

Recent Algorithmic Primitives Linear Combination of Unitaries and Quantum Signal Processing

Robin Kothari Microsoft Research

Challenges in Quantum Computation, Simons Institute June 13, 2018

This talk: Focus on algorithmic techniques

vs.

I'll talk about algorithmic primitives of the form:

"We have available an easy-to-implement unitary V , but we want to implement a related unitary U'' .

> Goal of this talk: Show you some interesting techniques that you might find useful in your research.

Oblivious Amplitude Amplification (OAA)

Probabilistic implementations

Let V be a unitary such that

 $\forall |\psi\rangle, \qquad V|0^m\rangle |\psi\rangle = \sqrt{p}|0^m\rangle U|\psi\rangle + \sqrt{1-p}|\perp\rangle,$ where $(|0^m\rangle\langle 0^m| \otimes I)|\perp\rangle = 0$.

Goal: Given a circuit for V, apply U on an arbitrary state $|\psi\rangle$.

Terminology: V is "probabilistic implementation" of U with probability p , or V "block-encodes" the operator $\sqrt{p}U$.

Classical repetition

Let V be a unitary such that

 $\forall |\psi\rangle, \qquad V|0^m\rangle |\psi\rangle = \sqrt{p}|0^m\rangle U|\psi\rangle + \sqrt{1-p}|\perp\rangle,$ where $(|0^m\rangle\langle 0^m| \otimes I)|\perp\rangle = 0$.

Goal: Given a circuit for V, apply U on an arbitrary state $|\psi\rangle$.

Solution 1 (classical repetition)

- Apply V to $|\psi\rangle$, and measure the first m qubits.
- If we observe $|0^m\rangle$, we're done. Otherwise repeat.

Cost:

- $O(1/p)$ uses of V
-

 $\mathcal{O}(1/p)$ copies of $|\psi\rangle \quad \leftarrow$ We may not have multiple copies of $|\psi\rangle$

Amplitude amplification

Let V be a unitary such that

 $\forall |\psi\rangle, \qquad V|0^m\rangle |\psi\rangle = \sqrt{p}|0^m\rangle U|\psi\rangle + \sqrt{1-p}|\perp\rangle,$ where $(|0^m\rangle\langle 0^m| \otimes I)|\perp\rangle = 0$.

Goal: Given a circuit for V, apply U on an arbitrary state $|\psi\rangle$.

$V =$ $\overline{p}U$ * * * ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Solution 2 (amplitude amplification)

• Repeat $O(1/\sqrt{p})$ times: Apply V. Reflect about $|0^m\rangle$. Apply V^{\dagger} . Reflect about $|0^m\rangle|\psi\rangle$.

Cost:

- $O\left(\frac{1}{\sqrt{p}}\right)$ uses of V and V^{\dagger}
- $O(1/\sqrt{p})$ uses of the reflection about $|\psi\rangle \leftarrow$ We may not be able to do this.

Oblivious amplitude amplification

Let V be a unitary such that

 $\forall |\psi\rangle, \qquad V|0^m\rangle |\psi\rangle = \sqrt{p}|0^m\rangle U|\psi\rangle + \sqrt{1-p}|\perp\rangle,$ where $(|0^m\rangle\langle 0^m| \otimes I)|\perp\rangle = 0$.

Goal: Given a circuit for V, apply U on an arbitrary state $|\psi\rangle$.

Iution 2 (amplitude amplification) Oblivious amplitude amplification

• Repeat $O(1/\sqrt{p})$ times: Apply V. Reflect about $|0^m\rangle$. Apply V^{\dagger} . Reflect about $|0^m\rangle$

Cost:

• $O\left(\frac{1}{\sqrt{p}}\right)$ uses of V and V^{\dagger}

 $\overline{O(1/\sqrt{p})}$ uses of the reflection about $\ket{\psi} \leftarrow$ We may not be able to do

Oblivious amplitude amplification

Let V be a unitary such that

 $\forall |\psi\rangle, \qquad V|0^m\rangle |\psi\rangle = \sqrt{p}|0^m\rangle U|\psi\rangle + \sqrt{1-p}|\perp\rangle,$ where $(|0^m\rangle\langle 0^m| \otimes I)|\perp\rangle = 0$.

