

<u>Recent Algorithmic Primitives</u> Linear Combination of Unitaries and Quantum Signal Processing

Robin Kothari Microsoft Research

Challenges in Quantum Computation, Simons Institute June 13, 2018

This talk: Focus on algorithmic techniques

VS.

I'll talk about algorithmic primitives of the form:

"We have available an easy-to-implement unitary V, but we want to implement a related unitary U".

> Goal of this talk: Show you some interesting techniques that you might find useful in your research.

Oblivious Amplitude Amplification (OAA)

Probabilistic implementations

Let V be a unitary such that

$$\begin{split} \forall |\psi\rangle, \quad V|0^m\rangle |\psi\rangle &= \sqrt{p}|0^m\rangle U|\psi\rangle + \sqrt{1-p}|\bot\rangle, \\ \text{where } (|0^m\rangle \langle 0^m|\otimes I)|\bot\rangle &= 0. \end{split}$$

Goal: Given a circuit for V, apply U on an arbitrary state $|\psi\rangle$.

Terminology: *V* is "probabilistic implementation" of *U* with probability *p*, or *V* "block-encodes" the operator $\sqrt{p}U$.

Classical repetition

Let V be a unitary such that

 $\langle \Psi | \psi \rangle, \qquad V | 0^m \rangle | \psi \rangle = \sqrt{p} | 0^m \rangle U | \psi \rangle + \sqrt{1 - p} | \bot \rangle,$ where $(|0^m\rangle\langle 0^m|\otimes I)|\perp\rangle = 0$.

Goal: Given a circuit for V, apply U on an arbitrary state $|\psi\rangle$.

Solution 1 (classical repetition)

- Apply V to $|\psi\rangle$, and measure the first m qubits.
- If we observe $|0^m\rangle$, we're done. Otherwise repeat.

Cost:

- O(1/p) uses of V

O(1/p) copies of $|\psi\rangle \leftarrow$ We may not have multiple copies of $|\psi\rangle$

Amplitude amplification

Let V be a unitary such that

 $\forall |\psi\rangle, \quad V|0^m\rangle |\psi\rangle = \sqrt{p}|0^m\rangle U|\psi\rangle + \sqrt{1-p}|\bot\rangle,$ where $(|0^m\rangle \langle 0^m| \otimes I)|\bot\rangle = 0.$

Goal: Given a circuit for V, apply U on an arbitrary state $|\psi\rangle$.

Solution 2 (amplitude amplification)

• Repeat $O(1/\sqrt{p})$ times: Apply V. Reflect about $|0^m\rangle$. Apply V[†]. Reflect about $|0^m\rangle|\psi\rangle$.

Cost:

- $O(1/\sqrt{p})$ uses of V and V[†]
- $O(1/\sqrt{p})$ uses of the reflection about $|\psi\rangle \leftarrow$ We may not be able to do this.

Oblivious amplitude amplification

Let V be a unitary such that

 $\forall |\psi\rangle, \quad V|0^m\rangle |\psi\rangle = \sqrt{p}|0^m\rangle U|\psi\rangle + \sqrt{1-p}|\bot\rangle,$ where $(|0^m\rangle \langle 0^m| \otimes I)|\bot\rangle = 0.$

Goal: Given a circuit for V, apply U on an arbitrary state $|\psi\rangle$.

Solution 2 (amplitude amplification) Oblivious amplitude amplification • Repeat $O(1/\sqrt{p})$ times:

Apply V. Reflect about $|0^m\rangle$. Apply V[†]. Reflect about $|0^m\rangle$

Cost:

• $O(1/\sqrt{p})$ uses of V and V[†]

• $O(1/\sqrt{p})$ uses of the reflection about $|\psi\rangle \leftarrow$ We may not be able to do this.

