine-tuned algorithms?

- Tight quantum bounds for the δ dependence?

- Speed-ups using other, e.g., interior point methods?

Summary

Quantum SDP solver

- Query and gate complexity Õ
((√

m +
√
n
δ

)
s
δ4

)
.

Matching lower bounds for LPs (and hence SDPs)

- Ω
(√

m +
√
n
)

in sparse matrix access input model.

- Ω
(√

m/δ
)

in block-encoding input model.

Open questions/future research

- Problem specific fine-tuned algorithms?

- Tight quantum bounds for the δ dependence?

- Speed-ups using other, e.g., interior point methods?

Sources of images

- c© Lucas Surtin (http://unisci24.com)

- c© Google maps

- c© Gurobi.com

- c© ScienceBuzz.org

http://unisci24.com/193162.html
https://maps.google.com
http://examples.gurobi.com/traveling-salesman-problem/
http://www.sciencebuzz.org/topics/optimum-outcomes-can-you-solve-traveling-salesman-problem