Goal: Given a circuit for V, apply U on an arbitrary state $|\psi\rangle$.

Oblivious amplitude amplification

• Repeat $O(1/\sqrt{p})$ times: Apply V. Reflect about $|0^m\rangle$. Apply V^{\dagger} . Reflect about $|0^m\rangle$.

Cost:

• $O\left(\frac{1}{\sqrt{p}}\right)$ uses of V and V^{\dagger}

Note: It's very important that U is (close to) unitary for OAA to work!

Oblivious amplitude amplification (OAA)

Oblivious amplitude amplification take-home message A "probabilistic implementation" of U can be converted to an actual implementation of U .

If U is not unitary, use regular amplitude amplification.

Search

Docs Windows **Microsoft Azure**

Visual Studio

Office

More \sim

Filter by title

AmpAmpByReflections Phases

AmpAmpOblivious ByOraclePhases

AmpAmpOblivious ByReflectionPhases

AmpAmpPhasesFixedPoint

AmpAmpPhasesStandard AmpAmpRUSByOracle

AmpAmpReflectionPhases

AmpAmpRotationPhases

AmpAmpRotation **ToReflectionPhases**

AndLadder

ApplyLEOperation OnPhaseLE

ApplyLEOperation OnPhaseLEA

ApplyLEOperation OnPhaseLEC

ApplyLEOperation OnPhaseLECA

ApplyMultiControlledC

ApplyMultiControlledCA

ApplyPauli

AmpAmpObliviousByOraclePhases function O Share Namespace: Microsoft.Quantum.Canon Oblivious amplitude amplification by oracles for partial reflections. $Q#$ **LA Copy** function AmpAmpObliviousByOraclePhases (phases : AmpAmpReflectionPhases, ancillaOracle : DeterministicStateOracle, signalOracle : ObliviousOracle, idxFlagOubit : Int) : ((Oubit[], $Qubit[]$ => () : Adjoint, Controlled) Input phases AmpAmpReflectionPhases Phases of partial reflections ancillaOracle DeterministicStateOracle Unitary oracle A that prepares ancilla start state signalOracle ObliviousOracle Unitary oracle O of type \vert oblivious oracle that acts jointly on the ancilla and system register

idxFlagQubit Int

Index to single-qubit flag register

Output

 \checkmark

An operation that implements oblivious amplitude amplification based on partial reflections.

D Dark

In this article

- Input
- Output

Remarks

Linear Combination of Unitaries (LCU)

A linear combination of unitaries

Let B be a linear combination of easy-to-implement unitaries:

 $B = \sum_i \alpha_i W_i$.

Goal: Implement *B* given the ability to implement select $W = \sum_i |i\rangle\langle i| \otimes W_i$.

For example, let $B = W_0 + W_1$.

selectW|+)|\psi\rangle =
$$
\frac{1}{\sqrt{2}}
$$
(|0\rangle W₀| ψ ⟩ + |1\rangle W₁| ψ)
= $\frac{1}{2}$ (|+) (W₀ + W₁)| ψ ⟩ + |-⟩(W₀ - W₁)| ψ >)
= $\frac{1}{2}$ |+⟩B| ψ ⟩ + $\frac{1}{2}$ |-⟩(W₀ - W₁)| ψ ⟩

This is a probabilistic implementation of B .

A linear combination of unitaries

Let B be a linear combination of easy-to-implement unitaries:

 $B = \sum_i \alpha_i W_i$.

Goal: Implement *B* given the ability to implement select $W = \sum_i |i\rangle\langle i| \otimes W_i$.