Oblivious amplitude amplification

Let V be a unitary such that

 $\forall |\psi\rangle, \quad V|0^m\rangle |\psi\rangle = \sqrt{p}|0^m\rangle U|\psi\rangle + \sqrt{1-p}|\bot\rangle,$ where $(|0^m\rangle \langle 0^m| \otimes I)|\bot\rangle = 0.$

Goal: Given a circuit for V, apply U on an arbitrary state $|\psi\rangle$.

Oblivious amplitude amplification

• Repeat $O(1/\sqrt{p})$ times: Apply V. Reflect about $|0^m\rangle$. Apply V[†]. Reflect about $|0^m\rangle$.

Cost:

• $O(1/\sqrt{p})$ uses of V and V[†]

Note: It's very important that U is (close to) unitary for OAA to work!

Oblivious amplitude amplification (OAA)

Oblivious amplitude amplification take-home message A "probabilistic implementation" of U can be converted to an actual implementation of U.

If U is not unitary, use regular amplitude amplification.

Filter by title

Phases

DOCS Windows Microsoft Azure

Search

AmpAmpObliviousByOraclePhases function

Office

Visual Studio

AmpAmpOblivious ByOraclePhases

AmpAmpByReflections

AmpAmpOblivious ByReflectionPhases

AmpAmpPhasesFixedPoint

AmpAmpPhasesStandard AmpAmpRUSByOracle

AmpAmpReflectionPhases

AmpAmpRotationPhases

AmpAmpRotation ToReflectionPhases

AndLadder

ApplyLEOperation OnPhaseLE

ApplyLEOperation OnPhaseLEA

ApplyLEOperation OnPhaseLEC

ApplyLEOperation OnPhaseLECA

ApplyMultiControlledC

ApplyMultiControlledCA

Output

 \sim

ApplyPauli

Namespace: Microsoft.Quantum.Canon	
Oblivious amplitude amplification by oracles for partial reflections.	
Q#	🗈 Сору
<pre>function AmpAmpObliviousByOraclePhases (phases : AmpAmpReflectionPhases, ancillaOracle : DeterministicStateOracle, signalOracle : ObliviousOracle, idxFlagQubit : Int) : ((Qubit[], Qubit[]) => () : Adjoint, Controlled)</pre>	
Input phases AmpAmpReflectionPhases Phases of partial reflections	
ancillaOracle DeterministicStateOracle	
Unitary oracle $oldsymbol{A}$ that prepares ancilla start state	
<pre>signalOracle ObliviousOracle</pre>	
Unitary oracle O of type <code>ObliviousOracle</code> that acts jointly on the ancilla and system register	
<pre>idxFlagQubit Int</pre>	
Index to single-qubit flag register	

An operation that implements oblivious amplitude amplification based on partial reflections.

More ~

Share Dark

In this article

Input

Output

Remarks

Linear Combination of Unitaries (LCU)

A linear combination of unitaries

Let *B* be a linear combination of easy-to-implement unitaries:

 $B = \sum_i \alpha_i W_i$.

Goal: Implement B given the ability to implement select $W = \sum_i |i\rangle \langle i| \otimes W_i$.

For example, let $B = W_0 + W_1$.

select
$$W|+\rangle|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle W_0|\psi\rangle + |1\rangle W_1|\psi\rangle)$$

$$= \frac{1}{2}(|+\rangle(W_0 + W_1)|\psi\rangle + |-\rangle(W_0 - W_1)|\psi\rangle)$$
$$= \frac{1}{2}|+\rangle B|\psi\rangle + \frac{1}{2}|-\rangle(W_0 - W_1)|\psi\rangle$$

This is a probabilistic implementation of B.

A linear combination of unitaries

Let *B* be a linear combination of easy-to-implement unitaries:

 $B = \sum_i \alpha_i W_i$.

Goal: Implement B given the ability to implement select $W = \sum_i |i\rangle \langle i| \otimes W_i$.

More generally, we can implement a unitary V that block-encodes $B/||\alpha||_1$.