More generally, we can implement a unitary V that block-encodes $B/\|\alpha\|_1$.

Define
$$
|A\rangle = \frac{1}{\sqrt{||\alpha||_1}} \sum_i \sqrt{\alpha_i} |i\rangle
$$
.
\n
$$
\text{select } W|A\rangle |\psi\rangle = \frac{1}{\sqrt{||\alpha||_1}} \sum_i \sqrt{\alpha_i} |i\rangle W_i |\psi\rangle
$$
\n
$$
= \frac{1}{||\alpha||_1} |A\rangle B |\psi\rangle + |A^{\perp}\rangle | \cdots \rangle
$$

This is a probabilistic implementation of B .

Linear combination of unitaries (LCU method)

 $B = \sum_i \alpha_i W_i$

Linear combination of unitaries take-home message If B can be expressed as a linear combination of easy-toimplement unitaries, then we can probabilistically implement B .

Then use OAA/AA to get an actual implementation of B .

Application to Hamiltonian simulation

Local Hamiltonian simulation problem: Given a local Hamiltonian $H = \sum_j H_j$, implement the unitary e^{-iHt} .

Step 1: Represent H as a linear combination of unitaries We have $H = \sum_i H_i$, where H_i acts on $O(1)$ qubits. Write H_i in the Pauli basis.

Step 2: Represent e^{-iHt} as a linear combination of unitaries

Say $H = \sum_i \beta_i P_i$, where P_i are unitary. Then $e^{-iHt} = I - iHt + \frac{(iHt)^2}{2!} + \cdots = I - it(\sum_i \beta_i P_i) + \frac{(it)^2}{2!}(\sum_i \beta_i P_i)^2 + \cdots$ is a linear combination of unitaries!

Step 3: Apply LCU and OAA. This is the "Truncated Taylor Series" algorithm [Berry-Childs-Cleve-K-Somma15].

Other applications

Quantum linear systems algorithm: Given a Hermitian matrix A , and state $|b\rangle$, the goal is to produce the state $|x\rangle = \frac{A^{-1} |b|}{\|a\| + \|b\|}$ $||A^{-1}|b\rangle||$.

Solution: Represent A^{-1} as $A^{-1} = \sum_t \alpha_t e^{-iAt}$ [Childs-K-Somma16]. Apply LCU + AA.

Other applications:

- · Solving differential equations [Berry-Childs-Ostrander-Wang17]
- · Preparing Gibbs states [Chowdhury-Somma16] (and solving SDPs and LPs on a quantum computer [Apeldoorn-Gilyen-Gribling-de Wolf17])
- Hamiltonian simulation for other Hamiltonians (e.g., sparse Hamiltonians using quantum walks [Berry-Childs-K15], quantum chemistry [Babbush-Wiebe-McClean-McClain-Neven-Chan181)

Quantum Signal Processing (QSP)

Eigenvalue transformation

Let *W* be an easy-to-implement unitary with $W = e^{i\theta_i} |\theta_i\rangle\langle\theta_i|$.

Problem: Implement $A = f(W) = \sum_i f(e^{i\theta_i}) |\theta_i\rangle\langle\theta_i|$, where f is a continuous function.

E.g., we have
$$
W = \begin{pmatrix} e^{i\theta_1} & 0 & 0 \\ 0 & e^{i\theta_2} & 0 \\ 0 & 0 & e^{i\theta_3} \end{pmatrix}
$$
; we want $A = \begin{pmatrix} f(e^{i\theta_1}) & 0 & 0 \\ 0 & f(e^{i\theta_2}) & 0 \\ 0 & 0 & f(e^{i\theta_3}) \end{pmatrix}$.