Define
$$|A\rangle = \frac{1}{\sqrt{\|\alpha\|_1}} \sum_i \sqrt{\alpha_i} |i\rangle$$
.
select $W|A\rangle |\psi\rangle = \frac{1}{\sqrt{\|\alpha\|_1}} \sum_i \sqrt{\alpha_i} |i\rangle W_i |\psi\rangle$
 $= \frac{1}{\|\alpha\|_1} |A\rangle B |\psi\rangle + |A^{\perp}\rangle |\cdots\rangle$

This is a probabilistic implementation of B.

Linear combination of unitaries (LCU method)

 $B = \sum_{i} \alpha_{i} W_{i}$

Linear combination of unitaries take-home message If *B* can be expressed as a linear combination of easy-toimplement unitaries, then we can probabilistically implement *B*.

Then use OAA/AA to get an actual implementation of B.

Application to Hamiltonian simulation

Local Hamiltonian simulation problem: Given a local Hamiltonian $H = \sum_{j} H_{j'}$ implement the unitary e^{-iHt} .

Step 1: Represent *H* as a linear combination of unitaries We have $H = \sum_{j} H_{j}$, where H_{j} acts on O(1) qubits. Write H_{j} in the Pauli basis.

Step 2: Represent e^{-iHt} as a linear combination of unitaries

Say $H = \sum_{i} \beta_{i} P_{i}$, where P_{i} are unitary. Then $e^{-iHt} = I - iHt + \frac{(iHt)^{2}}{2!} + \cdots = I - it(\sum_{i} \beta_{i} P_{i}) + \frac{(it)^{2}}{2!} (\sum_{i} \beta_{i} P_{i})^{2} + \cdots$ is a linear combination of unitaries!

Step 3: Apply LCU and OAA.

This is the "Truncated Taylor Series" algorithm [Berry-Childs-Cleve-K-Somma15].

Other applications

Quantum linear systems algorithm: Given a Hermitian matrix A, and state $|b\rangle$, the goal is to produce the state $|x\rangle = \frac{A^{-1}|b\rangle}{\|A^{-1}|b\rangle\|}$.

Solution: Represent A^{-1} as $A^{-1} = \sum_t \alpha_t e^{-iAt}$ [Childs-K-Somma16]. Apply LCU + AA.

Other applications:

- Solving differential equations [Berry-Childs-Ostrander-Wang17]
- Preparing Gibbs states [Chowdhury-Somma16] (and solving SDPs and LPs on a quantum computer [Apeldoorn-Gilyen-Gribling-de Wolf17])
- Hamiltonian simulation for other Hamiltonians (e.g., sparse Hamiltonians using quantum walks [Berry-Childs-K15], quantum chemistry [Babbush-Wiebe-McClean-McClain-Neven-Chan18])

Quantum Signal Processing (QSP)

Eigenvalue transformation

Let W be an easy-to-implement unitary with $W = e^{i\theta_i} |\theta_i\rangle \langle \theta_i |$.

Problem: Implement $A = f(W) = \sum_i f(e^{i\theta_i}) |\theta_i\rangle \langle \theta_i |$, where f is a continuous function.

E.g., we have
$$W = \begin{pmatrix} e^{i\theta_1} & 0 & 0 \\ 0 & e^{i\theta_2} & 0 \\ 0 & 0 & e^{i\theta_3} \end{pmatrix}$$
; we want $A = \begin{pmatrix} f(e^{i\theta_1}) & 0 & 0 \\ 0 & f(e^{i\theta_2}) & 0 \\ 0 & 0 & f(e^{i\theta_3}) \end{pmatrix}$.

Can we implement $f(e^{i\theta}) = e^{ik\theta}$ for some integer k? (easy, just use W^k) Can we implement $f(e^{i\theta}) = \theta^{-1}$? (arises in quantum linear systems solvers) Can we implement $f(e^{i\theta}) = e^{i\cos(\theta)}$? (arises in Hamiltonian simulation)

Eigenvalue transformation

Let W be an easy-to-implement unitary with $W = e^{i\theta_i} |\theta_i\rangle \langle \theta_i |$.

Problem: Implement $A = f(W) = \sum_i f(e^{i\theta_i}) |\theta_i\rangle \langle \theta_i|$, where f is a continuous function.

Some solutions:

- 1. Use phase estimation on W. (Has poor scaling with precision.)
- 2. Express $A = \sum_{i} a_{i} W^{i}$ and use LCU.
- 3. Use Quantum Signal Processing [Low-Chuang16].

Setting up the "Signal"

Let W be an easy-to-implement unitary with $W = e^{i\theta_i} |\theta_i\rangle \langle \theta_i |$.

Problem: Implement $A = f(W) = \sum_i f(e^{i\theta_i})|\theta_i\rangle\langle\theta_i|$, where f is a continuous function.

Consider the controlled-*W* operator:

$$\begin{split} & \leftarrow W |0\rangle |\theta_i\rangle = |0\rangle |\theta_i\rangle \\ & \leftarrow W |1\rangle |\theta_i\rangle = e^{i\theta_i} |1\rangle |\theta_i\rangle \end{split}$$

In the subspace with the second register equal to $|\theta\rangle$,

c-
$$W$$
 is $\begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}$.

Signal processing

Let W be an easy-to-implement unitary with $W = e^{i\theta_i} |\theta_i\rangle \langle \theta_i |$.

Problem: Implement $A = f(W) = \sum_i f(e^{i\theta_i})|\theta_i\rangle\langle\theta_i|$, where f is a continuous function.

Consider the following circuit:

Signal processing

Let W be an easy-to-implement unitary with $W = e^{i\theta_i} |\theta_i\rangle \langle \theta_i |$.

Problem: Implement $A = f(W) = \sum_i f(e^{i\theta_i}) |\theta_i\rangle \langle \theta_i|$, where f is a continuous function.

Consider the following circuit:

If we choose U_i such that $\begin{pmatrix} g_{00}(\theta) & g_{01}(\theta) \\ g_{10}(\theta) & g_{11}(\theta) \end{pmatrix} = \begin{pmatrix} f(e^{i\theta}) & * \\ * & * \end{pmatrix}$, then we're done!

Quantum signal processing (QSP)

A = f(W)

Quantum signal processing take-home message If A can be written as a (reasonable) function of an easy-toimplement unitary W, then we can implement A. Recap

$$B = \sum_{i} \alpha_{i} W_{i}$$

Linear combination of unitaries

Oblivious amplitude amplification

Quantum signal processing

Quantum signal processing

$$W(x) := \begin{bmatrix} x & i\sqrt{1-x^2} \\ i\sqrt{1-x^2} & x \end{bmatrix} = e^{i \arccos(x)\sigma_x}.$$

Theorem 3. Let $k \in \mathbb{N}$; there exists $\Phi = \{\phi_0, \phi_1, \dots, \phi_k\} \in \mathbb{R}^{k+1}$ such that for all $x \in [-1, 1]$:

$$e^{i\phi_0\sigma_z} \prod_{j=1}^k \left(W(x)e^{i\phi_j\sigma_z} \right) = \begin{bmatrix} P(x) & iQ(x)\sqrt{1-x^2} \\ iQ^*(x)\sqrt{1-x^2} & P^*(x) \end{bmatrix}$$
(3)

if and only if $P, Q \in \mathbb{C}[x]$ such² that

(i) $\deg(P) \le k$ and $\deg(Q) \le k-1$

(ii) P has parity-(k mod 2) and Q has parity-(k - 1 mod 2)

(*iii*) $\forall x \in [-1,1]: |P(x)|^2 + (1-x^2)|Q(x)|^2 = 1.$

[Gilyén-Su-Low-Wiebe18]

Thanks!

Microsoft Quantum Development Kit: www.microsoft.com/quantum