Can we implement $f(e^{i\theta}) = e^{ik\theta}$ for some integer k? (easy, just use W^k) Can we implement $f(e^{i\theta}) = \theta^{-1}$? (arises in quantum linear systems solvers) Can we implement $f(e^{i\theta}) = e^{i\cos(\theta)}$? (arises in Hamiltonian simulation)

Eigenvalue transformation

Let *W* be an easy-to-implement unitary with $W = e^{i\theta_i} |\theta_i\rangle\langle\theta_i|$.

Problem: Implement $A = f(W) = \sum_i f(e^{i\theta_i}) |\theta_i\rangle\langle\theta_i|$, where f is a continuous function.

Some solutions:

- 1. Use phase estimation on W . (Has poor scaling with precision.)
- 2. Express $A = \sum_i a_i W^i$ and use LCU.
- 3. Use Quantum Signal Processing [Low-Chuang16].

Setting up the "Signal"

Let *W* be an easy-to-implement unitary with $W = e^{i\theta_i} |\theta_i\rangle\langle\theta_i|$.

Problem: Implement $A = f(W) = \sum_i f(e^{i\theta_i}) |\theta_i\rangle\langle\theta_i|$, where f is a continuous function.

Consider the controlled-W operator:

 $C-W(0)|\theta_i\rangle = |0\rangle |\theta_i\rangle$ $\langle c-W|1\rangle|\theta_i\rangle = e^{i\theta_i}|1\rangle|\theta_i\rangle$

In the subspace with the second register equal to $|\theta\rangle$,

c-W is
$$
\begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}
$$
.

Signal processing

Let *W* be an easy-to-implement unitary with $W = e^{i\theta_i} |\theta_i\rangle\langle\theta_i|$.

Problem: Implement $A = f(W) = \sum_i f(e^{i\theta_i}) |\theta_i\rangle\langle\theta_i|$, where f is a continuous function.

Consider the following circuit:

Signal processing

Let *W* be an easy-to-implement unitary with $W = e^{i\theta_i} |\theta_i\rangle\langle\theta_i|$.

Problem: Implement $A = f(W) = \sum_i f(e^{i\theta_i}) |\theta_i\rangle\langle\theta_i|$, where f is a continuous function.

Consider the following circuit:

If we choose U_i such that $\begin{pmatrix} 800(0) & 801(0) \\ 0 & 100 \end{pmatrix} = \begin{pmatrix} 1(e^{2i\pi}) & * \\ * & * \end{pmatrix}$, then we're done!

Quantum signal processing (QSP)

 $A = f(W)$

Quantum signal processing take-home message If A can be written as a (reasonable) function of an easy-toimplement unitary W , then we can implement A .

Recap

 $B = \sum_i \alpha_i W_i$

Linear combination of unitaries

Oblivious amplitude amplification

Quantum signal processing

Quantum signal processing

$$
W(x) := \begin{bmatrix} x & i\sqrt{1-x^2} \\ i\sqrt{1-x^2} & x \end{bmatrix} = e^{i \arccos(x)\sigma_x}.
$$

Theorem 3. Let $k \in \mathbb{N}$; there exists $\Phi = {\phi_0, \phi_1, \dots, \phi_k} \in \mathbb{R}^{k+1}$ such that for all $x \in [-1, 1]$:

$$
e^{i\phi_0 \sigma_z} \prod_{j=1}^k \left(W(x) e^{i\phi_j \sigma_z} \right) = \begin{bmatrix} P(x) & iQ(x)\sqrt{1-x^2} \\ iQ^*(x)\sqrt{1-x^2} & P^*(x) \end{bmatrix}
$$
(3)

if and only if $P,Q \in \mathbb{C}[x]$ such² that

(i) deg(P) $\leq k$ and deg(Q) $\leq k-1$

(ii) P has parity-(k mod 2) and Q has parity-($k-1 \mod 2$)

(iii) $\forall x \in [-1,1]: |P(x)|^2 + (1-x^2)|Q(x)|^2 = 1.$

[Gilyén-Su-Low-Wiebe18]

Thanks!

Microsoft Quantum Development Kit: www.microsoft.com/quantum